scVI / README.md
avelezarce's picture
Create README.md
a6fe252 verified
|
raw
history blame
1.25 kB
metadata
language:
  - en
metrics:
  - accuracy
  - AUC ROC
  - precision
  - recall
tags:
  - biology
  - chemistry
  - therapeutic science
  - drug design
  - drug development
  - therapeutics
library_name: tdc
license: bsd-2-clause

The TDC Transformers API is still under development. You may download scVI pre-trained weights and hyperparameters from the files included.

Model description

Single-cell variational inference (scVI) is a powerful tool for the probabilistic analysis of single-cell transcriptomics data. It uses deep generative models to address technical noise and batch effects, providing a robust framework for various downstream analysis tasks. To load the pre-trained model, use the Files and Versions tab files.

References

  • Lopez, R., Regier, J., Cole, M., Jordan, M. I., & Yosef, N. (2018). Deep Generative Modeling for Single-cell Transcriptomics. Nature Methods, 15, 1053-1058.
  • Gayoso, A., Lopez, R., Xing, G., Boyeau, P., Wu, K., Jayasuriya, M., Mehlman, E., Langevin, M., Liu, Y., Samaran, J., Misrachi, G., Nazaret, A., Clivio, O., Xu, C. A., Ashuach, T., Lotfollahi, M., Svensson, V., Beltrame, E., Talavera-López, C., ... Yosef, N. (2021). scvi-tools: a library for deep probabilistic analysis of single-cell omics data. bioRxiv.