vxbrandon's picture
End of training
584d91f
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-base_cola_dense_epochs-3
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: cola
split: validation
args: cola
metrics:
- name: Accuracy
type: accuracy
value: 0.8283796740172579
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base_cola_dense_epochs-3
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5042
- Accuracy: 0.8284
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5796 | 0.19 | 50 | 0.5780 | 0.6913 |
| 0.4821 | 0.37 | 100 | 0.6683 | 0.7546 |
| 0.4703 | 0.56 | 150 | 0.4976 | 0.8035 |
| 0.4252 | 0.75 | 200 | 0.4958 | 0.8150 |
| 0.4915 | 0.93 | 250 | 0.5360 | 0.8044 |
| 0.3812 | 1.12 | 300 | 0.4645 | 0.8322 |
| 0.3603 | 1.31 | 350 | 0.4788 | 0.8293 |
| 0.3336 | 1.49 | 400 | 0.5135 | 0.8245 |
| 0.4157 | 1.68 | 450 | 0.5311 | 0.8322 |
| 0.4094 | 1.87 | 500 | 0.5042 | 0.8284 |
| 0.2836 | 2.05 | 550 | 0.5277 | 0.8313 |
| 0.2993 | 2.24 | 600 | 0.5515 | 0.8341 |
| 0.2843 | 2.43 | 650 | 0.5195 | 0.8332 |
| 0.2288 | 2.61 | 700 | 0.5129 | 0.8332 |
| 0.3165 | 2.8 | 750 | 0.5126 | 0.8360 |
| 0.2717 | 2.99 | 800 | 0.5083 | 0.8332 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1