|
--- |
|
tags: |
|
- clip |
|
- siglip |
|
library_name: open_clip |
|
pipeline_tag: zero-shot-image-classification |
|
license: apache-2.0 |
|
datasets: |
|
- webli |
|
--- |
|
# Model card for ViT-SO400M-16-SigLIP-i18n-256 |
|
|
|
A SigLIP (Sigmoid loss for Language-Image Pre-training) model trained on WebLI in multiple languages (i18n variant) w/ a multi-lingual tokenizer. |
|
|
|
This model has been converted to PyTorch from the original JAX checkpoints in [Big Vision](https://github.com/google-research/big_vision). These weights are usable in both OpenCLIP (image + text) and timm (image only). |
|
|
|
## Model Details |
|
- **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. |
|
- **Original:** https://github.com/google-research/big_vision |
|
- **Dataset:** WebLI |
|
- **Papers:** |
|
- Sigmoid loss for language image pre-training: https://arxiv.org/abs/2303.15343 |
|
|
|
## Model Usage |
|
### With OpenCLIP |
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.27, timm>=1.0.10 |
|
|
|
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-SO400M-16-SigLIP-i18n-256') |
|
tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-16-SigLIP-i18n-256') |
|
|
|
image = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
image = preprocess(image).unsqueeze(0) |
|
|
|
labels_list = ["a dog", "a cat", "a donut", "a beignet"] |
|
text = tokenizer(labels_list, context_length=model.context_length) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features = F.normalize(image_features, dim=-1) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) |
|
|
|
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) |
|
print("Label probabilities: ", zipped_list) |
|
``` |
|
|
|
### With `timm` (for image embeddings) |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
image = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'vit_so400m_patch14_siglip_256.webli_i18n', |
|
pretrained=True, |
|
num_classes=0, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(image).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{zhai2023sigmoid, |
|
title={Sigmoid loss for language image pre-training}, |
|
author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas}, |
|
journal={arXiv preprint arXiv:2303.15343}, |
|
year={2023} |
|
} |
|
``` |
|
```bibtex |
|
@misc{big_vision, |
|
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander}, |
|
title = {Big Vision}, |
|
year = {2022}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/google-research/big_vision}} |
|
} |
|
``` |
|
|
|
|