timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman's picture
rwightman HF staff
Fix library_name.
bf621d3 verified
---
license: apache-2.0
library_name: timm
tags:
- image-classification
- timm
datasets:
- imagenet-1k
---
# Model card for xcit_small_12_p16_224.fb_dist_in1k
A XCiT (Cross-Covariance Image Transformer) image classification model. Pretrained on ImageNet-1k with distillation by paper authors.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 26.3
- GMACs: 4.8
- Activations (M): 12.6
- Image size: 224 x 224
- **Papers:**
- XCiT: Cross-Covariance Image Transformers: https://arxiv.org/abs/2106.09681
- **Dataset:** ImageNet-1k
- **Original:** https://github.com/facebookresearch/xcit
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('xcit_small_12_p16_224.fb_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'xcit_small_12_p16_224.fb_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 384) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Citation
```bibtex
@article{el2021xcit,
title={XCiT: Cross-Covariance Image Transformers},
author={El-Nouby, Alaaeldin and Touvron, Hugo and Caron, Mathilde and Bojanowski, Piotr and Douze, Matthijs and Joulin, Armand and Laptev, Ivan and Neverova, Natalia and Synnaeve, Gabriel and Verbeek, Jakob and others},
journal={arXiv preprint arXiv:2106.09681},
year={2021}
}
```