tinyllava's picture
Update README.md
cd7a15c verified
|
raw
history blame
1.91 kB
metadata
license: apache-2.0
pipeline_tag: image-text-to-text

TinyLLaVA

We trained a TinyLLaVA model with 3.1B parameters, employing the same training settings as TinyLLaVA. For the Language and Vision models, we chose Phi-2 and siglip-so400m-patch14-384, respectively. The Connector was configured with a 2-layer MLP. The dataset used for training is the ShareGPT4V dataset.

Usage

Execute the following test code:

from transformers import AutoTokenizer, AutoModelForCausalLM

hf_path = 'tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B'
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
model.cuda()
config = model.config
tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
prompt="What are these?"
image_url="http://images.cocodataset.org/val2017/000000039769.jpg"
output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, model=model, tokenizer=tokenizer)

print('model output: ', output_text)
print('runing time: ', genertaion_time)

Result

model_name vqav2 gqa sqa textvqa MM-VET POPE MME MMMU
bczhou/TinyLLaVA-3.1B 79.9 62.0 69.1 59.1 32.0 86.4 1464.9 -
tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B 80.1 62.1 73.0 60.3 37.5 87.2 1466.4 38.4