tsavage68's picture
End of training
ff37341 verified
metadata
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: UTI_L3_1000steps_1e7rate_SFT
    results: []

UTI_L3_1000steps_1e7rate_SFT

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
2.4485 0.3333 25 2.4666
2.4645 0.6667 50 2.4522
2.452 1.0 75 2.4164
2.391 1.3333 100 2.3529
2.2816 1.6667 125 2.2866
2.175 2.0 150 2.2255
2.2168 2.3333 175 2.1683
2.1574 2.6667 200 2.1166
2.1107 3.0 225 2.0679
2.0126 3.3333 250 2.0229
1.9353 3.6667 275 1.9810
1.9552 4.0 300 1.9445
1.9759 4.3333 325 1.9100
1.8721 4.6667 350 1.8773
1.8928 5.0 375 1.8491
1.8331 5.3333 400 1.8236
1.8221 5.6667 425 1.7980
1.7615 6.0 450 1.7762
1.7701 6.3333 475 1.7562
1.7034 6.6667 500 1.7327
1.7471 7.0 525 1.7064
1.7317 7.3333 550 1.6831
1.6897 7.6667 575 1.6645
1.6452 8.0 600 1.6476
1.6675 8.3333 625 1.6327
1.569 8.6667 650 1.6238
1.705 9.0 675 1.6163
1.6025 9.3333 700 1.6121
1.6224 9.6667 725 1.6083
1.6976 10.0 750 1.6074
1.6031 10.3333 775 1.6059
1.5703 10.6667 800 1.6046
1.6563 11.0 825 1.6055
1.6464 11.3333 850 1.6059
1.6075 11.6667 875 1.6055
1.6453 12.0 900 1.6057
1.5754 12.3333 925 1.6054
1.5962 12.6667 950 1.6055
1.6333 13.0 975 1.6055
1.6086 13.3333 1000 1.6055

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.0+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1