legal_deberta / README.md
tthhanh's picture
update model card README.md
9a6e984
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
model-index:
  - name: legal_deberta
    results: []

legal_deberta

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2674
  • Law Precision: 0.6932
  • Law Recall: 0.8133
  • Law F1: 0.7485
  • Law Number: 75
  • Violated by Precision: 0.8684
  • Violated by Recall: 0.88
  • Violated by F1: 0.8742
  • Violated by Number: 75
  • Violated on Precision: 0.5882
  • Violated on Recall: 0.6667
  • Violated on F1: 0.625
  • Violated on Number: 75
  • Violation Precision: 0.5287
  • Violation Recall: 0.6429
  • Violation F1: 0.5802
  • Violation Number: 616
  • Overall Precision: 0.5741
  • Overall Recall: 0.6813
  • Overall F1: 0.6232
  • Overall Accuracy: 0.9461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
1.9748 1.0 45 1.1555 0.0 0.0 0.0 75 0.0 0.0 0.0 75 0.0 0.0 0.0 75 0.0 0.0 0.0 616 0.0 0.0 0.0 0.7437
0.4536 2.0 90 0.3670 0.0 0.0 0.0 75 0.0 0.0 0.0 75 0.0 0.0 0.0 75 0.1704 0.2955 0.2162 616 0.1704 0.2164 0.1907 0.8901
0.2704 3.0 135 0.2199 0.7059 0.64 0.6713 75 0.3095 0.1733 0.2222 75 0.0909 0.0133 0.0233 75 0.3291 0.5097 0.4000 616 0.3498 0.4471 0.3925 0.9277
0.1475 4.0 180 0.1959 0.6263 0.8267 0.7126 75 0.9153 0.72 0.8060 75 0.3182 0.3733 0.3436 75 0.4641 0.5974 0.5224 616 0.4928 0.6088 0.5447 0.9407
0.0879 5.0 225 0.2038 0.5909 0.8667 0.7027 75 0.7590 0.84 0.7975 75 0.3982 0.6 0.4787 75 0.4692 0.6055 0.5287 616 0.4959 0.6492 0.5623 0.9434
0.0499 6.0 270 0.2466 0.5913 0.9067 0.7158 75 0.7674 0.88 0.8199 75 0.4412 0.6 0.5085 75 0.4832 0.6071 0.5381 616 0.5135 0.6576 0.5766 0.9425
0.0291 7.0 315 0.2980 0.5755 0.8133 0.6740 75 0.7976 0.8933 0.8428 75 0.3802 0.6133 0.4694 75 0.4929 0.5617 0.5250 616 0.5133 0.6183 0.5609 0.9389
0.0341 8.0 360 0.2660 0.5739 0.88 0.6947 75 0.8193 0.9067 0.8608 75 0.48 0.64 0.5486 75 0.4800 0.6445 0.5502 616 0.5147 0.6885 0.5890 0.9366
0.0228 9.0 405 0.3186 0.3505 0.9067 0.5056 75 0.6126 0.9067 0.7312 75 0.3216 0.7333 0.4472 75 0.4365 0.5519 0.4875 616 0.4231 0.6314 0.5067 0.9301
0.0173 10.0 450 0.2674 0.6932 0.8133 0.7485 75 0.8684 0.88 0.8742 75 0.5882 0.6667 0.625 75 0.5287 0.6429 0.5802 616 0.5741 0.6813 0.6232 0.9461

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.13.3