|
--- |
|
license: mit |
|
base_model: neuralmind/bert-base-portuguese-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-portuguese-cased-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: test |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8717564870259481 |
|
- name: Recall |
|
type: recall |
|
value: 0.8995880535530381 |
|
- name: F1 |
|
type: f1 |
|
value: 0.88545362392296 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9836487420412604 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-portuguese-cased-finetuned-ner |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0652 |
|
- Precision: 0.8718 |
|
- Recall: 0.8996 |
|
- F1: 0.8855 |
|
- Accuracy: 0.9836 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 490 | 0.0911 | 0.8063 | 0.7703 | 0.7879 | 0.9734 | |
|
| 0.1901 | 2.0 | 980 | 0.0665 | 0.8525 | 0.8929 | 0.8722 | 0.9819 | |
|
| 0.0419 | 3.0 | 1470 | 0.0652 | 0.8718 | 0.8996 | 0.8855 | 0.9836 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|