twine-network's picture
Upload README.md with huggingface_hub
104a400 verified
metadata
tags:
  - mteb
  - llama-cpp
  - gguf-my-repo
base_model: mixedbread-ai/mxbai-embed-xsmall-v1
library_name: sentence-transformers
license: apache-2.0
language:
  - en
pipeline_tag: feature-extraction
model-index:
  - name: mxbai-embed-xsmall-v1
    results:
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 25.18
          - type: ndcg_at_3
            value: 39.22
          - type: ndcg_at_5
            value: 43.93
          - type: ndcg_at_10
            value: 49.58
          - type: ndcg_at_30
            value: 53.41
          - type: ndcg_at_100
            value: 54.11
          - type: map_at_1
            value: 25.18
          - type: map_at_3
            value: 35.66
          - type: map_at_5
            value: 38.25
          - type: map_at_10
            value: 40.58
          - type: map_at_30
            value: 41.6
          - type: map_at_100
            value: 41.69
          - type: recall_at_1
            value: 25.18
          - type: recall_at_3
            value: 49.57
          - type: recall_at_5
            value: 61.09
          - type: recall_at_10
            value: 78.59
          - type: recall_at_30
            value: 94.03
          - type: recall_at_100
            value: 97.94
          - type: precision_at_1
            value: 25.18
          - type: precision_at_3
            value: 16.52
          - type: precision_at_5
            value: 12.22
          - type: precision_at_10
            value: 7.86
          - type: precision_at_30
            value: 3.13
          - type: precision_at_100
            value: 0.98
          - type: accuracy_at_3
            value: 49.57
          - type: accuracy_at_5
            value: 61.09
          - type: accuracy_at_10
            value: 78.59
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 44.35
          - type: ndcg_at_3
            value: 49.64
          - type: ndcg_at_5
            value: 51.73
          - type: ndcg_at_10
            value: 54.82
          - type: ndcg_at_30
            value: 57.64
          - type: ndcg_at_100
            value: 59.77
          - type: map_at_1
            value: 36.26
          - type: map_at_3
            value: 44.35
          - type: map_at_5
            value: 46.26
          - type: map_at_10
            value: 48.24
          - type: map_at_30
            value: 49.34
          - type: map_at_100
            value: 49.75
          - type: recall_at_1
            value: 36.26
          - type: recall_at_3
            value: 51.46
          - type: recall_at_5
            value: 57.78
          - type: recall_at_10
            value: 66.5
          - type: recall_at_30
            value: 77.19
          - type: recall_at_100
            value: 87.53
          - type: precision_at_1
            value: 44.35
          - type: precision_at_3
            value: 23.65
          - type: precision_at_5
            value: 16.88
          - type: precision_at_10
            value: 10.7
          - type: precision_at_30
            value: 4.53
          - type: precision_at_100
            value: 1.65
          - type: accuracy_at_3
            value: 60.51
          - type: accuracy_at_5
            value: 67.67
          - type: accuracy_at_10
            value: 74.68
          - type: ndcg_at_1
            value: 39.43
          - type: ndcg_at_3
            value: 44.13
          - type: ndcg_at_5
            value: 46.06
          - type: ndcg_at_10
            value: 48.31
          - type: ndcg_at_30
            value: 51.06
          - type: ndcg_at_100
            value: 53.07
          - type: map_at_1
            value: 31.27
          - type: map_at_3
            value: 39.07
          - type: map_at_5
            value: 40.83
          - type: map_at_10
            value: 42.23
          - type: map_at_30
            value: 43.27
          - type: map_at_100
            value: 43.66
          - type: recall_at_1
            value: 31.27
          - type: recall_at_3
            value: 45.89
          - type: recall_at_5
            value: 51.44
          - type: recall_at_10
            value: 58.65
          - type: recall_at_30
            value: 69.12
          - type: recall_at_100
            value: 78.72
          - type: precision_at_1
            value: 39.43
          - type: precision_at_3
            value: 21.61
          - type: precision_at_5
            value: 15.34
          - type: precision_at_10
            value: 9.27
          - type: precision_at_30
            value: 4.01
          - type: precision_at_100
            value: 1.52
          - type: accuracy_at_3
            value: 55.48
          - type: accuracy_at_5
            value: 60.76
          - type: accuracy_at_10
            value: 67.45
          - type: ndcg_at_1
            value: 45.58
          - type: ndcg_at_3
            value: 52.68
          - type: ndcg_at_5
            value: 55.28
          - type: ndcg_at_10
            value: 57.88
          - type: ndcg_at_30
            value: 60.6
          - type: ndcg_at_100
            value: 62.03
          - type: map_at_1
            value: 39.97
          - type: map_at_3
            value: 49.06
          - type: map_at_5
            value: 50.87
          - type: map_at_10
            value: 52.2
          - type: map_at_30
            value: 53.06
          - type: map_at_100
            value: 53.28
          - type: recall_at_1
            value: 39.97
          - type: recall_at_3
            value: 57.4
          - type: recall_at_5
            value: 63.83
          - type: recall_at_10
            value: 71.33
          - type: recall_at_30
            value: 81.81
          - type: recall_at_100
            value: 89
          - type: precision_at_1
            value: 45.58
          - type: precision_at_3
            value: 23.55
          - type: precision_at_5
            value: 16.01
          - type: precision_at_10
            value: 9.25
          - type: precision_at_30
            value: 3.67
          - type: precision_at_100
            value: 1.23
          - type: accuracy_at_3
            value: 62.76
          - type: accuracy_at_5
            value: 68.84
          - type: accuracy_at_10
            value: 75.8
          - type: ndcg_at_1
            value: 27.35
          - type: ndcg_at_3
            value: 34.23
          - type: ndcg_at_5
            value: 37.1
          - type: ndcg_at_10
            value: 40.26
          - type: ndcg_at_30
            value: 43.54
          - type: ndcg_at_100
            value: 45.9
          - type: map_at_1
            value: 25.28
          - type: map_at_3
            value: 31.68
          - type: map_at_5
            value: 33.38
          - type: map_at_10
            value: 34.79
          - type: map_at_30
            value: 35.67
          - type: map_at_100
            value: 35.96
          - type: recall_at_1
            value: 25.28
          - type: recall_at_3
            value: 38.95
          - type: recall_at_5
            value: 45.82
          - type: recall_at_10
            value: 55.11
          - type: recall_at_30
            value: 68.13
          - type: recall_at_100
            value: 80.88
          - type: precision_at_1
            value: 27.35
          - type: precision_at_3
            value: 14.65
          - type: precision_at_5
            value: 10.44
          - type: precision_at_10
            value: 6.37
          - type: precision_at_30
            value: 2.65
          - type: precision_at_100
            value: 0.97
          - type: accuracy_at_3
            value: 42.15
          - type: accuracy_at_5
            value: 49.15
          - type: accuracy_at_10
            value: 58.53
          - type: ndcg_at_1
            value: 18.91
          - type: ndcg_at_3
            value: 24.37
          - type: ndcg_at_5
            value: 26.11
          - type: ndcg_at_10
            value: 29.37
          - type: ndcg_at_30
            value: 33.22
          - type: ndcg_at_100
            value: 35.73
          - type: map_at_1
            value: 15.23
          - type: map_at_3
            value: 21.25
          - type: map_at_5
            value: 22.38
          - type: map_at_10
            value: 23.86
          - type: map_at_30
            value: 24.91
          - type: map_at_100
            value: 25.24
          - type: recall_at_1
            value: 15.23
          - type: recall_at_3
            value: 28.28
          - type: recall_at_5
            value: 32.67
          - type: recall_at_10
            value: 42.23
          - type: recall_at_30
            value: 56.87
          - type: recall_at_100
            value: 69.44
          - type: precision_at_1
            value: 18.91
          - type: precision_at_3
            value: 11.9
          - type: precision_at_5
            value: 8.48
          - type: precision_at_10
            value: 5.63
          - type: precision_at_30
            value: 2.64
          - type: precision_at_100
            value: 1.02
          - type: accuracy_at_3
            value: 33.95
          - type: accuracy_at_5
            value: 38.81
          - type: accuracy_at_10
            value: 49.13
          - type: ndcg_at_1
            value: 36.96
          - type: ndcg_at_3
            value: 42.48
          - type: ndcg_at_5
            value: 44.57
          - type: ndcg_at_10
            value: 47.13
          - type: ndcg_at_30
            value: 50.65
          - type: ndcg_at_100
            value: 53.14
          - type: map_at_1
            value: 30.1
          - type: map_at_3
            value: 37.97
          - type: map_at_5
            value: 39.62
          - type: map_at_10
            value: 41.06
          - type: map_at_30
            value: 42.13
          - type: map_at_100
            value: 42.53
          - type: recall_at_1
            value: 30.1
          - type: recall_at_3
            value: 45.98
          - type: recall_at_5
            value: 51.58
          - type: recall_at_10
            value: 59.24
          - type: recall_at_30
            value: 72.47
          - type: recall_at_100
            value: 84.53
          - type: precision_at_1
            value: 36.96
          - type: precision_at_3
            value: 20.5
          - type: precision_at_5
            value: 14.4
          - type: precision_at_10
            value: 8.62
          - type: precision_at_30
            value: 3.67
          - type: precision_at_100
            value: 1.38
          - type: accuracy_at_3
            value: 54.09
          - type: accuracy_at_5
            value: 60.25
          - type: accuracy_at_10
            value: 67.37
          - type: ndcg_at_1
            value: 28.65
          - type: ndcg_at_3
            value: 34.3
          - type: ndcg_at_5
            value: 36.8
          - type: ndcg_at_10
            value: 39.92
          - type: ndcg_at_30
            value: 42.97
          - type: ndcg_at_100
            value: 45.45
          - type: map_at_1
            value: 23.35
          - type: map_at_3
            value: 30.36
          - type: map_at_5
            value: 32.15
          - type: map_at_10
            value: 33.74
          - type: map_at_30
            value: 34.69
          - type: map_at_100
            value: 35.02
          - type: recall_at_1
            value: 23.35
          - type: recall_at_3
            value: 37.71
          - type: recall_at_5
            value: 44.23
          - type: recall_at_10
            value: 53.6
          - type: recall_at_30
            value: 64.69
          - type: recall_at_100
            value: 77.41
          - type: precision_at_1
            value: 28.65
          - type: precision_at_3
            value: 16.74
          - type: precision_at_5
            value: 12.21
          - type: precision_at_10
            value: 7.61
          - type: precision_at_30
            value: 3.29
          - type: precision_at_100
            value: 1.22
          - type: accuracy_at_3
            value: 44.86
          - type: accuracy_at_5
            value: 52.4
          - type: accuracy_at_10
            value: 61.07
          - type: ndcg_at_1
            value: 26.07
          - type: ndcg_at_3
            value: 31.62
          - type: ndcg_at_5
            value: 33.23
          - type: ndcg_at_10
            value: 35.62
          - type: ndcg_at_30
            value: 38.41
          - type: ndcg_at_100
            value: 40.81
          - type: map_at_1
            value: 22.96
          - type: map_at_3
            value: 28.85
          - type: map_at_5
            value: 29.97
          - type: map_at_10
            value: 31.11
          - type: map_at_30
            value: 31.86
          - type: map_at_100
            value: 32.15
          - type: recall_at_1
            value: 22.96
          - type: recall_at_3
            value: 35.14
          - type: recall_at_5
            value: 39.22
          - type: recall_at_10
            value: 46.52
          - type: recall_at_30
            value: 57.58
          - type: recall_at_100
            value: 70.57
          - type: precision_at_1
            value: 26.07
          - type: precision_at_3
            value: 14.11
          - type: precision_at_5
            value: 9.69
          - type: precision_at_10
            value: 5.81
          - type: precision_at_30
            value: 2.45
          - type: precision_at_100
            value: 0.92
          - type: accuracy_at_3
            value: 39.42
          - type: accuracy_at_5
            value: 43.41
          - type: accuracy_at_10
            value: 50.92
          - type: ndcg_at_1
            value: 21.78
          - type: ndcg_at_3
            value: 25.74
          - type: ndcg_at_5
            value: 27.86
          - type: ndcg_at_10
            value: 30.3
          - type: ndcg_at_30
            value: 33.51
          - type: ndcg_at_100
            value: 36.12
          - type: map_at_1
            value: 17.63
          - type: map_at_3
            value: 22.7
          - type: map_at_5
            value: 24.14
          - type: map_at_10
            value: 25.31
          - type: map_at_30
            value: 26.22
          - type: map_at_100
            value: 26.56
          - type: recall_at_1
            value: 17.63
          - type: recall_at_3
            value: 28.37
          - type: recall_at_5
            value: 33.99
          - type: recall_at_10
            value: 41.23
          - type: recall_at_30
            value: 53.69
          - type: recall_at_100
            value: 67.27
          - type: precision_at_1
            value: 21.78
          - type: precision_at_3
            value: 12.41
          - type: precision_at_5
            value: 9.07
          - type: precision_at_10
            value: 5.69
          - type: precision_at_30
            value: 2.61
          - type: precision_at_100
            value: 1.03
          - type: accuracy_at_3
            value: 33.62
          - type: accuracy_at_5
            value: 39.81
          - type: accuracy_at_10
            value: 47.32
          - type: ndcg_at_1
            value: 30.97
          - type: ndcg_at_3
            value: 36.13
          - type: ndcg_at_5
            value: 39
          - type: ndcg_at_10
            value: 41.78
          - type: ndcg_at_30
            value: 44.96
          - type: ndcg_at_100
            value: 47.52
          - type: map_at_1
            value: 26.05
          - type: map_at_3
            value: 32.77
          - type: map_at_5
            value: 34.6
          - type: map_at_10
            value: 35.93
          - type: map_at_30
            value: 36.88
          - type: map_at_100
            value: 37.22
          - type: recall_at_1
            value: 26.05
          - type: recall_at_3
            value: 40
          - type: recall_at_5
            value: 47.34
          - type: recall_at_10
            value: 55.34
          - type: recall_at_30
            value: 67.08
          - type: recall_at_100
            value: 80.2
          - type: precision_at_1
            value: 30.97
          - type: precision_at_3
            value: 16.6
          - type: precision_at_5
            value: 12.03
          - type: precision_at_10
            value: 7.3
          - type: precision_at_30
            value: 3.08
          - type: precision_at_100
            value: 1.15
          - type: accuracy_at_3
            value: 45.62
          - type: accuracy_at_5
            value: 53.64
          - type: accuracy_at_10
            value: 61.66
          - type: ndcg_at_1
            value: 29.64
          - type: ndcg_at_3
            value: 35.49
          - type: ndcg_at_5
            value: 37.77
          - type: ndcg_at_10
            value: 40.78
          - type: ndcg_at_30
            value: 44.59
          - type: ndcg_at_100
            value: 46.97
          - type: map_at_1
            value: 24.77
          - type: map_at_3
            value: 31.33
          - type: map_at_5
            value: 32.95
          - type: map_at_10
            value: 34.47
          - type: map_at_30
            value: 35.7
          - type: map_at_100
            value: 36.17
          - type: recall_at_1
            value: 24.77
          - type: recall_at_3
            value: 38.16
          - type: recall_at_5
            value: 44.1
          - type: recall_at_10
            value: 53.31
          - type: recall_at_30
            value: 68.43
          - type: recall_at_100
            value: 80.24
          - type: precision_at_1
            value: 29.64
          - type: precision_at_3
            value: 16.8
          - type: precision_at_5
            value: 12.21
          - type: precision_at_10
            value: 7.83
          - type: precision_at_30
            value: 3.89
          - type: precision_at_100
            value: 1.63
          - type: accuracy_at_3
            value: 45.45
          - type: accuracy_at_5
            value: 51.58
          - type: accuracy_at_10
            value: 61.07
          - type: ndcg_at_1
            value: 23.47
          - type: ndcg_at_3
            value: 27.98
          - type: ndcg_at_5
            value: 30.16
          - type: ndcg_at_10
            value: 32.97
          - type: ndcg_at_30
            value: 36.3
          - type: ndcg_at_100
            value: 38.47
          - type: map_at_1
            value: 21.63
          - type: map_at_3
            value: 26.02
          - type: map_at_5
            value: 27.32
          - type: map_at_10
            value: 28.51
          - type: map_at_30
            value: 29.39
          - type: map_at_100
            value: 29.66
          - type: recall_at_1
            value: 21.63
          - type: recall_at_3
            value: 31.47
          - type: recall_at_5
            value: 36.69
          - type: recall_at_10
            value: 44.95
          - type: recall_at_30
            value: 58.2
          - type: recall_at_100
            value: 69.83
          - type: precision_at_1
            value: 23.47
          - type: precision_at_3
            value: 11.71
          - type: precision_at_5
            value: 8.32
          - type: precision_at_10
            value: 5.23
          - type: precision_at_30
            value: 2.29
          - type: precision_at_100
            value: 0.86
          - type: accuracy_at_3
            value: 34.01
          - type: accuracy_at_5
            value: 39.37
          - type: accuracy_at_10
            value: 48.24
          - type: ndcg_at_10
            value: 41.59
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 19.8
          - type: ndcg_at_3
            value: 17.93
          - type: ndcg_at_5
            value: 19.39
          - type: ndcg_at_10
            value: 22.42
          - type: ndcg_at_30
            value: 26.79
          - type: ndcg_at_100
            value: 29.84
          - type: map_at_1
            value: 9.09
          - type: map_at_3
            value: 12.91
          - type: map_at_5
            value: 14.12
          - type: map_at_10
            value: 15.45
          - type: map_at_30
            value: 16.73
          - type: map_at_100
            value: 17.21
          - type: recall_at_1
            value: 9.09
          - type: recall_at_3
            value: 16.81
          - type: recall_at_5
            value: 20.9
          - type: recall_at_10
            value: 27.65
          - type: recall_at_30
            value: 41.23
          - type: recall_at_100
            value: 53.57
          - type: precision_at_1
            value: 19.8
          - type: precision_at_3
            value: 13.36
          - type: precision_at_5
            value: 10.33
          - type: precision_at_10
            value: 7.15
          - type: precision_at_30
            value: 3.66
          - type: precision_at_100
            value: 1.49
          - type: accuracy_at_3
            value: 36.22
          - type: accuracy_at_5
            value: 44.1
          - type: accuracy_at_10
            value: 55.11
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 42.75
          - type: ndcg_at_3
            value: 35.67
          - type: ndcg_at_5
            value: 33.58
          - type: ndcg_at_10
            value: 32.19
          - type: ndcg_at_30
            value: 31.82
          - type: ndcg_at_100
            value: 35.87
          - type: map_at_1
            value: 7.05
          - type: map_at_3
            value: 10.5
          - type: map_at_5
            value: 12.06
          - type: map_at_10
            value: 14.29
          - type: map_at_30
            value: 17.38
          - type: map_at_100
            value: 19.58
          - type: recall_at_1
            value: 7.05
          - type: recall_at_3
            value: 11.89
          - type: recall_at_5
            value: 14.7
          - type: recall_at_10
            value: 19.78
          - type: recall_at_30
            value: 29.88
          - type: recall_at_100
            value: 42.4
          - type: precision_at_1
            value: 54.25
          - type: precision_at_3
            value: 39.42
          - type: precision_at_5
            value: 33.15
          - type: precision_at_10
            value: 25.95
          - type: precision_at_30
            value: 15.51
          - type: precision_at_100
            value: 7.9
          - type: accuracy_at_3
            value: 72
          - type: accuracy_at_5
            value: 77.75
          - type: accuracy_at_10
            value: 83.5
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 40.19
          - type: ndcg_at_3
            value: 50.51
          - type: ndcg_at_5
            value: 53.51
          - type: ndcg_at_10
            value: 56.45
          - type: ndcg_at_30
            value: 58.74
          - type: ndcg_at_100
            value: 59.72
          - type: map_at_1
            value: 37.56
          - type: map_at_3
            value: 46.74
          - type: map_at_5
            value: 48.46
          - type: map_at_10
            value: 49.7
          - type: map_at_30
            value: 50.31
          - type: map_at_100
            value: 50.43
          - type: recall_at_1
            value: 37.56
          - type: recall_at_3
            value: 58.28
          - type: recall_at_5
            value: 65.45
          - type: recall_at_10
            value: 74.28
          - type: recall_at_30
            value: 83.42
          - type: recall_at_100
            value: 88.76
          - type: precision_at_1
            value: 40.19
          - type: precision_at_3
            value: 20.99
          - type: precision_at_5
            value: 14.24
          - type: precision_at_10
            value: 8.12
          - type: precision_at_30
            value: 3.06
          - type: precision_at_100
            value: 0.98
          - type: accuracy_at_3
            value: 62.3
          - type: accuracy_at_5
            value: 69.94
          - type: accuracy_at_10
            value: 79.13
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 34.41
          - type: ndcg_at_3
            value: 33.2
          - type: ndcg_at_5
            value: 34.71
          - type: ndcg_at_10
            value: 37.1
          - type: ndcg_at_30
            value: 40.88
          - type: ndcg_at_100
            value: 44.12
          - type: map_at_1
            value: 17.27
          - type: map_at_3
            value: 25.36
          - type: map_at_5
            value: 27.76
          - type: map_at_10
            value: 29.46
          - type: map_at_30
            value: 30.74
          - type: map_at_100
            value: 31.29
          - type: recall_at_1
            value: 17.27
          - type: recall_at_3
            value: 30.46
          - type: recall_at_5
            value: 36.91
          - type: recall_at_10
            value: 44.47
          - type: recall_at_30
            value: 56.71
          - type: recall_at_100
            value: 70.72
          - type: precision_at_1
            value: 34.41
          - type: precision_at_3
            value: 22.32
          - type: precision_at_5
            value: 16.91
          - type: precision_at_10
            value: 10.53
          - type: precision_at_30
            value: 4.62
          - type: precision_at_100
            value: 1.79
          - type: accuracy_at_3
            value: 50.77
          - type: accuracy_at_5
            value: 57.56
          - type: accuracy_at_10
            value: 65.12
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 57.93
          - type: ndcg_at_3
            value: 44.21
          - type: ndcg_at_5
            value: 46.4
          - type: ndcg_at_10
            value: 48.37
          - type: ndcg_at_30
            value: 50.44
          - type: ndcg_at_100
            value: 51.86
          - type: map_at_1
            value: 28.97
          - type: map_at_3
            value: 36.79
          - type: map_at_5
            value: 38.31
          - type: map_at_10
            value: 39.32
          - type: map_at_30
            value: 39.99
          - type: map_at_100
            value: 40.2
          - type: recall_at_1
            value: 28.97
          - type: recall_at_3
            value: 41.01
          - type: recall_at_5
            value: 45.36
          - type: recall_at_10
            value: 50.32
          - type: recall_at_30
            value: 57.38
          - type: recall_at_100
            value: 64.06
          - type: precision_at_1
            value: 57.93
          - type: precision_at_3
            value: 27.34
          - type: precision_at_5
            value: 18.14
          - type: precision_at_10
            value: 10.06
          - type: precision_at_30
            value: 3.82
          - type: precision_at_100
            value: 1.28
          - type: accuracy_at_3
            value: 71.03
          - type: accuracy_at_5
            value: 75.14
          - type: accuracy_at_10
            value: 79.84
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 19.74
          - type: ndcg_at_3
            value: 29.47
          - type: ndcg_at_5
            value: 32.99
          - type: ndcg_at_10
            value: 36.76
          - type: ndcg_at_30
            value: 40.52
          - type: ndcg_at_100
            value: 42.78
          - type: map_at_1
            value: 19.2
          - type: map_at_3
            value: 26.81
          - type: map_at_5
            value: 28.78
          - type: map_at_10
            value: 30.35
          - type: map_at_30
            value: 31.3
          - type: map_at_100
            value: 31.57
          - type: recall_at_1
            value: 19.2
          - type: recall_at_3
            value: 36.59
          - type: recall_at_5
            value: 45.08
          - type: recall_at_10
            value: 56.54
          - type: recall_at_30
            value: 72.05
          - type: recall_at_100
            value: 84.73
          - type: precision_at_1
            value: 19.74
          - type: precision_at_3
            value: 12.61
          - type: precision_at_5
            value: 9.37
          - type: precision_at_10
            value: 5.89
          - type: precision_at_30
            value: 2.52
          - type: precision_at_100
            value: 0.89
          - type: accuracy_at_3
            value: 37.38
          - type: accuracy_at_5
            value: 46.06
          - type: accuracy_at_10
            value: 57.62
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 25.9
          - type: ndcg_at_3
            value: 35.97
          - type: ndcg_at_5
            value: 40.27
          - type: ndcg_at_10
            value: 44.44
          - type: ndcg_at_30
            value: 48.31
          - type: ndcg_at_100
            value: 50.14
          - type: map_at_1
            value: 23.03
          - type: map_at_3
            value: 32.45
          - type: map_at_5
            value: 34.99
          - type: map_at_10
            value: 36.84
          - type: map_at_30
            value: 37.92
          - type: map_at_100
            value: 38.16
          - type: recall_at_1
            value: 23.03
          - type: recall_at_3
            value: 43.49
          - type: recall_at_5
            value: 53.41
          - type: recall_at_10
            value: 65.65
          - type: recall_at_30
            value: 80.79
          - type: recall_at_100
            value: 90.59
          - type: precision_at_1
            value: 25.9
          - type: precision_at_3
            value: 16.76
          - type: precision_at_5
            value: 12.54
          - type: precision_at_10
            value: 7.78
          - type: precision_at_30
            value: 3.23
          - type: precision_at_100
            value: 1.1
          - type: accuracy_at_3
            value: 47.31
          - type: accuracy_at_5
            value: 57.16
          - type: accuracy_at_10
            value: 69.09
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 40.87
          - type: ndcg_at_3
            value: 36.79
          - type: ndcg_at_5
            value: 34.47
          - type: ndcg_at_10
            value: 32.05
          - type: ndcg_at_30
            value: 29.23
          - type: ndcg_at_100
            value: 29.84
          - type: map_at_1
            value: 5.05
          - type: map_at_3
            value: 8.5
          - type: map_at_5
            value: 9.87
          - type: map_at_10
            value: 11.71
          - type: map_at_30
            value: 13.48
          - type: map_at_100
            value: 14.86
          - type: recall_at_1
            value: 5.05
          - type: recall_at_3
            value: 9.55
          - type: recall_at_5
            value: 11.91
          - type: recall_at_10
            value: 16.07
          - type: recall_at_30
            value: 22.13
          - type: recall_at_100
            value: 30.7
          - type: precision_at_1
            value: 42.72
          - type: precision_at_3
            value: 34.78
          - type: precision_at_5
            value: 30.03
          - type: precision_at_10
            value: 23.93
          - type: precision_at_30
            value: 14.61
          - type: precision_at_100
            value: 7.85
          - type: accuracy_at_3
            value: 58.2
          - type: accuracy_at_5
            value: 64.09
          - type: accuracy_at_10
            value: 69.35
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 80.62
          - type: ndcg_at_3
            value: 84.62
          - type: ndcg_at_5
            value: 86.25
          - type: ndcg_at_10
            value: 87.7
          - type: ndcg_at_30
            value: 88.63
          - type: ndcg_at_100
            value: 88.95
          - type: map_at_1
            value: 69.91
          - type: map_at_3
            value: 80.7
          - type: map_at_5
            value: 82.57
          - type: map_at_10
            value: 83.78
          - type: map_at_30
            value: 84.33
          - type: map_at_100
            value: 84.44
          - type: recall_at_1
            value: 69.91
          - type: recall_at_3
            value: 86.36
          - type: recall_at_5
            value: 90.99
          - type: recall_at_10
            value: 95.19
          - type: recall_at_30
            value: 98.25
          - type: recall_at_100
            value: 99.47
          - type: precision_at_1
            value: 80.62
          - type: precision_at_3
            value: 37.03
          - type: precision_at_5
            value: 24.36
          - type: precision_at_10
            value: 13.4
          - type: precision_at_30
            value: 4.87
          - type: precision_at_100
            value: 1.53
          - type: accuracy_at_3
            value: 92.25
          - type: accuracy_at_5
            value: 95.29
          - type: accuracy_at_10
            value: 97.74
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 24.1
          - type: ndcg_at_3
            value: 20.18
          - type: ndcg_at_5
            value: 17.72
          - type: ndcg_at_10
            value: 21.5
          - type: ndcg_at_30
            value: 26.66
          - type: ndcg_at_100
            value: 30.95
          - type: map_at_1
            value: 4.88
          - type: map_at_3
            value: 9.09
          - type: map_at_5
            value: 10.99
          - type: map_at_10
            value: 12.93
          - type: map_at_30
            value: 14.71
          - type: map_at_100
            value: 15.49
          - type: recall_at_1
            value: 4.88
          - type: recall_at_3
            value: 11.55
          - type: recall_at_5
            value: 15.91
          - type: recall_at_10
            value: 22.82
          - type: recall_at_30
            value: 35.7
          - type: recall_at_100
            value: 50.41
          - type: precision_at_1
            value: 24.1
          - type: precision_at_3
            value: 19
          - type: precision_at_5
            value: 15.72
          - type: precision_at_10
            value: 11.27
          - type: precision_at_30
            value: 5.87
          - type: precision_at_100
            value: 2.49
          - type: accuracy_at_3
            value: 43
          - type: accuracy_at_5
            value: 51.6
          - type: accuracy_at_10
            value: 62.7
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 52.33
          - type: ndcg_at_3
            value: 61.47
          - type: ndcg_at_5
            value: 63.82
          - type: ndcg_at_10
            value: 65.81
          - type: ndcg_at_30
            value: 67.75
          - type: ndcg_at_100
            value: 68.96
          - type: map_at_1
            value: 50.46
          - type: map_at_3
            value: 58.51
          - type: map_at_5
            value: 60.12
          - type: map_at_10
            value: 61.07
          - type: map_at_30
            value: 61.64
          - type: map_at_100
            value: 61.8
          - type: recall_at_1
            value: 50.46
          - type: recall_at_3
            value: 67.81
          - type: recall_at_5
            value: 73.6
          - type: recall_at_10
            value: 79.31
          - type: recall_at_30
            value: 86.8
          - type: recall_at_100
            value: 93.5
          - type: precision_at_1
            value: 52.33
          - type: precision_at_3
            value: 24.56
          - type: precision_at_5
            value: 16.27
          - type: precision_at_10
            value: 8.9
          - type: precision_at_30
            value: 3.28
          - type: precision_at_100
            value: 1.06
          - type: accuracy_at_3
            value: 69.67
          - type: accuracy_at_5
            value: 75
          - type: accuracy_at_10
            value: 80.67
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 57
          - type: ndcg_at_3
            value: 53.78
          - type: ndcg_at_5
            value: 52.62
          - type: ndcg_at_10
            value: 48.9
          - type: ndcg_at_30
            value: 44.2
          - type: ndcg_at_100
            value: 36.53
          - type: map_at_1
            value: 0.16
          - type: map_at_3
            value: 0.41
          - type: map_at_5
            value: 0.62
          - type: map_at_10
            value: 1.07
          - type: map_at_30
            value: 2.46
          - type: map_at_100
            value: 5.52
          - type: recall_at_1
            value: 0.16
          - type: recall_at_3
            value: 0.45
          - type: recall_at_5
            value: 0.72
          - type: recall_at_10
            value: 1.33
          - type: recall_at_30
            value: 3.46
          - type: recall_at_100
            value: 8.73
          - type: precision_at_1
            value: 62
          - type: precision_at_3
            value: 57.33
          - type: precision_at_5
            value: 56
          - type: precision_at_10
            value: 52
          - type: precision_at_30
            value: 46.2
          - type: precision_at_100
            value: 37.22
          - type: accuracy_at_3
            value: 82
          - type: accuracy_at_5
            value: 90
          - type: accuracy_at_10
            value: 92
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: ndcg_at_1
            value: 20.41
          - type: ndcg_at_3
            value: 17.62
          - type: ndcg_at_5
            value: 17.16
          - type: ndcg_at_10
            value: 17.09
          - type: ndcg_at_30
            value: 20.1
          - type: ndcg_at_100
            value: 26.33
          - type: map_at_1
            value: 2.15
          - type: map_at_3
            value: 3.59
          - type: map_at_5
            value: 5.07
          - type: map_at_10
            value: 6.95
          - type: map_at_30
            value: 9.01
          - type: map_at_100
            value: 10.54
          - type: recall_at_1
            value: 2.15
          - type: recall_at_3
            value: 4.5
          - type: recall_at_5
            value: 7.54
          - type: recall_at_10
            value: 12.46
          - type: recall_at_30
            value: 21.9
          - type: recall_at_100
            value: 36.58
          - type: precision_at_1
            value: 22.45
          - type: precision_at_3
            value: 19.05
          - type: precision_at_5
            value: 17.55
          - type: precision_at_10
            value: 15.51
          - type: precision_at_30
            value: 10.07
          - type: precision_at_100
            value: 5.57
          - type: accuracy_at_3
            value: 42.86
          - type: accuracy_at_5
            value: 53.06
          - type: accuracy_at_10
            value: 69.39

twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF

This model was converted to GGUF format from mixedbread-ai/mxbai-embed-xsmall-v1 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048