|
--- |
|
tags: |
|
- mteb |
|
- llama-cpp |
|
- gguf-my-repo |
|
base_model: mixedbread-ai/mxbai-embed-xsmall-v1 |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: feature-extraction |
|
model-index: |
|
- name: mxbai-embed-xsmall-v1 |
|
results: |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB ArguAna |
|
type: arguana |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 25.18 |
|
- type: ndcg_at_3 |
|
value: 39.22 |
|
- type: ndcg_at_5 |
|
value: 43.93 |
|
- type: ndcg_at_10 |
|
value: 49.58 |
|
- type: ndcg_at_30 |
|
value: 53.41 |
|
- type: ndcg_at_100 |
|
value: 54.11 |
|
- type: map_at_1 |
|
value: 25.18 |
|
- type: map_at_3 |
|
value: 35.66 |
|
- type: map_at_5 |
|
value: 38.25 |
|
- type: map_at_10 |
|
value: 40.58 |
|
- type: map_at_30 |
|
value: 41.6 |
|
- type: map_at_100 |
|
value: 41.69 |
|
- type: recall_at_1 |
|
value: 25.18 |
|
- type: recall_at_3 |
|
value: 49.57 |
|
- type: recall_at_5 |
|
value: 61.09 |
|
- type: recall_at_10 |
|
value: 78.59 |
|
- type: recall_at_30 |
|
value: 94.03 |
|
- type: recall_at_100 |
|
value: 97.94 |
|
- type: precision_at_1 |
|
value: 25.18 |
|
- type: precision_at_3 |
|
value: 16.52 |
|
- type: precision_at_5 |
|
value: 12.22 |
|
- type: precision_at_10 |
|
value: 7.86 |
|
- type: precision_at_30 |
|
value: 3.13 |
|
- type: precision_at_100 |
|
value: 0.98 |
|
- type: accuracy_at_3 |
|
value: 49.57 |
|
- type: accuracy_at_5 |
|
value: 61.09 |
|
- type: accuracy_at_10 |
|
value: 78.59 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB CQADupstackAndroidRetrieval |
|
type: BeIR/cqadupstack |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 44.35 |
|
- type: ndcg_at_3 |
|
value: 49.64 |
|
- type: ndcg_at_5 |
|
value: 51.73 |
|
- type: ndcg_at_10 |
|
value: 54.82 |
|
- type: ndcg_at_30 |
|
value: 57.64 |
|
- type: ndcg_at_100 |
|
value: 59.77 |
|
- type: map_at_1 |
|
value: 36.26 |
|
- type: map_at_3 |
|
value: 44.35 |
|
- type: map_at_5 |
|
value: 46.26 |
|
- type: map_at_10 |
|
value: 48.24 |
|
- type: map_at_30 |
|
value: 49.34 |
|
- type: map_at_100 |
|
value: 49.75 |
|
- type: recall_at_1 |
|
value: 36.26 |
|
- type: recall_at_3 |
|
value: 51.46 |
|
- type: recall_at_5 |
|
value: 57.78 |
|
- type: recall_at_10 |
|
value: 66.5 |
|
- type: recall_at_30 |
|
value: 77.19 |
|
- type: recall_at_100 |
|
value: 87.53 |
|
- type: precision_at_1 |
|
value: 44.35 |
|
- type: precision_at_3 |
|
value: 23.65 |
|
- type: precision_at_5 |
|
value: 16.88 |
|
- type: precision_at_10 |
|
value: 10.7 |
|
- type: precision_at_30 |
|
value: 4.53 |
|
- type: precision_at_100 |
|
value: 1.65 |
|
- type: accuracy_at_3 |
|
value: 60.51 |
|
- type: accuracy_at_5 |
|
value: 67.67 |
|
- type: accuracy_at_10 |
|
value: 74.68 |
|
- type: ndcg_at_1 |
|
value: 39.43 |
|
- type: ndcg_at_3 |
|
value: 44.13 |
|
- type: ndcg_at_5 |
|
value: 46.06 |
|
- type: ndcg_at_10 |
|
value: 48.31 |
|
- type: ndcg_at_30 |
|
value: 51.06 |
|
- type: ndcg_at_100 |
|
value: 53.07 |
|
- type: map_at_1 |
|
value: 31.27 |
|
- type: map_at_3 |
|
value: 39.07 |
|
- type: map_at_5 |
|
value: 40.83 |
|
- type: map_at_10 |
|
value: 42.23 |
|
- type: map_at_30 |
|
value: 43.27 |
|
- type: map_at_100 |
|
value: 43.66 |
|
- type: recall_at_1 |
|
value: 31.27 |
|
- type: recall_at_3 |
|
value: 45.89 |
|
- type: recall_at_5 |
|
value: 51.44 |
|
- type: recall_at_10 |
|
value: 58.65 |
|
- type: recall_at_30 |
|
value: 69.12 |
|
- type: recall_at_100 |
|
value: 78.72 |
|
- type: precision_at_1 |
|
value: 39.43 |
|
- type: precision_at_3 |
|
value: 21.61 |
|
- type: precision_at_5 |
|
value: 15.34 |
|
- type: precision_at_10 |
|
value: 9.27 |
|
- type: precision_at_30 |
|
value: 4.01 |
|
- type: precision_at_100 |
|
value: 1.52 |
|
- type: accuracy_at_3 |
|
value: 55.48 |
|
- type: accuracy_at_5 |
|
value: 60.76 |
|
- type: accuracy_at_10 |
|
value: 67.45 |
|
- type: ndcg_at_1 |
|
value: 45.58 |
|
- type: ndcg_at_3 |
|
value: 52.68 |
|
- type: ndcg_at_5 |
|
value: 55.28 |
|
- type: ndcg_at_10 |
|
value: 57.88 |
|
- type: ndcg_at_30 |
|
value: 60.6 |
|
- type: ndcg_at_100 |
|
value: 62.03 |
|
- type: map_at_1 |
|
value: 39.97 |
|
- type: map_at_3 |
|
value: 49.06 |
|
- type: map_at_5 |
|
value: 50.87 |
|
- type: map_at_10 |
|
value: 52.2 |
|
- type: map_at_30 |
|
value: 53.06 |
|
- type: map_at_100 |
|
value: 53.28 |
|
- type: recall_at_1 |
|
value: 39.97 |
|
- type: recall_at_3 |
|
value: 57.4 |
|
- type: recall_at_5 |
|
value: 63.83 |
|
- type: recall_at_10 |
|
value: 71.33 |
|
- type: recall_at_30 |
|
value: 81.81 |
|
- type: recall_at_100 |
|
value: 89.0 |
|
- type: precision_at_1 |
|
value: 45.58 |
|
- type: precision_at_3 |
|
value: 23.55 |
|
- type: precision_at_5 |
|
value: 16.01 |
|
- type: precision_at_10 |
|
value: 9.25 |
|
- type: precision_at_30 |
|
value: 3.67 |
|
- type: precision_at_100 |
|
value: 1.23 |
|
- type: accuracy_at_3 |
|
value: 62.76 |
|
- type: accuracy_at_5 |
|
value: 68.84 |
|
- type: accuracy_at_10 |
|
value: 75.8 |
|
- type: ndcg_at_1 |
|
value: 27.35 |
|
- type: ndcg_at_3 |
|
value: 34.23 |
|
- type: ndcg_at_5 |
|
value: 37.1 |
|
- type: ndcg_at_10 |
|
value: 40.26 |
|
- type: ndcg_at_30 |
|
value: 43.54 |
|
- type: ndcg_at_100 |
|
value: 45.9 |
|
- type: map_at_1 |
|
value: 25.28 |
|
- type: map_at_3 |
|
value: 31.68 |
|
- type: map_at_5 |
|
value: 33.38 |
|
- type: map_at_10 |
|
value: 34.79 |
|
- type: map_at_30 |
|
value: 35.67 |
|
- type: map_at_100 |
|
value: 35.96 |
|
- type: recall_at_1 |
|
value: 25.28 |
|
- type: recall_at_3 |
|
value: 38.95 |
|
- type: recall_at_5 |
|
value: 45.82 |
|
- type: recall_at_10 |
|
value: 55.11 |
|
- type: recall_at_30 |
|
value: 68.13 |
|
- type: recall_at_100 |
|
value: 80.88 |
|
- type: precision_at_1 |
|
value: 27.35 |
|
- type: precision_at_3 |
|
value: 14.65 |
|
- type: precision_at_5 |
|
value: 10.44 |
|
- type: precision_at_10 |
|
value: 6.37 |
|
- type: precision_at_30 |
|
value: 2.65 |
|
- type: precision_at_100 |
|
value: 0.97 |
|
- type: accuracy_at_3 |
|
value: 42.15 |
|
- type: accuracy_at_5 |
|
value: 49.15 |
|
- type: accuracy_at_10 |
|
value: 58.53 |
|
- type: ndcg_at_1 |
|
value: 18.91 |
|
- type: ndcg_at_3 |
|
value: 24.37 |
|
- type: ndcg_at_5 |
|
value: 26.11 |
|
- type: ndcg_at_10 |
|
value: 29.37 |
|
- type: ndcg_at_30 |
|
value: 33.22 |
|
- type: ndcg_at_100 |
|
value: 35.73 |
|
- type: map_at_1 |
|
value: 15.23 |
|
- type: map_at_3 |
|
value: 21.25 |
|
- type: map_at_5 |
|
value: 22.38 |
|
- type: map_at_10 |
|
value: 23.86 |
|
- type: map_at_30 |
|
value: 24.91 |
|
- type: map_at_100 |
|
value: 25.24 |
|
- type: recall_at_1 |
|
value: 15.23 |
|
- type: recall_at_3 |
|
value: 28.28 |
|
- type: recall_at_5 |
|
value: 32.67 |
|
- type: recall_at_10 |
|
value: 42.23 |
|
- type: recall_at_30 |
|
value: 56.87 |
|
- type: recall_at_100 |
|
value: 69.44 |
|
- type: precision_at_1 |
|
value: 18.91 |
|
- type: precision_at_3 |
|
value: 11.9 |
|
- type: precision_at_5 |
|
value: 8.48 |
|
- type: precision_at_10 |
|
value: 5.63 |
|
- type: precision_at_30 |
|
value: 2.64 |
|
- type: precision_at_100 |
|
value: 1.02 |
|
- type: accuracy_at_3 |
|
value: 33.95 |
|
- type: accuracy_at_5 |
|
value: 38.81 |
|
- type: accuracy_at_10 |
|
value: 49.13 |
|
- type: ndcg_at_1 |
|
value: 36.96 |
|
- type: ndcg_at_3 |
|
value: 42.48 |
|
- type: ndcg_at_5 |
|
value: 44.57 |
|
- type: ndcg_at_10 |
|
value: 47.13 |
|
- type: ndcg_at_30 |
|
value: 50.65 |
|
- type: ndcg_at_100 |
|
value: 53.14 |
|
- type: map_at_1 |
|
value: 30.1 |
|
- type: map_at_3 |
|
value: 37.97 |
|
- type: map_at_5 |
|
value: 39.62 |
|
- type: map_at_10 |
|
value: 41.06 |
|
- type: map_at_30 |
|
value: 42.13 |
|
- type: map_at_100 |
|
value: 42.53 |
|
- type: recall_at_1 |
|
value: 30.1 |
|
- type: recall_at_3 |
|
value: 45.98 |
|
- type: recall_at_5 |
|
value: 51.58 |
|
- type: recall_at_10 |
|
value: 59.24 |
|
- type: recall_at_30 |
|
value: 72.47 |
|
- type: recall_at_100 |
|
value: 84.53 |
|
- type: precision_at_1 |
|
value: 36.96 |
|
- type: precision_at_3 |
|
value: 20.5 |
|
- type: precision_at_5 |
|
value: 14.4 |
|
- type: precision_at_10 |
|
value: 8.62 |
|
- type: precision_at_30 |
|
value: 3.67 |
|
- type: precision_at_100 |
|
value: 1.38 |
|
- type: accuracy_at_3 |
|
value: 54.09 |
|
- type: accuracy_at_5 |
|
value: 60.25 |
|
- type: accuracy_at_10 |
|
value: 67.37 |
|
- type: ndcg_at_1 |
|
value: 28.65 |
|
- type: ndcg_at_3 |
|
value: 34.3 |
|
- type: ndcg_at_5 |
|
value: 36.8 |
|
- type: ndcg_at_10 |
|
value: 39.92 |
|
- type: ndcg_at_30 |
|
value: 42.97 |
|
- type: ndcg_at_100 |
|
value: 45.45 |
|
- type: map_at_1 |
|
value: 23.35 |
|
- type: map_at_3 |
|
value: 30.36 |
|
- type: map_at_5 |
|
value: 32.15 |
|
- type: map_at_10 |
|
value: 33.74 |
|
- type: map_at_30 |
|
value: 34.69 |
|
- type: map_at_100 |
|
value: 35.02 |
|
- type: recall_at_1 |
|
value: 23.35 |
|
- type: recall_at_3 |
|
value: 37.71 |
|
- type: recall_at_5 |
|
value: 44.23 |
|
- type: recall_at_10 |
|
value: 53.6 |
|
- type: recall_at_30 |
|
value: 64.69 |
|
- type: recall_at_100 |
|
value: 77.41 |
|
- type: precision_at_1 |
|
value: 28.65 |
|
- type: precision_at_3 |
|
value: 16.74 |
|
- type: precision_at_5 |
|
value: 12.21 |
|
- type: precision_at_10 |
|
value: 7.61 |
|
- type: precision_at_30 |
|
value: 3.29 |
|
- type: precision_at_100 |
|
value: 1.22 |
|
- type: accuracy_at_3 |
|
value: 44.86 |
|
- type: accuracy_at_5 |
|
value: 52.4 |
|
- type: accuracy_at_10 |
|
value: 61.07 |
|
- type: ndcg_at_1 |
|
value: 26.07 |
|
- type: ndcg_at_3 |
|
value: 31.62 |
|
- type: ndcg_at_5 |
|
value: 33.23 |
|
- type: ndcg_at_10 |
|
value: 35.62 |
|
- type: ndcg_at_30 |
|
value: 38.41 |
|
- type: ndcg_at_100 |
|
value: 40.81 |
|
- type: map_at_1 |
|
value: 22.96 |
|
- type: map_at_3 |
|
value: 28.85 |
|
- type: map_at_5 |
|
value: 29.97 |
|
- type: map_at_10 |
|
value: 31.11 |
|
- type: map_at_30 |
|
value: 31.86 |
|
- type: map_at_100 |
|
value: 32.15 |
|
- type: recall_at_1 |
|
value: 22.96 |
|
- type: recall_at_3 |
|
value: 35.14 |
|
- type: recall_at_5 |
|
value: 39.22 |
|
- type: recall_at_10 |
|
value: 46.52 |
|
- type: recall_at_30 |
|
value: 57.58 |
|
- type: recall_at_100 |
|
value: 70.57 |
|
- type: precision_at_1 |
|
value: 26.07 |
|
- type: precision_at_3 |
|
value: 14.11 |
|
- type: precision_at_5 |
|
value: 9.69 |
|
- type: precision_at_10 |
|
value: 5.81 |
|
- type: precision_at_30 |
|
value: 2.45 |
|
- type: precision_at_100 |
|
value: 0.92 |
|
- type: accuracy_at_3 |
|
value: 39.42 |
|
- type: accuracy_at_5 |
|
value: 43.41 |
|
- type: accuracy_at_10 |
|
value: 50.92 |
|
- type: ndcg_at_1 |
|
value: 21.78 |
|
- type: ndcg_at_3 |
|
value: 25.74 |
|
- type: ndcg_at_5 |
|
value: 27.86 |
|
- type: ndcg_at_10 |
|
value: 30.3 |
|
- type: ndcg_at_30 |
|
value: 33.51 |
|
- type: ndcg_at_100 |
|
value: 36.12 |
|
- type: map_at_1 |
|
value: 17.63 |
|
- type: map_at_3 |
|
value: 22.7 |
|
- type: map_at_5 |
|
value: 24.14 |
|
- type: map_at_10 |
|
value: 25.31 |
|
- type: map_at_30 |
|
value: 26.22 |
|
- type: map_at_100 |
|
value: 26.56 |
|
- type: recall_at_1 |
|
value: 17.63 |
|
- type: recall_at_3 |
|
value: 28.37 |
|
- type: recall_at_5 |
|
value: 33.99 |
|
- type: recall_at_10 |
|
value: 41.23 |
|
- type: recall_at_30 |
|
value: 53.69 |
|
- type: recall_at_100 |
|
value: 67.27 |
|
- type: precision_at_1 |
|
value: 21.78 |
|
- type: precision_at_3 |
|
value: 12.41 |
|
- type: precision_at_5 |
|
value: 9.07 |
|
- type: precision_at_10 |
|
value: 5.69 |
|
- type: precision_at_30 |
|
value: 2.61 |
|
- type: precision_at_100 |
|
value: 1.03 |
|
- type: accuracy_at_3 |
|
value: 33.62 |
|
- type: accuracy_at_5 |
|
value: 39.81 |
|
- type: accuracy_at_10 |
|
value: 47.32 |
|
- type: ndcg_at_1 |
|
value: 30.97 |
|
- type: ndcg_at_3 |
|
value: 36.13 |
|
- type: ndcg_at_5 |
|
value: 39.0 |
|
- type: ndcg_at_10 |
|
value: 41.78 |
|
- type: ndcg_at_30 |
|
value: 44.96 |
|
- type: ndcg_at_100 |
|
value: 47.52 |
|
- type: map_at_1 |
|
value: 26.05 |
|
- type: map_at_3 |
|
value: 32.77 |
|
- type: map_at_5 |
|
value: 34.6 |
|
- type: map_at_10 |
|
value: 35.93 |
|
- type: map_at_30 |
|
value: 36.88 |
|
- type: map_at_100 |
|
value: 37.22 |
|
- type: recall_at_1 |
|
value: 26.05 |
|
- type: recall_at_3 |
|
value: 40.0 |
|
- type: recall_at_5 |
|
value: 47.34 |
|
- type: recall_at_10 |
|
value: 55.34 |
|
- type: recall_at_30 |
|
value: 67.08 |
|
- type: recall_at_100 |
|
value: 80.2 |
|
- type: precision_at_1 |
|
value: 30.97 |
|
- type: precision_at_3 |
|
value: 16.6 |
|
- type: precision_at_5 |
|
value: 12.03 |
|
- type: precision_at_10 |
|
value: 7.3 |
|
- type: precision_at_30 |
|
value: 3.08 |
|
- type: precision_at_100 |
|
value: 1.15 |
|
- type: accuracy_at_3 |
|
value: 45.62 |
|
- type: accuracy_at_5 |
|
value: 53.64 |
|
- type: accuracy_at_10 |
|
value: 61.66 |
|
- type: ndcg_at_1 |
|
value: 29.64 |
|
- type: ndcg_at_3 |
|
value: 35.49 |
|
- type: ndcg_at_5 |
|
value: 37.77 |
|
- type: ndcg_at_10 |
|
value: 40.78 |
|
- type: ndcg_at_30 |
|
value: 44.59 |
|
- type: ndcg_at_100 |
|
value: 46.97 |
|
- type: map_at_1 |
|
value: 24.77 |
|
- type: map_at_3 |
|
value: 31.33 |
|
- type: map_at_5 |
|
value: 32.95 |
|
- type: map_at_10 |
|
value: 34.47 |
|
- type: map_at_30 |
|
value: 35.7 |
|
- type: map_at_100 |
|
value: 36.17 |
|
- type: recall_at_1 |
|
value: 24.77 |
|
- type: recall_at_3 |
|
value: 38.16 |
|
- type: recall_at_5 |
|
value: 44.1 |
|
- type: recall_at_10 |
|
value: 53.31 |
|
- type: recall_at_30 |
|
value: 68.43 |
|
- type: recall_at_100 |
|
value: 80.24 |
|
- type: precision_at_1 |
|
value: 29.64 |
|
- type: precision_at_3 |
|
value: 16.8 |
|
- type: precision_at_5 |
|
value: 12.21 |
|
- type: precision_at_10 |
|
value: 7.83 |
|
- type: precision_at_30 |
|
value: 3.89 |
|
- type: precision_at_100 |
|
value: 1.63 |
|
- type: accuracy_at_3 |
|
value: 45.45 |
|
- type: accuracy_at_5 |
|
value: 51.58 |
|
- type: accuracy_at_10 |
|
value: 61.07 |
|
- type: ndcg_at_1 |
|
value: 23.47 |
|
- type: ndcg_at_3 |
|
value: 27.98 |
|
- type: ndcg_at_5 |
|
value: 30.16 |
|
- type: ndcg_at_10 |
|
value: 32.97 |
|
- type: ndcg_at_30 |
|
value: 36.3 |
|
- type: ndcg_at_100 |
|
value: 38.47 |
|
- type: map_at_1 |
|
value: 21.63 |
|
- type: map_at_3 |
|
value: 26.02 |
|
- type: map_at_5 |
|
value: 27.32 |
|
- type: map_at_10 |
|
value: 28.51 |
|
- type: map_at_30 |
|
value: 29.39 |
|
- type: map_at_100 |
|
value: 29.66 |
|
- type: recall_at_1 |
|
value: 21.63 |
|
- type: recall_at_3 |
|
value: 31.47 |
|
- type: recall_at_5 |
|
value: 36.69 |
|
- type: recall_at_10 |
|
value: 44.95 |
|
- type: recall_at_30 |
|
value: 58.2 |
|
- type: recall_at_100 |
|
value: 69.83 |
|
- type: precision_at_1 |
|
value: 23.47 |
|
- type: precision_at_3 |
|
value: 11.71 |
|
- type: precision_at_5 |
|
value: 8.32 |
|
- type: precision_at_10 |
|
value: 5.23 |
|
- type: precision_at_30 |
|
value: 2.29 |
|
- type: precision_at_100 |
|
value: 0.86 |
|
- type: accuracy_at_3 |
|
value: 34.01 |
|
- type: accuracy_at_5 |
|
value: 39.37 |
|
- type: accuracy_at_10 |
|
value: 48.24 |
|
- type: ndcg_at_10 |
|
value: 41.59 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB ClimateFEVER |
|
type: climate-fever |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 19.8 |
|
- type: ndcg_at_3 |
|
value: 17.93 |
|
- type: ndcg_at_5 |
|
value: 19.39 |
|
- type: ndcg_at_10 |
|
value: 22.42 |
|
- type: ndcg_at_30 |
|
value: 26.79 |
|
- type: ndcg_at_100 |
|
value: 29.84 |
|
- type: map_at_1 |
|
value: 9.09 |
|
- type: map_at_3 |
|
value: 12.91 |
|
- type: map_at_5 |
|
value: 14.12 |
|
- type: map_at_10 |
|
value: 15.45 |
|
- type: map_at_30 |
|
value: 16.73 |
|
- type: map_at_100 |
|
value: 17.21 |
|
- type: recall_at_1 |
|
value: 9.09 |
|
- type: recall_at_3 |
|
value: 16.81 |
|
- type: recall_at_5 |
|
value: 20.9 |
|
- type: recall_at_10 |
|
value: 27.65 |
|
- type: recall_at_30 |
|
value: 41.23 |
|
- type: recall_at_100 |
|
value: 53.57 |
|
- type: precision_at_1 |
|
value: 19.8 |
|
- type: precision_at_3 |
|
value: 13.36 |
|
- type: precision_at_5 |
|
value: 10.33 |
|
- type: precision_at_10 |
|
value: 7.15 |
|
- type: precision_at_30 |
|
value: 3.66 |
|
- type: precision_at_100 |
|
value: 1.49 |
|
- type: accuracy_at_3 |
|
value: 36.22 |
|
- type: accuracy_at_5 |
|
value: 44.1 |
|
- type: accuracy_at_10 |
|
value: 55.11 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB DBPedia |
|
type: dbpedia-entity |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 42.75 |
|
- type: ndcg_at_3 |
|
value: 35.67 |
|
- type: ndcg_at_5 |
|
value: 33.58 |
|
- type: ndcg_at_10 |
|
value: 32.19 |
|
- type: ndcg_at_30 |
|
value: 31.82 |
|
- type: ndcg_at_100 |
|
value: 35.87 |
|
- type: map_at_1 |
|
value: 7.05 |
|
- type: map_at_3 |
|
value: 10.5 |
|
- type: map_at_5 |
|
value: 12.06 |
|
- type: map_at_10 |
|
value: 14.29 |
|
- type: map_at_30 |
|
value: 17.38 |
|
- type: map_at_100 |
|
value: 19.58 |
|
- type: recall_at_1 |
|
value: 7.05 |
|
- type: recall_at_3 |
|
value: 11.89 |
|
- type: recall_at_5 |
|
value: 14.7 |
|
- type: recall_at_10 |
|
value: 19.78 |
|
- type: recall_at_30 |
|
value: 29.88 |
|
- type: recall_at_100 |
|
value: 42.4 |
|
- type: precision_at_1 |
|
value: 54.25 |
|
- type: precision_at_3 |
|
value: 39.42 |
|
- type: precision_at_5 |
|
value: 33.15 |
|
- type: precision_at_10 |
|
value: 25.95 |
|
- type: precision_at_30 |
|
value: 15.51 |
|
- type: precision_at_100 |
|
value: 7.9 |
|
- type: accuracy_at_3 |
|
value: 72.0 |
|
- type: accuracy_at_5 |
|
value: 77.75 |
|
- type: accuracy_at_10 |
|
value: 83.5 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB FEVER |
|
type: fever |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 40.19 |
|
- type: ndcg_at_3 |
|
value: 50.51 |
|
- type: ndcg_at_5 |
|
value: 53.51 |
|
- type: ndcg_at_10 |
|
value: 56.45 |
|
- type: ndcg_at_30 |
|
value: 58.74 |
|
- type: ndcg_at_100 |
|
value: 59.72 |
|
- type: map_at_1 |
|
value: 37.56 |
|
- type: map_at_3 |
|
value: 46.74 |
|
- type: map_at_5 |
|
value: 48.46 |
|
- type: map_at_10 |
|
value: 49.7 |
|
- type: map_at_30 |
|
value: 50.31 |
|
- type: map_at_100 |
|
value: 50.43 |
|
- type: recall_at_1 |
|
value: 37.56 |
|
- type: recall_at_3 |
|
value: 58.28 |
|
- type: recall_at_5 |
|
value: 65.45 |
|
- type: recall_at_10 |
|
value: 74.28 |
|
- type: recall_at_30 |
|
value: 83.42 |
|
- type: recall_at_100 |
|
value: 88.76 |
|
- type: precision_at_1 |
|
value: 40.19 |
|
- type: precision_at_3 |
|
value: 20.99 |
|
- type: precision_at_5 |
|
value: 14.24 |
|
- type: precision_at_10 |
|
value: 8.12 |
|
- type: precision_at_30 |
|
value: 3.06 |
|
- type: precision_at_100 |
|
value: 0.98 |
|
- type: accuracy_at_3 |
|
value: 62.3 |
|
- type: accuracy_at_5 |
|
value: 69.94 |
|
- type: accuracy_at_10 |
|
value: 79.13 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB FiQA2018 |
|
type: fiqa |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 34.41 |
|
- type: ndcg_at_3 |
|
value: 33.2 |
|
- type: ndcg_at_5 |
|
value: 34.71 |
|
- type: ndcg_at_10 |
|
value: 37.1 |
|
- type: ndcg_at_30 |
|
value: 40.88 |
|
- type: ndcg_at_100 |
|
value: 44.12 |
|
- type: map_at_1 |
|
value: 17.27 |
|
- type: map_at_3 |
|
value: 25.36 |
|
- type: map_at_5 |
|
value: 27.76 |
|
- type: map_at_10 |
|
value: 29.46 |
|
- type: map_at_30 |
|
value: 30.74 |
|
- type: map_at_100 |
|
value: 31.29 |
|
- type: recall_at_1 |
|
value: 17.27 |
|
- type: recall_at_3 |
|
value: 30.46 |
|
- type: recall_at_5 |
|
value: 36.91 |
|
- type: recall_at_10 |
|
value: 44.47 |
|
- type: recall_at_30 |
|
value: 56.71 |
|
- type: recall_at_100 |
|
value: 70.72 |
|
- type: precision_at_1 |
|
value: 34.41 |
|
- type: precision_at_3 |
|
value: 22.32 |
|
- type: precision_at_5 |
|
value: 16.91 |
|
- type: precision_at_10 |
|
value: 10.53 |
|
- type: precision_at_30 |
|
value: 4.62 |
|
- type: precision_at_100 |
|
value: 1.79 |
|
- type: accuracy_at_3 |
|
value: 50.77 |
|
- type: accuracy_at_5 |
|
value: 57.56 |
|
- type: accuracy_at_10 |
|
value: 65.12 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB HotpotQA |
|
type: hotpotqa |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 57.93 |
|
- type: ndcg_at_3 |
|
value: 44.21 |
|
- type: ndcg_at_5 |
|
value: 46.4 |
|
- type: ndcg_at_10 |
|
value: 48.37 |
|
- type: ndcg_at_30 |
|
value: 50.44 |
|
- type: ndcg_at_100 |
|
value: 51.86 |
|
- type: map_at_1 |
|
value: 28.97 |
|
- type: map_at_3 |
|
value: 36.79 |
|
- type: map_at_5 |
|
value: 38.31 |
|
- type: map_at_10 |
|
value: 39.32 |
|
- type: map_at_30 |
|
value: 39.99 |
|
- type: map_at_100 |
|
value: 40.2 |
|
- type: recall_at_1 |
|
value: 28.97 |
|
- type: recall_at_3 |
|
value: 41.01 |
|
- type: recall_at_5 |
|
value: 45.36 |
|
- type: recall_at_10 |
|
value: 50.32 |
|
- type: recall_at_30 |
|
value: 57.38 |
|
- type: recall_at_100 |
|
value: 64.06 |
|
- type: precision_at_1 |
|
value: 57.93 |
|
- type: precision_at_3 |
|
value: 27.34 |
|
- type: precision_at_5 |
|
value: 18.14 |
|
- type: precision_at_10 |
|
value: 10.06 |
|
- type: precision_at_30 |
|
value: 3.82 |
|
- type: precision_at_100 |
|
value: 1.28 |
|
- type: accuracy_at_3 |
|
value: 71.03 |
|
- type: accuracy_at_5 |
|
value: 75.14 |
|
- type: accuracy_at_10 |
|
value: 79.84 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB MSMARCO |
|
type: msmarco |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 19.74 |
|
- type: ndcg_at_3 |
|
value: 29.47 |
|
- type: ndcg_at_5 |
|
value: 32.99 |
|
- type: ndcg_at_10 |
|
value: 36.76 |
|
- type: ndcg_at_30 |
|
value: 40.52 |
|
- type: ndcg_at_100 |
|
value: 42.78 |
|
- type: map_at_1 |
|
value: 19.2 |
|
- type: map_at_3 |
|
value: 26.81 |
|
- type: map_at_5 |
|
value: 28.78 |
|
- type: map_at_10 |
|
value: 30.35 |
|
- type: map_at_30 |
|
value: 31.3 |
|
- type: map_at_100 |
|
value: 31.57 |
|
- type: recall_at_1 |
|
value: 19.2 |
|
- type: recall_at_3 |
|
value: 36.59 |
|
- type: recall_at_5 |
|
value: 45.08 |
|
- type: recall_at_10 |
|
value: 56.54 |
|
- type: recall_at_30 |
|
value: 72.05 |
|
- type: recall_at_100 |
|
value: 84.73 |
|
- type: precision_at_1 |
|
value: 19.74 |
|
- type: precision_at_3 |
|
value: 12.61 |
|
- type: precision_at_5 |
|
value: 9.37 |
|
- type: precision_at_10 |
|
value: 5.89 |
|
- type: precision_at_30 |
|
value: 2.52 |
|
- type: precision_at_100 |
|
value: 0.89 |
|
- type: accuracy_at_3 |
|
value: 37.38 |
|
- type: accuracy_at_5 |
|
value: 46.06 |
|
- type: accuracy_at_10 |
|
value: 57.62 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB NQ |
|
type: nq |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 25.9 |
|
- type: ndcg_at_3 |
|
value: 35.97 |
|
- type: ndcg_at_5 |
|
value: 40.27 |
|
- type: ndcg_at_10 |
|
value: 44.44 |
|
- type: ndcg_at_30 |
|
value: 48.31 |
|
- type: ndcg_at_100 |
|
value: 50.14 |
|
- type: map_at_1 |
|
value: 23.03 |
|
- type: map_at_3 |
|
value: 32.45 |
|
- type: map_at_5 |
|
value: 34.99 |
|
- type: map_at_10 |
|
value: 36.84 |
|
- type: map_at_30 |
|
value: 37.92 |
|
- type: map_at_100 |
|
value: 38.16 |
|
- type: recall_at_1 |
|
value: 23.03 |
|
- type: recall_at_3 |
|
value: 43.49 |
|
- type: recall_at_5 |
|
value: 53.41 |
|
- type: recall_at_10 |
|
value: 65.65 |
|
- type: recall_at_30 |
|
value: 80.79 |
|
- type: recall_at_100 |
|
value: 90.59 |
|
- type: precision_at_1 |
|
value: 25.9 |
|
- type: precision_at_3 |
|
value: 16.76 |
|
- type: precision_at_5 |
|
value: 12.54 |
|
- type: precision_at_10 |
|
value: 7.78 |
|
- type: precision_at_30 |
|
value: 3.23 |
|
- type: precision_at_100 |
|
value: 1.1 |
|
- type: accuracy_at_3 |
|
value: 47.31 |
|
- type: accuracy_at_5 |
|
value: 57.16 |
|
- type: accuracy_at_10 |
|
value: 69.09 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB NFCorpus |
|
type: nfcorpus |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 40.87 |
|
- type: ndcg_at_3 |
|
value: 36.79 |
|
- type: ndcg_at_5 |
|
value: 34.47 |
|
- type: ndcg_at_10 |
|
value: 32.05 |
|
- type: ndcg_at_30 |
|
value: 29.23 |
|
- type: ndcg_at_100 |
|
value: 29.84 |
|
- type: map_at_1 |
|
value: 5.05 |
|
- type: map_at_3 |
|
value: 8.5 |
|
- type: map_at_5 |
|
value: 9.87 |
|
- type: map_at_10 |
|
value: 11.71 |
|
- type: map_at_30 |
|
value: 13.48 |
|
- type: map_at_100 |
|
value: 14.86 |
|
- type: recall_at_1 |
|
value: 5.05 |
|
- type: recall_at_3 |
|
value: 9.55 |
|
- type: recall_at_5 |
|
value: 11.91 |
|
- type: recall_at_10 |
|
value: 16.07 |
|
- type: recall_at_30 |
|
value: 22.13 |
|
- type: recall_at_100 |
|
value: 30.7 |
|
- type: precision_at_1 |
|
value: 42.72 |
|
- type: precision_at_3 |
|
value: 34.78 |
|
- type: precision_at_5 |
|
value: 30.03 |
|
- type: precision_at_10 |
|
value: 23.93 |
|
- type: precision_at_30 |
|
value: 14.61 |
|
- type: precision_at_100 |
|
value: 7.85 |
|
- type: accuracy_at_3 |
|
value: 58.2 |
|
- type: accuracy_at_5 |
|
value: 64.09 |
|
- type: accuracy_at_10 |
|
value: 69.35 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB QuoraRetrieval |
|
type: quora |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 80.62 |
|
- type: ndcg_at_3 |
|
value: 84.62 |
|
- type: ndcg_at_5 |
|
value: 86.25 |
|
- type: ndcg_at_10 |
|
value: 87.7 |
|
- type: ndcg_at_30 |
|
value: 88.63 |
|
- type: ndcg_at_100 |
|
value: 88.95 |
|
- type: map_at_1 |
|
value: 69.91 |
|
- type: map_at_3 |
|
value: 80.7 |
|
- type: map_at_5 |
|
value: 82.57 |
|
- type: map_at_10 |
|
value: 83.78 |
|
- type: map_at_30 |
|
value: 84.33 |
|
- type: map_at_100 |
|
value: 84.44 |
|
- type: recall_at_1 |
|
value: 69.91 |
|
- type: recall_at_3 |
|
value: 86.36 |
|
- type: recall_at_5 |
|
value: 90.99 |
|
- type: recall_at_10 |
|
value: 95.19 |
|
- type: recall_at_30 |
|
value: 98.25 |
|
- type: recall_at_100 |
|
value: 99.47 |
|
- type: precision_at_1 |
|
value: 80.62 |
|
- type: precision_at_3 |
|
value: 37.03 |
|
- type: precision_at_5 |
|
value: 24.36 |
|
- type: precision_at_10 |
|
value: 13.4 |
|
- type: precision_at_30 |
|
value: 4.87 |
|
- type: precision_at_100 |
|
value: 1.53 |
|
- type: accuracy_at_3 |
|
value: 92.25 |
|
- type: accuracy_at_5 |
|
value: 95.29 |
|
- type: accuracy_at_10 |
|
value: 97.74 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB SCIDOCS |
|
type: scidocs |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 24.1 |
|
- type: ndcg_at_3 |
|
value: 20.18 |
|
- type: ndcg_at_5 |
|
value: 17.72 |
|
- type: ndcg_at_10 |
|
value: 21.5 |
|
- type: ndcg_at_30 |
|
value: 26.66 |
|
- type: ndcg_at_100 |
|
value: 30.95 |
|
- type: map_at_1 |
|
value: 4.88 |
|
- type: map_at_3 |
|
value: 9.09 |
|
- type: map_at_5 |
|
value: 10.99 |
|
- type: map_at_10 |
|
value: 12.93 |
|
- type: map_at_30 |
|
value: 14.71 |
|
- type: map_at_100 |
|
value: 15.49 |
|
- type: recall_at_1 |
|
value: 4.88 |
|
- type: recall_at_3 |
|
value: 11.55 |
|
- type: recall_at_5 |
|
value: 15.91 |
|
- type: recall_at_10 |
|
value: 22.82 |
|
- type: recall_at_30 |
|
value: 35.7 |
|
- type: recall_at_100 |
|
value: 50.41 |
|
- type: precision_at_1 |
|
value: 24.1 |
|
- type: precision_at_3 |
|
value: 19.0 |
|
- type: precision_at_5 |
|
value: 15.72 |
|
- type: precision_at_10 |
|
value: 11.27 |
|
- type: precision_at_30 |
|
value: 5.87 |
|
- type: precision_at_100 |
|
value: 2.49 |
|
- type: accuracy_at_3 |
|
value: 43.0 |
|
- type: accuracy_at_5 |
|
value: 51.6 |
|
- type: accuracy_at_10 |
|
value: 62.7 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB SciFact |
|
type: scifact |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 52.33 |
|
- type: ndcg_at_3 |
|
value: 61.47 |
|
- type: ndcg_at_5 |
|
value: 63.82 |
|
- type: ndcg_at_10 |
|
value: 65.81 |
|
- type: ndcg_at_30 |
|
value: 67.75 |
|
- type: ndcg_at_100 |
|
value: 68.96 |
|
- type: map_at_1 |
|
value: 50.46 |
|
- type: map_at_3 |
|
value: 58.51 |
|
- type: map_at_5 |
|
value: 60.12 |
|
- type: map_at_10 |
|
value: 61.07 |
|
- type: map_at_30 |
|
value: 61.64 |
|
- type: map_at_100 |
|
value: 61.8 |
|
- type: recall_at_1 |
|
value: 50.46 |
|
- type: recall_at_3 |
|
value: 67.81 |
|
- type: recall_at_5 |
|
value: 73.6 |
|
- type: recall_at_10 |
|
value: 79.31 |
|
- type: recall_at_30 |
|
value: 86.8 |
|
- type: recall_at_100 |
|
value: 93.5 |
|
- type: precision_at_1 |
|
value: 52.33 |
|
- type: precision_at_3 |
|
value: 24.56 |
|
- type: precision_at_5 |
|
value: 16.27 |
|
- type: precision_at_10 |
|
value: 8.9 |
|
- type: precision_at_30 |
|
value: 3.28 |
|
- type: precision_at_100 |
|
value: 1.06 |
|
- type: accuracy_at_3 |
|
value: 69.67 |
|
- type: accuracy_at_5 |
|
value: 75.0 |
|
- type: accuracy_at_10 |
|
value: 80.67 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB TRECCOVID |
|
type: trec-covid |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 57.0 |
|
- type: ndcg_at_3 |
|
value: 53.78 |
|
- type: ndcg_at_5 |
|
value: 52.62 |
|
- type: ndcg_at_10 |
|
value: 48.9 |
|
- type: ndcg_at_30 |
|
value: 44.2 |
|
- type: ndcg_at_100 |
|
value: 36.53 |
|
- type: map_at_1 |
|
value: 0.16 |
|
- type: map_at_3 |
|
value: 0.41 |
|
- type: map_at_5 |
|
value: 0.62 |
|
- type: map_at_10 |
|
value: 1.07 |
|
- type: map_at_30 |
|
value: 2.46 |
|
- type: map_at_100 |
|
value: 5.52 |
|
- type: recall_at_1 |
|
value: 0.16 |
|
- type: recall_at_3 |
|
value: 0.45 |
|
- type: recall_at_5 |
|
value: 0.72 |
|
- type: recall_at_10 |
|
value: 1.33 |
|
- type: recall_at_30 |
|
value: 3.46 |
|
- type: recall_at_100 |
|
value: 8.73 |
|
- type: precision_at_1 |
|
value: 62.0 |
|
- type: precision_at_3 |
|
value: 57.33 |
|
- type: precision_at_5 |
|
value: 56.0 |
|
- type: precision_at_10 |
|
value: 52.0 |
|
- type: precision_at_30 |
|
value: 46.2 |
|
- type: precision_at_100 |
|
value: 37.22 |
|
- type: accuracy_at_3 |
|
value: 82.0 |
|
- type: accuracy_at_5 |
|
value: 90.0 |
|
- type: accuracy_at_10 |
|
value: 92.0 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
name: MTEB Touche2020 |
|
type: webis-touche2020 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: ndcg_at_1 |
|
value: 20.41 |
|
- type: ndcg_at_3 |
|
value: 17.62 |
|
- type: ndcg_at_5 |
|
value: 17.16 |
|
- type: ndcg_at_10 |
|
value: 17.09 |
|
- type: ndcg_at_30 |
|
value: 20.1 |
|
- type: ndcg_at_100 |
|
value: 26.33 |
|
- type: map_at_1 |
|
value: 2.15 |
|
- type: map_at_3 |
|
value: 3.59 |
|
- type: map_at_5 |
|
value: 5.07 |
|
- type: map_at_10 |
|
value: 6.95 |
|
- type: map_at_30 |
|
value: 9.01 |
|
- type: map_at_100 |
|
value: 10.54 |
|
- type: recall_at_1 |
|
value: 2.15 |
|
- type: recall_at_3 |
|
value: 4.5 |
|
- type: recall_at_5 |
|
value: 7.54 |
|
- type: recall_at_10 |
|
value: 12.46 |
|
- type: recall_at_30 |
|
value: 21.9 |
|
- type: recall_at_100 |
|
value: 36.58 |
|
- type: precision_at_1 |
|
value: 22.45 |
|
- type: precision_at_3 |
|
value: 19.05 |
|
- type: precision_at_5 |
|
value: 17.55 |
|
- type: precision_at_10 |
|
value: 15.51 |
|
- type: precision_at_30 |
|
value: 10.07 |
|
- type: precision_at_100 |
|
value: 5.57 |
|
- type: accuracy_at_3 |
|
value: 42.86 |
|
- type: accuracy_at_5 |
|
value: 53.06 |
|
- type: accuracy_at_10 |
|
value: 69.39 |
|
--- |
|
|
|
# twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF |
|
This model was converted to GGUF format from [`mixedbread-ai/mxbai-embed-xsmall-v1`](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/mixedbread-ai/mxbai-embed-xsmall-v1) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo twine-network/mxbai-embed-xsmall-v1-Q8_0-GGUF --hf-file mxbai-embed-xsmall-v1-q8_0.gguf -c 2048 |
|
``` |
|
|