metadata
library_name: transformers
language:
- udm
Zerpal-mBERT
How to use
You can use this model directly with a pipeline for masked language modeling:
from transformers import pipeline
unmasker = pipeline('fill-mask', model='udmurtNLP/zerpal-mbert', tokenizer='udmurtNLP/zerpal-mbert-tokenizer')
unmasker("Ӟечбур! Мынам нимы [MASK].")
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('udmurtNLP/zerpal-mbert-tokenizer')
model = BertModel.from_pretrained("udmurtNLP/zerpal-mbert")
text = "Яратон, яратон, мар меда сыӵе тон?"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)