veronica-girolimetti's picture
End of training
811c895 verified
|
raw
history blame
5.05 kB
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-summarization-one-shot-better-prompt
    results: []

t5-summarization-one-shot-better-prompt

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2431
  • Rouge: {'rouge1': 39.1164, 'rouge2': 19.0784, 'rougeL': 20.2856, 'rougeLsum': 20.2856}
  • Bert Score: 0.8802
  • Bleurt 20: -0.7688
  • Gen Len: 13.545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
2.6921 1.0 172 2.4379 {'rouge1': 43.7984, 'rouge2': 17.2952, 'rougeL': 18.5604, 'rougeLsum': 18.5604} 0.869 -0.8739 14.84
2.5119 2.0 344 2.3282 {'rouge1': 41.5219, 'rouge2': 17.4612, 'rougeL': 19.5103, 'rougeLsum': 19.5103} 0.8749 -0.8329 13.7
2.3033 3.0 516 2.2821 {'rouge1': 41.0636, 'rouge2': 18.2347, 'rougeL': 19.8704, 'rougeLsum': 19.8704} 0.878 -0.8268 13.75
2.2139 4.0 688 2.2404 {'rouge1': 39.9679, 'rouge2': 18.8795, 'rougeL': 19.7032, 'rougeLsum': 19.7032} 0.8796 -0.8035 13.305
2.0835 5.0 860 2.2446 {'rouge1': 41.8958, 'rouge2': 18.439, 'rougeL': 19.2982, 'rougeLsum': 19.2982} 0.877 -0.7963 14.34
2.0379 6.0 1032 2.2233 {'rouge1': 40.9703, 'rouge2': 19.7574, 'rougeL': 19.9387, 'rougeLsum': 19.9387} 0.8793 -0.7805 13.625
1.959 7.0 1204 2.2073 {'rouge1': 39.2194, 'rouge2': 18.9553, 'rougeL': 19.7847, 'rougeLsum': 19.7847} 0.8787 -0.8045 13.365
1.9177 8.0 1376 2.2146 {'rouge1': 40.8391, 'rouge2': 19.5219, 'rougeL': 20.2602, 'rougeLsum': 20.2602} 0.8781 -0.7974 13.865
1.8749 9.0 1548 2.2071 {'rouge1': 40.9497, 'rouge2': 19.9867, 'rougeL': 20.5682, 'rougeLsum': 20.5682} 0.8808 -0.7812 13.68
1.8112 10.0 1720 2.2045 {'rouge1': 36.465, 'rouge2': 16.4287, 'rougeL': 19.1978, 'rougeLsum': 19.1978} 0.8772 -0.8384 13.295
1.7475 11.0 1892 2.2210 {'rouge1': 39.4889, 'rouge2': 19.1309, 'rougeL': 19.879, 'rougeLsum': 19.879} 0.8785 -0.8074 13.585
1.7384 12.0 2064 2.2269 {'rouge1': 38.2904, 'rouge2': 18.2873, 'rougeL': 19.4418, 'rougeLsum': 19.4418} 0.8789 -0.7984 13.42
1.6849 13.0 2236 2.2261 {'rouge1': 37.6283, 'rouge2': 17.6979, 'rougeL': 19.584, 'rougeLsum': 19.584} 0.878 -0.7885 13.445
1.6531 14.0 2408 2.2186 {'rouge1': 38.7975, 'rouge2': 19.0939, 'rougeL': 20.7873, 'rougeLsum': 20.7873} 0.8806 -0.783 13.445
1.663 15.0 2580 2.2245 {'rouge1': 38.9159, 'rouge2': 19.153, 'rougeL': 20.5232, 'rougeLsum': 20.5232} 0.8811 -0.7514 13.59
1.6036 16.0 2752 2.2430 {'rouge1': 37.6184, 'rouge2': 17.6773, 'rougeL': 19.2693, 'rougeLsum': 19.2693} 0.8771 -0.7992 13.6
1.6333 17.0 2924 2.2418 {'rouge1': 38.1301, 'rouge2': 18.4061, 'rougeL': 20.1355, 'rougeLsum': 20.1355} 0.879 -0.7845 13.49
1.6322 18.0 3096 2.2421 {'rouge1': 38.0746, 'rouge2': 18.2039, 'rougeL': 19.7404, 'rougeLsum': 19.7404} 0.8789 -0.7892 13.41
1.5982 19.0 3268 2.2411 {'rouge1': 39.1375, 'rouge2': 19.1696, 'rougeL': 20.2695, 'rougeLsum': 20.2695} 0.8802 -0.7713 13.465
1.593 20.0 3440 2.2431 {'rouge1': 39.1164, 'rouge2': 19.0784, 'rougeL': 20.2856, 'rougeLsum': 20.2856} 0.8802 -0.7688 13.545

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0