veronica-girolimetti's picture
End of training
4abd3c7 verified
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: t5-summarization-one-shot-better-prompt
    results: []

t5-summarization-one-shot-better-prompt

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4802
  • Rouge: {'rouge1': 37.3827, 'rouge2': 17.5806, 'rougeL': 20.1333, 'rougeLsum': 20.1333}
  • Bert Score: 0.881
  • Bleurt 20: -0.8056
  • Gen Len: 13.305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
2.8911 1.0 172 2.6479 {'rouge1': 44.1146, 'rouge2': 17.635, 'rougeL': 19.7288, 'rougeLsum': 19.7288} 0.8758 -0.8151 14.79
2.7068 2.0 344 2.5580 {'rouge1': 42.4931, 'rouge2': 18.5074, 'rougeL': 19.757, 'rougeLsum': 19.757} 0.8774 -0.8319 14.025
2.4884 3.0 516 2.5123 {'rouge1': 43.5811, 'rouge2': 19.0798, 'rougeL': 20.1143, 'rougeLsum': 20.1143} 0.8794 -0.7737 14.455
2.3827 4.0 688 2.4875 {'rouge1': 42.0721, 'rouge2': 18.4704, 'rougeL': 20.0131, 'rougeLsum': 20.0131} 0.8801 -0.7754 14.175
2.345 5.0 860 2.4596 {'rouge1': 43.7021, 'rouge2': 20.0234, 'rougeL': 20.0962, 'rougeLsum': 20.0962} 0.8809 -0.7379 14.325
2.2438 6.0 1032 2.4466 {'rouge1': 41.0624, 'rouge2': 18.8098, 'rougeL': 19.8672, 'rougeLsum': 19.8672} 0.8803 -0.7893 13.565
2.1878 7.0 1204 2.4505 {'rouge1': 40.3802, 'rouge2': 18.9902, 'rougeL': 20.1633, 'rougeLsum': 20.1633} 0.88 -0.7735 13.26
2.084 8.0 1376 2.4384 {'rouge1': 38.4615, 'rouge2': 18.3148, 'rougeL': 19.61, 'rougeLsum': 19.61} 0.8802 -0.7813 13.235
2.096 9.0 1548 2.4380 {'rouge1': 38.9264, 'rouge2': 18.2137, 'rougeL': 19.7464, 'rougeLsum': 19.7464} 0.8794 -0.8013 13.18
2.0251 10.0 1720 2.4445 {'rouge1': 36.7486, 'rouge2': 17.2998, 'rougeL': 20.0546, 'rougeLsum': 20.0546} 0.8807 -0.8057 12.97
2.0139 11.0 1892 2.4449 {'rouge1': 38.374, 'rouge2': 18.4603, 'rougeL': 20.3794, 'rougeLsum': 20.3794} 0.88 -0.7885 13.415
1.957 12.0 2064 2.4502 {'rouge1': 38.5085, 'rouge2': 18.9339, 'rougeL': 20.2576, 'rougeLsum': 20.2576} 0.8812 -0.7956 13.24
1.8508 13.0 2236 2.4510 {'rouge1': 37.1308, 'rouge2': 17.4541, 'rougeL': 19.7904, 'rougeLsum': 19.7904} 0.8802 -0.7981 13.28
1.9315 14.0 2408 2.4590 {'rouge1': 37.1896, 'rouge2': 17.8766, 'rougeL': 20.0, 'rougeLsum': 20.0} 0.8813 -0.7869 13.205
1.8447 15.0 2580 2.4635 {'rouge1': 38.7071, 'rouge2': 18.5335, 'rougeL': 20.5302, 'rougeLsum': 20.5302} 0.8813 -0.7887 13.505
1.8488 16.0 2752 2.4643 {'rouge1': 38.0242, 'rouge2': 17.8906, 'rougeL': 20.3013, 'rougeLsum': 20.3013} 0.8818 -0.7789 13.23
1.7909 17.0 2924 2.4739 {'rouge1': 37.1561, 'rouge2': 17.7929, 'rougeL': 20.0763, 'rougeLsum': 20.0763} 0.8806 -0.7882 13.22
1.8615 18.0 3096 2.4770 {'rouge1': 37.2891, 'rouge2': 17.6695, 'rougeL': 19.951, 'rougeLsum': 19.951} 0.8803 -0.8131 13.305
1.7938 19.0 3268 2.4796 {'rouge1': 37.1339, 'rouge2': 17.6046, 'rougeL': 20.1063, 'rougeLsum': 20.1063} 0.881 -0.8031 13.26
1.7814 20.0 3440 2.4802 {'rouge1': 37.3827, 'rouge2': 17.5806, 'rougeL': 20.1333, 'rougeLsum': 20.1333} 0.881 -0.8056 13.305

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2