metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
datasets:
- ag_news
metrics:
- accuracy
widget:
- text: >-
FSU-Miami Postponed Hurricane Frances forces the postponement of Monday's
college football season opener between Florida State and Miami.
- text: >-
Lenovo to buy IBM PC arm IBM said late Tuesday that it will sell its
personal computer division, transferring an iconic brand to a Chinese
rival that also will absorb about 2,000 local workers.
- text: >-
NBA Roundup: Sonics fly high again in Philly PHILADELPHIA - Wide open or
contested, the Seattle SuperSonics hit three-pointers from all over the
court. Ray Allen scored a season-high 37 points, Rashard Lewis had 21 and
Vladimir Radmanovic added 20, leading
- text: >-
Democrats Come to Observe Convention (AP) AP - The Democrats have come to
town to prick rhetorical balloons at the Republican National Convention.
- text: >-
US women into final The United States edged past world champions Germany
in a dramatic 2-1 victory to seal their place in the women #39;s football
final.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
This is a SetFit model trained on the ag_news dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L3-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-MiniLM-L3-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Training Dataset: ag_news
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vincent1337/test_student_model")
# Run inference
preds = model("FSU-Miami Postponed Hurricane Frances forces the postponement of Monday's college football season opener between Florida State and Miami.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 18 | 36.04 | 51 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 16)
- max_steps: 50
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0196 | 1 | 0.8923 | - |
0.9804 | 50 | 0.0968 | - |
0.0196 | 1 | 0.0852 | - |
0.9804 | 50 | 0.0048 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}