wolof-finetuned-ner / README.md
vonewman's picture
Training complete
d37487a
|
raw
history blame
1.77 kB
metadata
license: mit
base_model: vonewman/xlm-roberta-base-finetuned-wolof
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: wolof-finetuned-ner
    results: []

wolof-finetuned-ner

This model is a fine-tuned version of vonewman/xlm-roberta-base-finetuned-wolof on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3539
  • Precision: 0.7798
  • Recall: 0.8912
  • F1: 0.8317
  • Accuracy: 0.9850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 226 0.3879 0.7412 0.8571 0.7950 0.9834
No log 2.0 452 0.3595 0.7378 0.8707 0.7988 0.9833
0.5119 3.0 678 0.3539 0.7798 0.8912 0.8317 0.9850

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3