zh-CN-model-medium / README.md
whucedar's picture
End of training
3141fd5 verified
metadata
language:
  - zh
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - whucedar/zh-CN
metrics:
  - wer
model-index:
  - name: zh-CN-model-medium - whucedar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: zh-CN
          type: whucedar/zh-CN
          args: 'config: zh, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 517.7099236641221

zh-CN-model-medium - whucedar

This model is a fine-tuned version of openai/whisper-medium on the zh-CN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3110
  • Wer: 517.7099

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1157 0.6897 100 0.3224 301.8321
0.0737 1.3793 200 0.3057 395.5216
0.0153 2.0690 300 0.3026 531.1959
0.0154 2.7586 400 0.3081 387.7354
0.0051 3.4483 500 0.3110 517.7099

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1