wwe180's picture
Upload folder using huggingface_hub
0917afd verified
|
raw
history blame
2.33 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - hfl/llama-3-chinese-8b-instruct-v2
  - NousResearch/Hermes-2-Theta-Llama-3-8B
base_model:
  - hfl/llama-3-chinese-8b-instruct-v2
  - NousResearch/Hermes-2-Theta-Llama-3-8B
  - hfl/llama-3-chinese-8b-instruct-v2
  - NousResearch/Hermes-2-Theta-Llama-3-8B
  - hfl/llama-3-chinese-8b-instruct-v2

Llama3-15B-lingyang-v0.1

Llama3-15B-lingyang-v0.1 is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: "hfl/llama-3-chinese-8b-instruct-v2"
        layer_range: [0, 10]
  - sources:
      - model: "NousResearch/Hermes-2-Theta-Llama-3-8B"
        layer_range: [0, 20]
  - sources:
      - model: "hfl/llama-3-chinese-8b-instruct-v2"
        layer_range: [10, 20]
  - sources:
      - model: "NousResearch/Hermes-2-Theta-Llama-3-8B"
        layer_range: [20, 32]
  - sources:
      - model: "hfl/llama-3-chinese-8b-instruct-v2"
        layer_range: [20, 32]

merge_method: passthrough
base_model: "NousResearch/Hermes-2-Theta-Llama-3-8B"
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "wwe180/Llama3-15B-lingyang-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])