|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-common_voice_13_0-eo-3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-common_voice_13_0-eo-3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2191 |
|
- Cer: 0.0208 |
|
- Wer: 0.0686 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:| |
|
| 2.6416 | 2.13 | 1000 | 0.1541 | 0.8599 | 0.6449 | |
|
| 0.2633 | 4.27 | 2000 | 0.0335 | 0.1897 | 0.1431 | |
|
| 0.1739 | 6.4 | 3000 | 0.0289 | 0.1732 | 0.1145 | |
|
| 0.1378 | 8.53 | 4000 | 0.0276 | 0.1729 | 0.1066 | |
|
| 0.1172 | 10.67 | 5000 | 0.0268 | 0.1773 | 0.1019 | |
|
| 0.1049 | 12.8 | 6000 | 0.0255 | 0.1701 | 0.0937 | |
|
| 0.0951 | 14.93 | 7000 | 0.0253 | 0.1718 | 0.0933 | |
|
| 0.0851 | 17.07 | 8000 | 0.0239 | 0.1787 | 0.0834 | |
|
| 0.0809 | 19.2 | 9000 | 0.0235 | 0.1802 | 0.0835 | |
|
| 0.0756 | 21.33 | 10000 | 0.0239 | 0.1784 | 0.0855 | |
|
| 0.0708 | 23.47 | 11000 | 0.0235 | 0.1748 | 0.0824 | |
|
| 0.0657 | 25.6 | 12000 | 0.0228 | 0.1830 | 0.0796 | |
|
| 0.0605 | 27.73 | 13000 | 0.0230 | 0.1896 | 0.0798 | |
|
| 0.0583 | 29.87 | 14000 | 0.0224 | 0.1889 | 0.0778 | |
|
| 0.0608 | 32.0 | 15000 | 0.0223 | 0.1849 | 0.0757 | |
|
| 0.0556 | 34.13 | 16000 | 0.0223 | 0.1872 | 0.0767 | |
|
| 0.0534 | 36.27 | 17000 | 0.0221 | 0.1893 | 0.0751 | |
|
| 0.0523 | 38.4 | 18000 | 0.0218 | 0.1925 | 0.0729 | |
|
| 0.0494 | 40.53 | 19000 | 0.0221 | 0.1957 | 0.0745 | |
|
| 0.0475 | 42.67 | 20000 | 0.0217 | 0.1961 | 0.0740 | |
|
| 0.048 | 44.8 | 21000 | 0.0214 | 0.1957 | 0.0714 | |
|
| 0.0459 | 46.93 | 22000 | 0.0215 | 0.1968 | 0.0717 | |
|
| 0.0435 | 49.07 | 23000 | 0.0217 | 0.2008 | 0.0717 | |
|
| 0.0428 | 51.2 | 24000 | 0.0212 | 0.1991 | 0.0696 | |
|
| 0.0418 | 53.33 | 25000 | 0.0215 | 0.2034 | 0.0714 | |
|
| 0.0404 | 55.47 | 26000 | 0.0210 | 0.2014 | 0.0684 | |
|
| 0.0394 | 57.6 | 27000 | 0.0210 | 0.2050 | 0.0681 | |
|
| 0.0399 | 59.73 | 28000 | 0.0211 | 0.2039 | 0.0700 | |
|
| 0.0389 | 61.87 | 29000 | 0.0214 | 0.2091 | 0.0694 | |
|
| 0.038 | 64.0 | 30000 | 0.0210 | 0.2100 | 0.0702 | |
|
| 0.0361 | 66.13 | 31000 | 0.0215 | 0.2119 | 0.0703 | |
|
| 0.0359 | 68.27 | 32000 | 0.0213 | 0.2108 | 0.0714 | |
|
| 0.0354 | 70.4 | 33000 | 0.0211 | 0.2120 | 0.0699 | |
|
| 0.0364 | 72.53 | 34000 | 0.0211 | 0.2128 | 0.0688 | |
|
| 0.0361 | 74.67 | 35000 | 0.0212 | 0.2134 | 0.0694 | |
|
| 0.0332 | 76.8 | 36000 | 0.0210 | 0.2176 | 0.0698 | |
|
| 0.0341 | 78.93 | 37000 | 0.0208 | 0.2170 | 0.0688 | |
|
| 0.032 | 81.07 | 38000 | 0.0209 | 0.2157 | 0.0686 | |
|
| 0.0318 | 83.33 | 39000 | 0.0209 | 0.2166 | 0.0685 | |
|
| 0.0325 | 85.47 | 40000 | 0.2172 | 0.0209 | 0.0687 | |
|
| 0.0316 | 87.6 | 41000 | 0.2181 | 0.0208 | 0.0678 | |
|
| 0.0302 | 89.73 | 42000 | 0.2171 | 0.0208 | 0.0679 | |
|
| 0.0318 | 91.87 | 43000 | 0.2179 | 0.0211 | 0.0702 | |
|
| 0.0314 | 94.0 | 44000 | 0.2186 | 0.0208 | 0.0690 | |
|
| 0.0309 | 96.13 | 45000 | 0.2193 | 0.0210 | 0.0696 | |
|
| 0.031 | 98.27 | 46000 | 0.2191 | 0.0208 | 0.0686 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|