|
--- |
|
language: |
|
- eu |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_16_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Medium Basque |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_16_0 eu |
|
type: mozilla-foundation/common_voice_16_0 |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 9.188591686749389 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium Basque |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_16_0 eu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1503 |
|
- Wer: 9.1886 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.4647 | 0.06 | 500 | 0.4529 | 34.2140 | |
|
| 0.3163 | 0.12 | 1000 | 0.3516 | 26.0232 | |
|
| 0.3232 | 0.19 | 1500 | 0.2996 | 21.1825 | |
|
| 0.266 | 0.25 | 2000 | 0.2686 | 18.5126 | |
|
| 0.2383 | 0.31 | 2500 | 0.2489 | 16.9412 | |
|
| 0.1916 | 0.38 | 3000 | 0.2233 | 15.2831 | |
|
| 0.2009 | 0.44 | 3500 | 0.2134 | 14.1419 | |
|
| 0.2014 | 0.5 | 4000 | 0.2015 | 13.6579 | |
|
| 0.1964 | 0.56 | 4500 | 0.1853 | 12.0198 | |
|
| 0.1758 | 0.62 | 5000 | 0.1796 | 11.4651 | |
|
| 0.2067 | 0.69 | 5500 | 0.1679 | 10.7989 | |
|
| 0.213 | 0.75 | 6000 | 0.1618 | 10.3139 | |
|
| 0.1272 | 1.03 | 6500 | 0.1551 | 9.8687 | |
|
| 0.0744 | 1.09 | 7000 | 0.1534 | 9.5172 | |
|
| 0.0726 | 1.16 | 7500 | 0.1518 | 9.3240 | |
|
| 0.0627 | 1.22 | 8000 | 0.1503 | 9.1886 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|