|
--- |
|
license: mit |
|
base_model: google/vivit-b-16x2-kinetics400 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vivit-b-16x2-kinetics400-finetuned-vivit-severity |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vivit-b-16x2-kinetics400-finetuned-vivit-severity |
|
|
|
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0088 |
|
- Accuracy: 0.8530 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 5210 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.0504 | 0.1 | 521 | 0.9279 | 0.8280 | |
|
| 1.1617 | 1.1 | 1042 | 0.9890 | 0.8280 | |
|
| 0.5088 | 2.1 | 1563 | 0.8413 | 0.8172 | |
|
| 0.7947 | 3.1 | 2084 | 0.7631 | 0.8423 | |
|
| 0.0028 | 4.1 | 2605 | 0.8718 | 0.8459 | |
|
| 0.7502 | 5.1 | 3126 | 0.9022 | 0.8495 | |
|
| 0.814 | 6.1 | 3647 | 0.8467 | 0.8423 | |
|
| 0.5251 | 7.1 | 4168 | 0.8914 | 0.8602 | |
|
| 0.9977 | 8.1 | 4689 | 0.9599 | 0.8530 | |
|
| 0.0007 | 9.1 | 5210 | 1.0088 | 0.8530 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|