|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google-bert/bert-large-uncased |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-large-uncased-wnut_17-full |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: test |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6546310832025117 |
|
- name: Recall |
|
type: recall |
|
value: 0.386468952734013 |
|
- name: F1 |
|
type: f1 |
|
value: 0.486013986013986 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9493394895472618 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-large-uncased-wnut_17-full |
|
|
|
This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4040 |
|
- Precision: 0.6546 |
|
- Recall: 0.3865 |
|
- F1: 0.4860 |
|
- Accuracy: 0.9493 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 213 | 0.2471 | 0.6341 | 0.3726 | 0.4694 | 0.9461 | |
|
| No log | 2.0 | 426 | 0.2454 | 0.5882 | 0.3707 | 0.4548 | 0.9475 | |
|
| 0.1196 | 3.0 | 639 | 0.3091 | 0.6278 | 0.3689 | 0.4647 | 0.9490 | |
|
| 0.1196 | 4.0 | 852 | 0.3758 | 0.6536 | 0.3411 | 0.4482 | 0.9473 | |
|
| 0.0235 | 5.0 | 1065 | 0.3127 | 0.5632 | 0.4004 | 0.4680 | 0.9490 | |
|
| 0.0235 | 6.0 | 1278 | 0.3988 | 0.6562 | 0.3698 | 0.4730 | 0.9492 | |
|
| 0.0235 | 7.0 | 1491 | 0.4040 | 0.6546 | 0.3865 | 0.4860 | 0.9493 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|