|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- ONNX |
|
- Optimum |
|
- ONNXRuntime |
|
inference: false |
|
|
|
--- |
|
# ONNX version of `sentence-transformers/all-mpnet-base-v2` |
|
|
|
This is the ONNX version of https://huggingface.co/sentence-transformers/all-mpnet-base-v2, examined that the produced embeddings are the same. |
|
|
|
Optmized for CPU usage. |
|
|
|
## Convert |
|
|
|
The same checkpoint can also be created by using the `convert.py` script. |
|
|
|
## Usage - `transformers` |
|
|
|
Exactly the same as in `sentence-transformers/all-mpnet-base-v2` except using `ORTModelForFeatureExtraction` from optimum. |
|
|
|
```bash |
|
pip install optimum[onnxruntime] |
|
``` |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from optimum.onnxruntime import ORTModelForFeatureExtraction |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx') |
|
model = ORTModelForFeatureExtraction.from_pretrained('yilunzhang/all-mpnet-base-v2-onnx') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
# Normalize embeddings |
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |