|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-small-tldr-50k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-small-tldr-50k |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the Reddit TL;DR dataset (https://zenodo.org/record/1168855#.ZB8P-iFByUk). |
|
It achieves the following results on the evaluation set: |
|
- Gen Len: 16.4422 |
|
- Loss: 3.2423 |
|
- Rouge1: 14.7049 |
|
- Rouge2: 3.2396 |
|
- Rougel: 12.5104 |
|
- Rougelsum: 12.9681 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:-------:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 3.5507 | 1.0 | 5625 | 16.1424 | 3.2752 | 14.2302 | 2.9853 | 12.1734 | 12.5894 | |
|
| 3.4842 | 2.0 | 11250 | 16.1126 | 3.2569 | 14.3966 | 3.0939 | 12.2437 | 12.6705 | |
|
| 3.4288 | 3.0 | 16875 | 16.39 | 3.2481 | 14.6879 | 3.2647 | 12.5199 | 12.9681 | |
|
| 3.4176 | 4.0 | 22500 | 16.2948 | 3.2432 | 14.7198 | 3.2693 | 12.5436 | 12.9885 | |
|
| 3.4033 | 5.0 | 28125 | 16.4422 | 3.2423 | 14.7049 | 3.2396 | 12.5104 | 12.9681 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.3 |
|
- Pytorch 1.13.1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.13.2 |
|
|