|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- LunarLander-v2 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: PPO |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: LunarLander-v2 |
|
type: LunarLander-v2 |
|
metrics: |
|
- type: mean_reward |
|
value: 284.96 +/- 22.41 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **PPO** Agent playing **LunarLander-v2** |
|
This is a trained model of a **PPO** agent playing **LunarLander-v2** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Training |
|
|
|
```python |
|
from stable_baselines3 import PPO |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
env = make_vec_env("LunarLander-v2", n_envs=16) |
|
model = PPO('MlpPolicy', |
|
env=env, |
|
n_steps=1024, |
|
batch_size=64, |
|
n_epochs=4, |
|
gamma=0.999, |
|
gae_lambda=0.98, |
|
ent_coef=0.01, |
|
verbose=1) |
|
model.learn(total_timesteps=10000000, progress_bar=True) |
|
``` |
|
|
|
|
|
## Usage (with Stable-baselines3) |
|
|
|
|
|
```python |
|
from stable_baselines3 import PPO |
|
from huggingface_sb3 import load_from_hub |
|
|
|
repo_id = "zhuqi/PPO_LunarLander-v2_steps10M" # The repo_id |
|
filename = "PPO_LunarLander-v2_steps10000000.zip" # The model filename.zip |
|
|
|
# When the model was trained on Python 3.8 the pickle protocol is 5 |
|
# But Python 3.6, 3.7 use protocol 4 |
|
# In order to get compatibility we need to: |
|
# 1. Install pickle5 (we done it at the beginning of the colab) |
|
# 2. Create a custom empty object we pass as parameter to PPO.load() |
|
custom_objects = { |
|
"learning_rate": 0.0, |
|
"lr_schedule": lambda _: 0.0, |
|
"clip_range": lambda _: 0.0, |
|
} |
|
|
|
checkpoint = load_from_hub(repo_id, filename) |
|
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) |
|
``` |
|
|