zhuqi's picture
Update README.md
9fea0e4
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 284.96 +/- 22.41
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Training
```python
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
env = make_vec_env("LunarLander-v2", n_envs=16)
model = PPO('MlpPolicy',
env=env,
n_steps=1024,
batch_size=64,
n_epochs=4,
gamma=0.999,
gae_lambda=0.98,
ent_coef=0.01,
verbose=1)
model.learn(total_timesteps=10000000, progress_bar=True)
```
## Usage (with Stable-baselines3)
```python
from stable_baselines3 import PPO
from huggingface_sb3 import load_from_hub
repo_id = "zhuqi/PPO_LunarLander-v2_steps10M" # The repo_id
filename = "PPO_LunarLander-v2_steps10000000.zip" # The model filename.zip
# When the model was trained on Python 3.8 the pickle protocol is 5
# But Python 3.6, 3.7 use protocol 4
# In order to get compatibility we need to:
# 1. Install pickle5 (we done it at the beginning of the colab)
# 2. Create a custom empty object we pass as parameter to PPO.load()
custom_objects = {
"learning_rate": 0.0,
"lr_schedule": lambda _: 0.0,
"clip_range": lambda _: 0.0,
}
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True)
```