bert-azahead-v1.0 / README.md
zwellington's picture
update model card README.md
930f3e8
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - azaheadhealth
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert-azahead-v1.0
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: azaheadhealth
          type: azaheadhealth
          config: small
          split: test
          args: small
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7083333333333334
          - name: F1
            type: f1
            value: 0.46153846153846156
          - name: Precision
            type: precision
            value: 0.5
          - name: Recall
            type: recall
            value: 0.42857142857142855

bert-azahead-v1.0

This model is a fine-tuned version of bert-base-uncased on the azaheadhealth dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7204
  • Accuracy: 0.7083
  • F1: 0.4615
  • Precision: 0.5
  • Recall: 0.4286

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5889 1.0 10 0.5438 0.625 0.0 0.0 0.0
0.4926 2.0 20 0.4309 0.75 0.5714 0.5714 0.5714
0.3613 3.0 30 0.4260 0.75 0.5714 0.5714 0.5714
0.2628 4.0 40 0.4989 0.75 0.5714 0.5714 0.5714
0.1658 5.0 50 0.5883 0.7083 0.4615 0.5 0.4286
0.1153 6.0 60 0.6374 0.6667 0.3333 0.4 0.2857
0.074 7.0 70 0.6709 0.6667 0.3333 0.4 0.2857
0.0548 8.0 80 0.6848 0.7083 0.4615 0.5 0.4286
0.0456 9.0 90 0.7322 0.7083 0.4615 0.5 0.4286
0.0439 10.0 100 0.7204 0.7083 0.4615 0.5 0.4286

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.13.2