|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- azaheadhealth |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: bert-azahead-v1.0 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: azaheadhealth |
|
type: azaheadhealth |
|
config: small |
|
split: test |
|
args: small |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7083333333333334 |
|
- name: F1 |
|
type: f1 |
|
value: 0.46153846153846156 |
|
- name: Precision |
|
type: precision |
|
value: 0.5 |
|
- name: Recall |
|
type: recall |
|
value: 0.42857142857142855 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-azahead-v1.0 |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the azaheadhealth dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7204 |
|
- Accuracy: 0.7083 |
|
- F1: 0.4615 |
|
- Precision: 0.5 |
|
- Recall: 0.4286 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5889 | 1.0 | 10 | 0.5438 | 0.625 | 0.0 | 0.0 | 0.0 | |
|
| 0.4926 | 2.0 | 20 | 0.4309 | 0.75 | 0.5714 | 0.5714 | 0.5714 | |
|
| 0.3613 | 3.0 | 30 | 0.4260 | 0.75 | 0.5714 | 0.5714 | 0.5714 | |
|
| 0.2628 | 4.0 | 40 | 0.4989 | 0.75 | 0.5714 | 0.5714 | 0.5714 | |
|
| 0.1658 | 5.0 | 50 | 0.5883 | 0.7083 | 0.4615 | 0.5 | 0.4286 | |
|
| 0.1153 | 6.0 | 60 | 0.6374 | 0.6667 | 0.3333 | 0.4 | 0.2857 | |
|
| 0.074 | 7.0 | 70 | 0.6709 | 0.6667 | 0.3333 | 0.4 | 0.2857 | |
|
| 0.0548 | 8.0 | 80 | 0.6848 | 0.7083 | 0.4615 | 0.5 | 0.4286 | |
|
| 0.0456 | 9.0 | 90 | 0.7322 | 0.7083 | 0.4615 | 0.5 | 0.4286 | |
|
| 0.0439 | 10.0 | 100 | 0.7204 | 0.7083 | 0.4615 | 0.5 | 0.4286 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.13.2 |
|
|