|
--- |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
datasets: |
|
- sentence-transformers/quora-duplicates |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy |
|
- cosine_accuracy_threshold |
|
- cosine_f1 |
|
- cosine_f1_threshold |
|
- cosine_precision |
|
- cosine_recall |
|
- cosine_ap |
|
- dot_accuracy |
|
- dot_accuracy_threshold |
|
- dot_f1 |
|
- dot_f1_threshold |
|
- dot_precision |
|
- dot_recall |
|
- dot_ap |
|
- manhattan_accuracy |
|
- manhattan_accuracy_threshold |
|
- manhattan_f1 |
|
- manhattan_f1_threshold |
|
- manhattan_precision |
|
- manhattan_recall |
|
- manhattan_ap |
|
- euclidean_accuracy |
|
- euclidean_accuracy_threshold |
|
- euclidean_f1 |
|
- euclidean_f1_threshold |
|
- euclidean_precision |
|
- euclidean_recall |
|
- euclidean_ap |
|
- max_accuracy |
|
- max_accuracy_threshold |
|
- max_f1 |
|
- max_f1_threshold |
|
- max_precision |
|
- max_recall |
|
- max_ap |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:323432 |
|
- loss:OnlineContrastiveLoss |
|
widget: |
|
- source_sentence: How do I have a successful career in animation industry with all |
|
distance mode of education (from schooling)? |
|
sentences: |
|
- The LINE app is blocked in China. I bought a VPN, but it's still not working. |
|
Can someone help me? |
|
- What is independent? |
|
- How do I find all distance education schools in any city? |
|
- source_sentence: How can I get the funding for my startup without revealing my idea? |
|
sentences: |
|
- How has demonetization affected big business people like Mukesh Ambani? |
|
- How should I go about getting funding for my idea? |
|
- What are the advantages and disadvantages of studying an MBBS in China? |
|
- source_sentence: I am an okay looking young women but I am always feeling ugly since |
|
I'm not extremely beautiful. How can I stop those thoughts? |
|
sentences: |
|
- Whenever I think about my failures in life, I always feel that I lack some qualities. |
|
But which are those qualities, I am not able to find out. How can I find which |
|
qualities I lack? |
|
- What songs make you cry? |
|
- What does histrionic personality disorder feel like physically to you? |
|
- source_sentence: What do you think of Prime Minister Narendra Modi's decision to |
|
introduce new INR 500 and INR 2000 currency notes? |
|
sentences: |
|
- What do you think of the decision by the Indian Government to replace 1000 notes |
|
with 2000 notes? |
|
- How do you find volume from density and mass? |
|
- What are the consequences of having a blood sugar level over 300? |
|
- source_sentence: Why do complementary angles have to be adjacent? |
|
sentences: |
|
- What is an AEG airsoft gun? |
|
- How can I get rid of my bad habits? |
|
- Can two adjacent angles be complementary? |
|
model-index: |
|
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: binary-classification |
|
name: Binary Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.8683618194860125 |
|
name: Cosine Accuracy |
|
- type: cosine_accuracy_threshold |
|
value: 0.7981455326080322 |
|
name: Cosine Accuracy Threshold |
|
- type: cosine_f1 |
|
value: 0.8292439905343131 |
|
name: Cosine F1 |
|
- type: cosine_f1_threshold |
|
value: 0.7598952651023865 |
|
name: Cosine F1 Threshold |
|
- type: cosine_precision |
|
value: 0.7746589487768696 |
|
name: Cosine Precision |
|
- type: cosine_recall |
|
value: 0.8921046460992195 |
|
name: Cosine Recall |
|
- type: cosine_ap |
|
value: 0.8822291610822541 |
|
name: Cosine Ap |
|
- type: dot_accuracy |
|
value: 0.8359964382003018 |
|
name: Dot Accuracy |
|
- type: dot_accuracy_threshold |
|
value: 17.112058639526367 |
|
name: Dot Accuracy Threshold |
|
- type: dot_f1 |
|
value: 0.7914425390403506 |
|
name: Dot F1 |
|
- type: dot_f1_threshold |
|
value: 16.083341598510742 |
|
name: Dot F1 Threshold |
|
- type: dot_precision |
|
value: 0.7294350282485875 |
|
name: Dot Precision |
|
- type: dot_recall |
|
value: 0.8649716946370549 |
|
name: Dot Recall |
|
- type: dot_ap |
|
value: 0.8438654629805356 |
|
name: Dot Ap |
|
- type: manhattan_accuracy |
|
value: 0.8568230725469341 |
|
name: Manhattan Accuracy |
|
- type: manhattan_accuracy_threshold |
|
value: 46.94310760498047 |
|
name: Manhattan Accuracy Threshold |
|
- type: manhattan_f1 |
|
value: 0.8144082547946494 |
|
name: Manhattan F1 |
|
- type: manhattan_f1_threshold |
|
value: 50.51482391357422 |
|
name: Manhattan F1 Threshold |
|
- type: manhattan_precision |
|
value: 0.7656268427880646 |
|
name: Manhattan Precision |
|
- type: manhattan_recall |
|
value: 0.8698288279234918 |
|
name: Manhattan Recall |
|
- type: manhattan_ap |
|
value: 0.8636170591577621 |
|
name: Manhattan Ap |
|
- type: euclidean_accuracy |
|
value: 0.8568849093472507 |
|
name: Euclidean Accuracy |
|
- type: euclidean_accuracy_threshold |
|
value: 3.0017127990722656 |
|
name: Euclidean Accuracy Threshold |
|
- type: euclidean_f1 |
|
value: 0.8143016129285076 |
|
name: Euclidean F1 |
|
- type: euclidean_f1_threshold |
|
value: 3.2429399490356445 |
|
name: Euclidean F1 Threshold |
|
- type: euclidean_precision |
|
value: 0.7652309686542541 |
|
name: Euclidean Precision |
|
- type: euclidean_recall |
|
value: 0.8700968076910194 |
|
name: Euclidean Recall |
|
- type: euclidean_ap |
|
value: 0.8637642883474006 |
|
name: Euclidean Ap |
|
- type: max_accuracy |
|
value: 0.8683618194860125 |
|
name: Max Accuracy |
|
- type: max_accuracy_threshold |
|
value: 46.94310760498047 |
|
name: Max Accuracy Threshold |
|
- type: max_f1 |
|
value: 0.8292439905343131 |
|
name: Max F1 |
|
- type: max_f1_threshold |
|
value: 50.51482391357422 |
|
name: Max F1 Threshold |
|
- type: max_precision |
|
value: 0.7746589487768696 |
|
name: Max Precision |
|
- type: max_recall |
|
value: 0.8921046460992195 |
|
name: Max Recall |
|
- type: max_ap |
|
value: 0.8822291610822541 |
|
name: Max Ap |
|
--- |
|
|
|
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("DashReza7/paraphrase-multilingual-MiniLM-L12-v2_QuoraDuplicateDetection_FINETUNED") |
|
# Run inference |
|
sentences = [ |
|
'Why do complementary angles have to be adjacent?', |
|
'Can two adjacent angles be complementary?', |
|
'How can I get rid of my bad habits?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Binary Classification |
|
|
|
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) |
|
|
|
| Metric | Value | |
|
|:-----------------------------|:-----------| |
|
| cosine_accuracy | 0.8684 | |
|
| cosine_accuracy_threshold | 0.7981 | |
|
| cosine_f1 | 0.8292 | |
|
| cosine_f1_threshold | 0.7599 | |
|
| cosine_precision | 0.7747 | |
|
| cosine_recall | 0.8921 | |
|
| cosine_ap | 0.8822 | |
|
| dot_accuracy | 0.836 | |
|
| dot_accuracy_threshold | 17.1121 | |
|
| dot_f1 | 0.7914 | |
|
| dot_f1_threshold | 16.0833 | |
|
| dot_precision | 0.7294 | |
|
| dot_recall | 0.865 | |
|
| dot_ap | 0.8439 | |
|
| manhattan_accuracy | 0.8568 | |
|
| manhattan_accuracy_threshold | 46.9431 | |
|
| manhattan_f1 | 0.8144 | |
|
| manhattan_f1_threshold | 50.5148 | |
|
| manhattan_precision | 0.7656 | |
|
| manhattan_recall | 0.8698 | |
|
| manhattan_ap | 0.8636 | |
|
| euclidean_accuracy | 0.8569 | |
|
| euclidean_accuracy_threshold | 3.0017 | |
|
| euclidean_f1 | 0.8143 | |
|
| euclidean_f1_threshold | 3.2429 | |
|
| euclidean_precision | 0.7652 | |
|
| euclidean_recall | 0.8701 | |
|
| euclidean_ap | 0.8638 | |
|
| max_accuracy | 0.8684 | |
|
| max_accuracy_threshold | 46.9431 | |
|
| max_f1 | 0.8292 | |
|
| max_f1_threshold | 50.5148 | |
|
| max_precision | 0.7747 | |
|
| max_recall | 0.8921 | |
|
| **max_ap** | **0.8822** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/quora-duplicates |
|
|
|
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) |
|
* Size: 323,432 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 16.39 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 16.2 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>0: ~62.10%</li><li>1: ~37.90%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------|:-----------------------------------------------------------------------|:---------------| |
|
| <code>Which are the best compilers for C language (for Windows 10)?</code> | <code>Which is the best open source C/C++ compiler for Windows?</code> | <code>0</code> | |
|
| <code>How much does YouTube pay per 1000 views in India?</code> | <code>How much does youtube pay per 1000 views?</code> | <code>0</code> | |
|
| <code>What parts do I need to build my own PC?</code> | <code>I want to build a new computer. What parts do I need?</code> | <code>1</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/quora-duplicates |
|
|
|
* Dataset: [sentence-transformers/quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb) |
|
* Size: 80,858 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 16.48 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.76 tokens</li><li>max: 101 tokens</li></ul> | <ul><li>0: ~63.90%</li><li>1: ~36.10%</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:---------------| |
|
| <code>How many stories got busted on Quora while being anonymous?</code> | <code>Can what I say on Quora anonymously be used against me legally?</code> | <code>0</code> | |
|
| <code>What are innovative mechanical component designs?</code> | <code>What is the Innovation design?</code> | <code>0</code> | |
|
| <code>What is the best way to learn phrasal verbs?</code> | <code>Why should I learn phrasal verbs?</code> | <code>1</code> | |
|
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss) |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 256 |
|
- `per_device_eval_batch_size`: 256 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | max_ap | |
|
|:------:|:----:|:-------------:|:------:|:------:| |
|
| 0.0791 | 100 | - | 8.0607 | 0.8164 | |
|
| 0.1582 | 200 | - | 7.3012 | 0.8445 | |
|
| 0.2373 | 300 | - | 6.9626 | 0.8582 | |
|
| 0.3165 | 400 | - | 6.7901 | 0.8639 | |
|
| 0.3956 | 500 | 7.5229 | 6.6498 | 0.8694 | |
|
| 0.4747 | 600 | - | 6.5315 | 0.8736 | |
|
| 0.5538 | 700 | - | 6.4686 | 0.8766 | |
|
| 0.6329 | 800 | - | 6.4027 | 0.8787 | |
|
| 0.7120 | 900 | - | 6.3108 | 0.8797 | |
|
| 0.7911 | 1000 | 6.4636 | 6.2862 | 0.8812 | |
|
| 0.8703 | 1100 | - | 6.2449 | 0.8818 | |
|
| 0.9494 | 1200 | - | 6.2344 | 0.8822 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.42.4 |
|
- PyTorch: 2.3.1+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |