Gladiator's picture
update model card README.md
0acbd12
---
license: mit
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: microsoft-deberta-v3-large_ner_wnut_17
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.7670623145400594
- name: Recall
type: recall
value: 0.618421052631579
- name: F1
type: f1
value: 0.6847682119205298
- name: Accuracy
type: accuracy
value: 0.9666942096230853
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# microsoft-deberta-v3-large_ner_wnut_17
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2199
- Precision: 0.7671
- Recall: 0.6184
- F1: 0.6848
- Accuracy: 0.9667
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.1751 | 0.6884 | 0.5682 | 0.6225 | 0.9601 |
| No log | 2.0 | 426 | 0.1702 | 0.7351 | 0.6208 | 0.6732 | 0.9655 |
| 0.1003 | 3.0 | 639 | 0.1954 | 0.7360 | 0.6136 | 0.6693 | 0.9656 |
| 0.1003 | 4.0 | 852 | 0.2113 | 0.7595 | 0.6232 | 0.6846 | 0.9669 |
| 0.015 | 5.0 | 1065 | 0.2199 | 0.7671 | 0.6184 | 0.6848 | 0.9667 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1