English
jinjieyuan's picture
Upload model
1960aa4
|
raw
history blame
4.79 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: first_try
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE SST2
          type: glue
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9151376146788991

first_try

This model is a fine-tuned version of bert-base-uncased on the GLUE SST2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3079
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.1786 1.0 2105 0.3156 0.9151 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})])
0.1786 1.0 2105 0.2938 0.9220 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.0868 2.0 4210 0.3035 0.9197 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})])
0.0868 2.0 4210 0.3008 0.9232 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.0371 3.0 6315 0.3073 0.9151 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})])
0.0371 3.0 6315 0.2674 0.9289 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])
0.0249 4.0 8420 0.3040 0.9140 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})])
0.0249 4.0 8420 0.2658 0.9312 OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})])

Framework versions

  • Transformers 4.29.1
  • Pytorch 1.12.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3