|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: first_try |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE SST2 |
|
type: glue |
|
config: sst2 |
|
split: validation |
|
args: sst2 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9151376146788991 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# first_try |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3079 |
|
- Accuracy: 0.9151 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.1786 | 1.0 | 2105 | 0.3156 | 0.9151 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | |
|
| 0.1786 | 1.0 | 2105 | 0.2938 | 0.9220 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | |
|
| 0.0868 | 2.0 | 4210 | 0.3035 | 0.9197 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | |
|
| 0.0868 | 2.0 | 4210 | 0.3008 | 0.9232 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | |
|
| 0.0371 | 3.0 | 6315 | 0.3073 | 0.9151 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | |
|
| 0.0371 | 3.0 | 6315 | 0.2674 | 0.9289 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | |
|
| 0.0249 | 4.0 | 8420 | 0.3040 | 0.9140 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 320, 1: 256, 2: 256, 3: 192, 4: 256, 5: 192, 6: 128, 7: 320, 8: 256, 9: 192, 10: 128, 11: 64, 12: 1585, 13: 1570, 14: 1775, 15: 1717, 16: 1679, 17: 1580, 18: 1621, 19: 1406, 20: 1188, 21: 930, 22: 828, 23: 654})]) | |
|
| 0.0249 | 4.0 | 8420 | 0.2658 | 0.9312 | OrderedDict([(<ElasticityDim.WIDTH: 'width'>, {0: 768, 1: 768, 2: 768, 3: 768, 4: 768, 5: 768, 6: 768, 7: 768, 8: 768, 9: 768, 10: 768, 11: 768, 12: 3072, 13: 3072, 14: 3072, 15: 3072, 16: 3072, 17: 3072, 18: 3072, 19: 3072, 20: 3072, 21: 3072, 22: 3072, 23: 3072})]) | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|