|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- de |
|
- es |
|
- fr |
|
tags: |
|
- sft |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: >- |
|
<|prompter|>What is a meme, and what's the history behind this |
|
word?<|endoftext|><|assistant|> |
|
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|> |
|
- text: >- |
|
<|prompter|>Write a story about future of AI |
|
development<|endoftext|><|assistant|> |
|
datasets: |
|
- OpenAssistant/oasst1 |
|
--- |
|
# Open-Assistant Falcon 7B SFT MIX Model |
|
|
|
- base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) |
|
- [sampling report](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-05_OpenAssistant_falcon-7b-sft-mix-2000_sampling_noprefix2.json) |
|
- wandb: https://wandb.ai/open-assistant/public-sft/runs/tlevhltw |
|
- checkpoint: 2000 steps (~2.9 epochs) |
|
|
|
## Prompting |
|
|
|
Two special tokens are used to mark the beginning of user and assistant turns: |
|
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token. |
|
|
|
Input prompt example: |
|
``` |
|
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> |
|
``` |
|
The input ends with the `<|assistant|>` token to signal that the model should |
|
start generating the assistant reply. |
|
|
|
|
|
## Sample Code |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "OpenAssistant/falcon-7b-sft-mix-2000" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
) |
|
|
|
input_text="<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>" |
|
|
|
sequences = pipeline( |
|
input_text, |
|
max_length=500, |
|
do_sample=True, |
|
return_full_text=False, |
|
top_k=10, |
|
num_return_sequences=1, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
for seq in sequences: |
|
print(f"Result: {seq['generated_text']}") |
|
``` |
|
|
|
|
|
## Configuration Details |
|
|
|
Model: |
|
``` |
|
falcon-7b: |
|
dtype: bf16 |
|
log_dir: "falcon_log_7b" |
|
learning_rate: 1e-5 |
|
model_name: "tiiuae/falcon-7b" |
|
deepspeed_config: configs/zero_config.json |
|
output_dir: falcon |
|
weight_decay: 0.0 |
|
max_length: 2048 |
|
warmup_steps: 20 |
|
gradient_checkpointing: true |
|
gradient_accumulation_steps: 4 |
|
per_device_train_batch_size: 4 |
|
per_device_eval_batch_size: 8 |
|
eval_steps: 100 |
|
save_steps: 500 |
|
save_strategy: steps |
|
num_train_epochs: 8 |
|
save_total_limit: 4 |
|
residual_dropout: 0.2 |
|
residual_dropout_lima: true |
|
``` |
|
|
|
Dataset: |
|
``` |
|
sft9-stage2: |
|
# oasst_export: 100.00% (29899) |
|
# vicuna: 50.00% (16963) |
|
# code_alpaca: 50.00% (9510) |
|
# oa_wiki_qa_bart_10000row: 100.00% (9434) |
|
# grade_school_math_instructions: 100.00% (8351) |
|
# dolly15k: 100.00% (14250) |
|
|
|
use_custom_sampler: true |
|
datasets: |
|
- oasst_export: |
|
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0 |
|
input_file_path: 2023-06-02_oasst_all_labels.jsonl.gz |
|
val_split: 0.05 |
|
top_k: 2 |
|
- vicuna: |
|
fraction: 0.5 |
|
val_split: 0.025 |
|
max_val_set: 250 |
|
- code_alpaca: |
|
fraction: 0.5 |
|
val_split: 0.05 |
|
max_val_set: 250 |
|
- oa_wiki_qa_bart_10000row: |
|
val_split: 0.05 |
|
max_val_set: 250 |
|
- grade_school_math_instructions: |
|
val_split: 0.05 |
|
- dolly15k: |
|
val_split: 0.05 |
|
max_val_set: 300 |
|
``` |