ReginaZ's picture
End of training
75e36c6 verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - ml-superb-subset
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-ml-superb-xty
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ml-superb-subset
          type: ml-superb-subset
          config: xty
          split: test
          args: xty
        metrics:
          - name: Wer
            type: wer
            value: 1.3984915147705845

w2v-bert-2.0-ml-superb-xty

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the ml-superb-subset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3981
  • Wer: 1.3985

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5467 0.8219 30 2.8636 1.0
2.4639 1.6438 60 2.5298 1.0094
2.38 2.4658 90 2.4983 1.1263
2.2725 3.2877 120 2.4866 1.2319
2.2608 4.1096 150 2.5116 1.5405
2.2222 4.9315 180 2.4588 1.3300
2.2609 5.7534 210 2.4448 1.3451
2.1665 6.5753 240 2.4270 1.3199
2.1703 7.3973 270 2.4223 1.3576
2.1366 8.2192 300 2.4054 1.4085
2.123 9.0411 330 2.4006 1.4180
2.1331 9.8630 360 2.3981 1.3985

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1