|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ml-superb-subset |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-ml-superb-xty |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: ml-superb-subset |
|
type: ml-superb-subset |
|
config: xty |
|
split: test |
|
args: xty |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 1.3984915147705845 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-ml-superb-xty |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the ml-superb-subset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3981 |
|
- Wer: 1.3985 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 30 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 3.5467 | 0.8219 | 30 | 2.8636 | 1.0 | |
|
| 2.4639 | 1.6438 | 60 | 2.5298 | 1.0094 | |
|
| 2.38 | 2.4658 | 90 | 2.4983 | 1.1263 | |
|
| 2.2725 | 3.2877 | 120 | 2.4866 | 1.2319 | |
|
| 2.2608 | 4.1096 | 150 | 2.5116 | 1.5405 | |
|
| 2.2222 | 4.9315 | 180 | 2.4588 | 1.3300 | |
|
| 2.2609 | 5.7534 | 210 | 2.4448 | 1.3451 | |
|
| 2.1665 | 6.5753 | 240 | 2.4270 | 1.3199 | |
|
| 2.1703 | 7.3973 | 270 | 2.4223 | 1.3576 | |
|
| 2.1366 | 8.2192 | 300 | 2.4054 | 1.4085 | |
|
| 2.123 | 9.0411 | 330 | 2.4006 | 1.4180 | |
|
| 2.1331 | 9.8630 | 360 | 2.3981 | 1.3985 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|