nyt-cat / README.md
alex-miller's picture
Update model widget
dbe3571 verified
|
raw
history blame
2.2 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - dstefa/New_York_Times_Topics
metrics:
  - accuracy
model-index:
  - name: DistilBERT base classify news topics - Devinit
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: New York Times Topics
          type: dstefa/New_York_Times_Topics
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.913482481060606
widget:
  - text: 'Insurers: Costs Would Skyrocket Under House Health Bill.'

DistilBERT base classify news topics - Devinit

This model is a fine-tuned version of distilbert-base-uncased on the New York Times Topics dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2871
  • Accuracy: 0.9135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.386 1.0 1340 0.3275 0.8921
0.2833 2.0 2680 0.2840 0.9033
0.2411 3.0 4020 0.2694 0.9102
0.2069 4.0 5360 0.2665 0.9114
0.1796 5.0 6700 0.2657 0.9128
0.1636 6.0 8040 0.2674 0.9142
0.144 7.0 9380 0.2761 0.9129
0.1277 8.0 10720 0.2820 0.9125
0.1201 9.0 12060 0.2853 0.9136
0.1104 10.0 13400 0.2871 0.9135

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0