|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- dstefa/New_York_Times_Topics |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: DistilBERT base classify news topics - Devinit |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: New York Times Topics |
|
type: dstefa/New_York_Times_Topics |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.913482481060606 |
|
widget: |
|
- text: "Insurers: Costs Would Skyrocket Under House Health Bill." |
|
--- |
|
|
|
|
|
# DistilBERT base classify news topics - Devinit |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the New York Times Topics dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2871 |
|
- Accuracy: 0.9135 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.386 | 1.0 | 1340 | 0.3275 | 0.8921 | |
|
| 0.2833 | 2.0 | 2680 | 0.2840 | 0.9033 | |
|
| 0.2411 | 3.0 | 4020 | 0.2694 | 0.9102 | |
|
| 0.2069 | 4.0 | 5360 | 0.2665 | 0.9114 | |
|
| 0.1796 | 5.0 | 6700 | 0.2657 | 0.9128 | |
|
| 0.1636 | 6.0 | 8040 | 0.2674 | 0.9142 | |
|
| 0.144 | 7.0 | 9380 | 0.2761 | 0.9129 | |
|
| 0.1277 | 8.0 | 10720 | 0.2820 | 0.9125 | |
|
| 0.1201 | 9.0 | 12060 | 0.2853 | 0.9136 | |
|
| 0.1104 | 10.0 | 13400 | 0.2871 | 0.9135 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|