bdpc's picture
Saving best model to hub
fb4151c
metadata
license: apache-2.0
base_model: jordyvl/vit-base_rvl-cdip
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vit-base_rvl_cdip-N1K_aAURC_32
    results: []

vit-base_rvl_cdip-N1K_aAURC_32

This model is a fine-tuned version of jordyvl/vit-base_rvl-cdip on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5215
  • Accuracy: 0.888
  • Brier Loss: 0.1918
  • Nll: 0.9026
  • F1 Micro: 0.888
  • F1 Macro: 0.8883
  • Ece: 0.0880
  • Aurc: 0.0205

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
0.1629 1.0 500 0.3779 0.8875 0.1721 1.1899 0.8875 0.8877 0.0531 0.0201
0.1234 2.0 1000 0.4074 0.8868 0.1790 1.1333 0.8868 0.8874 0.0647 0.0213
0.0616 3.0 1500 0.4257 0.888 0.1813 1.0677 0.888 0.8879 0.0695 0.0201
0.0303 4.0 2000 0.4595 0.885 0.1869 1.0256 0.885 0.8856 0.0776 0.0222
0.0133 5.0 2500 0.4902 0.8848 0.1922 0.9983 0.8848 0.8849 0.0831 0.0228
0.0083 6.0 3000 0.4941 0.8862 0.1903 0.9464 0.8862 0.8868 0.0850 0.0211
0.0051 7.0 3500 0.5116 0.8875 0.1928 0.9118 0.8875 0.8873 0.0875 0.0207
0.0043 8.0 4000 0.5154 0.8882 0.1910 0.9138 0.8882 0.8887 0.0864 0.0205
0.0041 9.0 4500 0.5221 0.8865 0.1924 0.9101 0.8865 0.8868 0.0896 0.0206
0.0037 10.0 5000 0.5215 0.888 0.1918 0.9026 0.888 0.8883 0.0880 0.0205

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3