File size: 10,371 Bytes
e1779f9 2986640 d6012f0 e1779f9 40dd104 e6a67bf 40dd104 e6a67bf 2986640 40dd104 e1779f9 afdd454 40dd104 0898387 40dd104 0898387 40dd104 afdd454 40dd104 afdd454 40dd104 e1779f9 40dd104 e1779f9 40dd104 e1779f9 40dd104 e1779f9 40dd104 e1779f9 40dd104 e1779f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
---
license: apache-2.0
inference: false
pipeline_tag: text-generation
tags:
- axolotl
- generated_from_trainer
- text-generation-inference
model-index:
- name: Mistral-7B-instruct-v0.2
results: []
model_type: mistral
widget:
- messages:
- role: user
content: I want to cancel an order
---
# Mistral-7B-Customer-Support-v1
## Model Description
This model, ["Mistral-7B-Customer-Support-v1"], is a fine-tuned version of the [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), specifically tailored for the Custumer Support domain. It is optimized to answer questions and assist users with various support transactions. It has been trained using hybrid synthetic data generated using our NLP/NLG technology and our automated Data Labeling (DAL) tools.
The goal of this model is to show that a generic verticalized model makes customization for a final use case much easier. For example, if you are "ACME Company", you can create your own customized model by using this fine-tuned model and a doing an additional fine-tuning using a small amount of your own data. An overview of this approach can be found at: [From General-Purpose LLMs to Verticalized Enterprise Models](https://www.bitext.com/blog/general-purpose-models-verticalized-enterprise-genai/)
## Intended Use
- **Recommended applications**: This model is designed to be used as the first step in Bitext’s two-step approach to LLM fine-tuning for the creation of chatbots, virtual assistants and copilots for the Customer Support domain, providing customers with fast and accurate answers about their banking needs.
- **Out-of-scope**: The model is not intended for general conversational purposes and should not be used for medical, legal, or safety-critical advice.
## Usage Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("bitext-llm/Mistral-7B-Customer-Support-v1")
tokenizer = AutoTokenizer.from_pretrained("bitext-llm/Mistral-7B-Customer-Support-v1")
inputs = tokenizer("<s>[INST] I want to change to the standard account [/INST] ", return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Model Architecture
The model employs the `MistralForCausalLM` architecture with a `LlamaTokenizer`. It maintains the configuration of the base Mistral model but has been fine-tuned to better understand and generate responses related to customer service.
## Training Data
The model was fine-tuned using the [bitext/Bitext-customer-support-llm-chatbot-training-dataset](https://huggingface.co/datasets/bitext/Bitext-customer-support-llm-chatbot-training-dataset), which is designed for question and answer interactions in the customer service sector. This dataset includes instructions and responses across a variety of customer service topics, ensuring that the model can handle a wide range of inquiries related to this field. The dataset covers 27 intents assigned to 10 categories such as `cancel_order`, `place_order`, `change_order`, and `check_invoice`. Each intent has around 1000 examples, illustrating a training process aimed at understanding and generating accurate responses for customer service interactions.
## Training Procedure
### Hyperparameters
- **Optimizer**: AdamW with betas=(0.9, 0.999) and epsilon=1e-08
- **Learning Rate**: 0.0002 with a cosine learning rate scheduler
- **Epochs**: 1
- **Batch Size**: 8
- **Gradient Accumulation Steps**: 4
- **Maximum Sequence Length**: 1024 tokens
### Environment
- **Transformers Version**: 4.40.0.dev0
- **Framework**: PyTorch 2.2.1+cu121
- **Tokenizers**: Tokenizers 0.15.0
## Training Results
| Training Loss | Epoch | Step | Validation Loss |
| :-----------: | :---: | :--: | :-------------: |
| 1.6865 | 0.01 | 1 | 2.0557 |
| 0.6351 | 0.25 | 32 | 0.8355 |
| 0.5724 | 0.5 | 64 | 0.7859 |
| 0.5249 | 0.75 | 96 | 0.7711 |
| 0.516 | 1.0 | 128 | 0.7667 |
## Dataset Description
### Overview
The dataset used for fine-tuning can train Large Language Models for both Fine Tuning and Domain Adaptation. It includes:
- **Use Case**: Intent Detection
- **Vertical**: Customer Service
- **27 intents** assigned to 10 categories
- **26,872 question/answer pairs**, around 1000 per intent
- **30 entity/slot types**
- **12 different types of language generation tags**
### Categories and Intents
The dataset covers the following categories and intents:
- **ACCOUNT**: create_account, delete_account, edit_account, switch_account
- **CANCELLATION_FEE**: check_cancellation_fee
- **DELIVERY**: delivery_options
- **FEEDBACK**: complaint, review
- **INVOICE**: check_invoice, get_invoice
- **NEWSLETTER**: newsletter_subscription
- **ORDER**: cancel_order, change_order, place_order
- **PAYMENT**: check_payment_methods, payment_issue
- **REFUND**: check_refund_policy, track_refund
- **SHIPPING_ADDRESS**: change_shipping_address, set_up_shipping_address
### Entities
The dataset includes various entities such as:
- {{Order Number}}, {{Invoice Number}}, {{Online Order Interaction}}, {{Online Payment Interaction}}, {{Online Navigation Step}}, {{Online Customer Support Channel}}, {{Profile}}, {{Profile Type}}, {{Settings}}, {{Online Company Portal Info}}, {{Date}}, {{Date Range}}, {{Shipping Cut-off Time}}, {{Delivery City}}, {{Delivery Country}}, {{Salutation}}, {{Client First Name}}, {{Client Last Name}}, {{Customer Support Phone Number}}, {{Customer Support Email}}, {{Live Chat Support}}, {{Website URL}}, {{Upgrade Account}}, {{Account Type}}, {{Account Category}}, {{Account Change}}, {{Program}}, {{Refund Amount}}, {{Money Amount}}, {{Store Location}}
### Language Generation Tags
The dataset contains tags for various linguistic phenomena:
- **Lexical Variation**: Morphological (M), Semantic (L)
- **Syntactic Structure Variation**: Basic (B), Interrogative (I), Coordinated (C), Negation (N)
- **Language Register Variations**: Politeness (P), Colloquial (Q), Offensive (W)
- **Stylistic Variations**: Keyword (K), Abbreviations (E), Errors and Typos (Z)
- **Other Tags**: Indirect Speech (D), Regional Variations (G), Respect Structures (R), Code Switching (Y)
## Limitations and Bias
- The model is fine-tuned on a domain-specific dataset and may not perform well outside the scope of customer service.
- Users should be aware of potential biases in the training data, as the model's responses may inadvertently reflect these biases. The dataset aims to cover general customer service inquiries, but biases may exist for specific use cases.
## Ethical Considerations
This model should be used responsibly, considering ethical implications of automated customer service. It is important to ensure that the model's advice complements human expertise and adheres to relevant customer service guidelines.
## Acknowledgments
This model was developed by Bitext and trained on infrastructure provided by Bitext.
## License
This model, "Mistral-7B-Customer-Support-v1," is licensed under the Apache License 2.0 by Bitext Innovations International, Inc. This open-source license allows for free use, modification, and distribution of the model but requires that proper credit be given to Bitext.
### Key Points of the Apache 2.0 License
- **Permissibility**: Users are allowed to use, modify, and distribute this software freely.
- **Attribution**: You must provide proper credit to Bitext Innovations International, Inc. when using this model, in accordance with the original copyright notices and the license.
- **Patent Grant**: The license includes a grant of patent rights from the contributors of the model.
- **No Warranty**: The model is provided "as is" without warranties of any kind.
You may view the full license text at [Apache License 2.0](http://www.apache.org/licenses/LICENSE-2.0).
This licensing ensures the model can be used widely and freely while respecting the intellectual contributions of Bitext. For more detailed information or specific legal questions about using this license, please refer to the official license documentation linked above.
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.2
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
hub_model_id: malmarjeh/Mistral-7B-instruct-v0.2
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: bitext/Bitext-customer-support-llm-chatbot-training-dataset
type:
system_prompt: 'You are an expert in customer support.'
field_instruction: instruction
field_output: response
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
#datasets:
# - path: json
# type: alpaca_w_system.load_open_orca
#data_files: file.zip
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: False
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: '<s>'
eos_token: '</s>'
unk_token: '<unk>'
```
</details><br>
|