bobox's picture
all layer trained for every step, 2 epoch, 50% warmup
6302c55 verified
|
raw
history blame
23.5 kB
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:67190
  - loss:AdaptiveLayerLoss
  - loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
  - stanfordnlp/snli
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
widget:
  - source_sentence: A person in a red shirt is mowing the grass with a green riding mower.
    sentences:
      - A person in red is moving grass on a John Deer motor.
      - An angry military veteran watches as people protest the war.
      - A man is sitting on a truck.
  - source_sentence: Some dogs are running on a deserted beach.
    sentences:
      - daddy taught her
      - There are multiple dogs present.
      - a woman at a beach
  - source_sentence: >-
      Two street people and a dog sitting on the ground and one is holding an
      "out of luck" sign.
    sentences:
      - A person biking.
      - The man and woman are married.
      - the dog is a chihuahua
  - source_sentence: >-
      One tan girl with a wool hat is running and leaning over an object, while
      another person in a wool hat is sitting on the ground.
    sentences:
      - A tan girl runs leans over an object
      - A man and his daughter are petting a pony.
      - A man with a baby is petting a pony.
  - source_sentence: These girls are having a great time looking for seashells.
    sentences:
      - The girls are happy.
      - Two woman are trying to finish orders from a doctor
      - A girl is standing outside.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on microsoft/deberta-v3-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.6652580742529429
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6691544055938721
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.7050935184095989
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.5757889747619629
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.5903092377388222
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8752920560747663
            name: Cosine Recall
          - type: cosine_ap
            value: 0.7023886827641951
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.6308481738605494
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 127.05267333984375
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.6983614124163396
            name: Dot F1
          - type: dot_f1_threshold
            value: 101.77250671386719
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.5772605875619993
            name: Dot Precision
          - type: dot_recall
            value: 0.8837616822429907
            name: Dot Recall
          - type: dot_ap
            value: 0.6558335483108544
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.6675218834892847
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 210.99388122558594
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.7107997100748973
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 252.65306091308594
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.6060980634528225
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.8592289719626168
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.709424985473672
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.6619378207063085
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 11.227606773376465
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.7073199115559177
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 12.850802421569824
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.587928032501451
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.8875584112149533
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.7037559902823934
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.6675218834892847
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 210.99388122558594
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.7107997100748973
            name: Max F1
          - type: max_f1_threshold
            value: 252.65306091308594
            name: Max F1 Threshold
          - type: max_precision
            value: 0.6060980634528225
            name: Max Precision
          - type: max_recall
            value: 0.8875584112149533
            name: Max Recall
          - type: max_ap
            value: 0.709424985473672
            name: Max Ap

SentenceTransformer based on microsoft/deberta-v3-small

This is a sentence-transformers model finetuned from microsoft/deberta-v3-small on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/deberta-v3-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2")
# Run inference
sentences = [
    'These girls are having a great time looking for seashells.',
    'The girls are happy.',
    'A girl is standing outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.6653
cosine_accuracy_threshold 0.6692
cosine_f1 0.7051
cosine_f1_threshold 0.5758
cosine_precision 0.5903
cosine_recall 0.8753
cosine_ap 0.7024
dot_accuracy 0.6308
dot_accuracy_threshold 127.0527
dot_f1 0.6984
dot_f1_threshold 101.7725
dot_precision 0.5773
dot_recall 0.8838
dot_ap 0.6558
manhattan_accuracy 0.6675
manhattan_accuracy_threshold 210.9939
manhattan_f1 0.7108
manhattan_f1_threshold 252.6531
manhattan_precision 0.6061
manhattan_recall 0.8592
manhattan_ap 0.7094
euclidean_accuracy 0.6619
euclidean_accuracy_threshold 11.2276
euclidean_f1 0.7073
euclidean_f1_threshold 12.8508
euclidean_precision 0.5879
euclidean_recall 0.8876
euclidean_ap 0.7038
max_accuracy 0.6675
max_accuracy_threshold 210.9939
max_f1 0.7108
max_f1_threshold 252.6531
max_precision 0.6061
max_recall 0.8876
max_ap 0.7094

Training Details

Training Dataset

stanfordnlp/snli

  • Dataset: stanfordnlp/snli at cdb5c3d
  • Size: 67,190 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 21.19 tokens
    • max: 133 tokens
    • min: 4 tokens
    • mean: 11.77 tokens
    • max: 49 tokens
    • 0: 100.00%
  • Samples:
    sentence1 sentence2 label
    Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving. It is necessary to use a controlled method to ensure the treatments are worthwhile. 0
    It was conducted in silence. It was done silently. 0
    oh Lewisville any decent food in your cafeteria up there Is there any decent food in your cafeteria up there in Lewisville? 0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": 3,
        "last_layer_weight": 1,
        "prior_layers_weight": 0.3,
        "kl_div_weight": 1,
        "kl_temperature": 1
    }
    

Evaluation Dataset

stanfordnlp/snli

  • Dataset: stanfordnlp/snli at cdb5c3d
  • Size: 6,626 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 17.28 tokens
    • max: 59 tokens
    • min: 4 tokens
    • mean: 10.53 tokens
    • max: 32 tokens
    • 0: ~48.70%
    • 1: ~51.30%
  • Samples:
    premise hypothesis label
    This church choir sings to the masses as they sing joyous songs from the book at a church. The church has cracks in the ceiling. 0
    This church choir sings to the masses as they sing joyous songs from the book at a church. The church is filled with song. 1
    A woman with a green headscarf, blue shirt and a very big grin. The woman is young. 0
  • Loss: AdaptiveLayerLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": 3,
        "last_layer_weight": 1,
        "prior_layers_weight": 0.3,
        "kl_div_weight": 1,
        "kl_temperature": 1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 45
  • per_device_eval_batch_size: 22
  • learning_rate: 3e-06
  • weight_decay: 1e-09
  • num_train_epochs: 2
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.5
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
  • hub_strategy: checkpoint
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 45
  • per_device_eval_batch_size: 22
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 3e-06
  • weight_decay: 1e-09
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.5
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
  • hub_strategy: checkpoint
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss max_ap
0.1004 150 4.9809 - -
0.2001 299 - 3.8956 0.6130
0.2008 300 3.8459 - -
0.3012 450 3.1941 - -
0.4003 598 - 3.2066 0.6526
0.4016 600 2.7939 - -
0.5020 750 2.3082 - -
0.6004 897 - 2.4595 0.6884
0.6024 900 1.9658 - -
0.7028 1050 1.6975 - -
0.8005 1196 - 2.0292 0.7010
0.8032 1200 1.528 - -
0.9036 1350 1.3763 - -
1.0007 1495 - 1.8192 0.7071
1.0040 1500 1.262 - -
1.1044 1650 1.2033 - -
1.2008 1794 - 1.6673 0.7082
1.2048 1800 1.1221 - -
1.3052 1950 1.0963 - -
1.4009 2093 - 1.5816 0.7103
1.4056 2100 1.0742 - -
1.5060 2250 1.0242 - -
1.6011 2392 - 1.5368 0.7094
1.6064 2400 1.0036 - -
1.7068 2550 1.0143 - -
1.8012 2691 - 1.5158 0.7094
1.8072 2700 0.9799 - -
1.9076 2850 0.9777 - -

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2
  • Accelerate: 0.30.1
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AdaptiveLayerLoss

@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings}, 
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}