bobox's picture
all layer trained for every step, 2 epoch, 50% warmup
6302c55 verified
|
raw
history blame
23.5 kB
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:67190
- loss:AdaptiveLayerLoss
- loss:MultipleNegativesRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- stanfordnlp/snli
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: A person in a red shirt is mowing the grass with a green riding
mower.
sentences:
- A person in red is moving grass on a John Deer motor.
- An angry military veteran watches as people protest the war.
- A man is sitting on a truck.
- source_sentence: Some dogs are running on a deserted beach.
sentences:
- daddy taught her
- There are multiple dogs present.
- a woman at a beach
- source_sentence: Two street people and a dog sitting on the ground and one is holding
an "out of luck" sign.
sentences:
- A person biking.
- The man and woman are married.
- the dog is a chihuahua
- source_sentence: One tan girl with a wool hat is running and leaning over an object,
while another person in a wool hat is sitting on the ground.
sentences:
- A tan girl runs leans over an object
- A man and his daughter are petting a pony.
- A man with a baby is petting a pony.
- source_sentence: These girls are having a great time looking for seashells.
sentences:
- The girls are happy.
- Two woman are trying to finish orders from a doctor
- A girl is standing outside.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6652580742529429
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6691544055938721
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7050935184095989
name: Cosine F1
- type: cosine_f1_threshold
value: 0.5757889747619629
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5903092377388222
name: Cosine Precision
- type: cosine_recall
value: 0.8752920560747663
name: Cosine Recall
- type: cosine_ap
value: 0.7023886827641951
name: Cosine Ap
- type: dot_accuracy
value: 0.6308481738605494
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 127.05267333984375
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.6983614124163396
name: Dot F1
- type: dot_f1_threshold
value: 101.77250671386719
name: Dot F1 Threshold
- type: dot_precision
value: 0.5772605875619993
name: Dot Precision
- type: dot_recall
value: 0.8837616822429907
name: Dot Recall
- type: dot_ap
value: 0.6558335483108544
name: Dot Ap
- type: manhattan_accuracy
value: 0.6675218834892847
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 210.99388122558594
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7107997100748973
name: Manhattan F1
- type: manhattan_f1_threshold
value: 252.65306091308594
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6060980634528225
name: Manhattan Precision
- type: manhattan_recall
value: 0.8592289719626168
name: Manhattan Recall
- type: manhattan_ap
value: 0.709424985473672
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.6619378207063085
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 11.227606773376465
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7073199115559177
name: Euclidean F1
- type: euclidean_f1_threshold
value: 12.850802421569824
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.587928032501451
name: Euclidean Precision
- type: euclidean_recall
value: 0.8875584112149533
name: Euclidean Recall
- type: euclidean_ap
value: 0.7037559902823934
name: Euclidean Ap
- type: max_accuracy
value: 0.6675218834892847
name: Max Accuracy
- type: max_accuracy_threshold
value: 210.99388122558594
name: Max Accuracy Threshold
- type: max_f1
value: 0.7107997100748973
name: Max F1
- type: max_f1_threshold
value: 252.65306091308594
name: Max F1 Threshold
- type: max_precision
value: 0.6060980634528225
name: Max Precision
- type: max_recall
value: 0.8875584112149533
name: Max Recall
- type: max_ap
value: 0.709424985473672
name: Max Ap
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2")
# Run inference
sentences = [
'These girls are having a great time looking for seashells.',
'The girls are happy.',
'A girl is standing outside.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.6653 |
| cosine_accuracy_threshold | 0.6692 |
| cosine_f1 | 0.7051 |
| cosine_f1_threshold | 0.5758 |
| cosine_precision | 0.5903 |
| cosine_recall | 0.8753 |
| cosine_ap | 0.7024 |
| dot_accuracy | 0.6308 |
| dot_accuracy_threshold | 127.0527 |
| dot_f1 | 0.6984 |
| dot_f1_threshold | 101.7725 |
| dot_precision | 0.5773 |
| dot_recall | 0.8838 |
| dot_ap | 0.6558 |
| manhattan_accuracy | 0.6675 |
| manhattan_accuracy_threshold | 210.9939 |
| manhattan_f1 | 0.7108 |
| manhattan_f1_threshold | 252.6531 |
| manhattan_precision | 0.6061 |
| manhattan_recall | 0.8592 |
| manhattan_ap | 0.7094 |
| euclidean_accuracy | 0.6619 |
| euclidean_accuracy_threshold | 11.2276 |
| euclidean_f1 | 0.7073 |
| euclidean_f1_threshold | 12.8508 |
| euclidean_precision | 0.5879 |
| euclidean_recall | 0.8876 |
| euclidean_ap | 0.7038 |
| max_accuracy | 0.6675 |
| max_accuracy_threshold | 210.9939 |
| max_f1 | 0.7108 |
| max_f1_threshold | 252.6531 |
| max_precision | 0.6061 |
| max_recall | 0.8876 |
| **max_ap** | **0.7094** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### stanfordnlp/snli
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 67,190 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 21.19 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.77 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------|
| <code>Without a placebo group, we still won't know if any of the treatments are better than nothing and therefore worth giving.</code> | <code>It is necessary to use a controlled method to ensure the treatments are worthwhile.</code> | <code>0</code> |
| <code>It was conducted in silence.</code> | <code>It was done silently.</code> | <code>0</code> |
| <code>oh Lewisville any decent food in your cafeteria up there</code> | <code>Is there any decent food in your cafeteria up there in Lewisville?</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 3,
"last_layer_weight": 1,
"prior_layers_weight": 0.3,
"kl_div_weight": 1,
"kl_temperature": 1
}
```
### Evaluation Dataset
#### stanfordnlp/snli
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 6,626 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 17.28 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.53 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~48.70%</li><li>1: ~51.30%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:---------------|
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church has cracks in the ceiling.</code> | <code>0</code> |
| <code>This church choir sings to the masses as they sing joyous songs from the book at a church.</code> | <code>The church is filled with song.</code> | <code>1</code> |
| <code>A woman with a green headscarf, blue shirt and a very big grin.</code> | <code>The woman is young.</code> | <code>0</code> |
* Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"n_layers_per_step": 3,
"last_layer_weight": 1,
"prior_layers_weight": 0.3,
"kl_div_weight": 1,
"kl_temperature": 1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 45
- `per_device_eval_batch_size`: 22
- `learning_rate`: 3e-06
- `weight_decay`: 1e-09
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.5
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 45
- `per_device_eval_batch_size`: 22
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 1e-09
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.5
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTaV3-small-ST-AdaptiveLayer-3L-ep2-n
- `hub_strategy`: checkpoint
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | max_ap |
|:------:|:----:|:-------------:|:------:|:------:|
| 0.1004 | 150 | 4.9809 | - | - |
| 0.2001 | 299 | - | 3.8956 | 0.6130 |
| 0.2008 | 300 | 3.8459 | - | - |
| 0.3012 | 450 | 3.1941 | - | - |
| 0.4003 | 598 | - | 3.2066 | 0.6526 |
| 0.4016 | 600 | 2.7939 | - | - |
| 0.5020 | 750 | 2.3082 | - | - |
| 0.6004 | 897 | - | 2.4595 | 0.6884 |
| 0.6024 | 900 | 1.9658 | - | - |
| 0.7028 | 1050 | 1.6975 | - | - |
| 0.8005 | 1196 | - | 2.0292 | 0.7010 |
| 0.8032 | 1200 | 1.528 | - | - |
| 0.9036 | 1350 | 1.3763 | - | - |
| 1.0007 | 1495 | - | 1.8192 | 0.7071 |
| 1.0040 | 1500 | 1.262 | - | - |
| 1.1044 | 1650 | 1.2033 | - | - |
| 1.2008 | 1794 | - | 1.6673 | 0.7082 |
| 1.2048 | 1800 | 1.1221 | - | - |
| 1.3052 | 1950 | 1.0963 | - | - |
| 1.4009 | 2093 | - | 1.5816 | 0.7103 |
| 1.4056 | 2100 | 1.0742 | - | - |
| 1.5060 | 2250 | 1.0242 | - | - |
| 1.6011 | 2392 | - | 1.5368 | 0.7094 |
| 1.6064 | 2400 | 1.0036 | - | - |
| 1.7068 | 2550 | 1.0143 | - | - |
| 1.8012 | 2691 | - | 1.5158 | 0.7094 |
| 1.8072 | 2700 | 0.9799 | - | - |
| 1.9076 | 2850 | 0.9777 | - | - |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### AdaptiveLayerLoss
```bibtex
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->