ner_model / README.md
cwchang's picture
End of training
394d86b
|
raw
history blame
1.76 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          config: wnut_17
          split: validation
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.7006578947368421
          - name: Recall
            type: recall
            value: 0.5095693779904307
          - name: F1
            type: f1
            value: 0.590027700831025
          - name: Accuracy
            type: accuracy
            value: 0.9553054866806535

ner_model

This model is a fine-tuned version of distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2586
  • Precision: 0.7007
  • Recall: 0.5096
  • F1: 0.5900
  • Accuracy: 0.9553

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0