text
stringlengths 56
1.16k
|
---|
[2023-09-01 16:48:53,613::train::INFO] [train] Iter 00195 | loss 3.2226 | loss(rot) 2.2349 | loss(pos) 0.5431 | loss(seq) 0.4446 | grad 6.6392 | lr 0.0010 | time_forward 2.9160 | time_backward 4.0310 |
[2023-09-01 16:49:01,499::train::INFO] [train] Iter 00196 | loss 4.1455 | loss(rot) 3.3507 | loss(pos) 0.7834 | loss(seq) 0.0115 | grad 19.5019 | lr 0.0010 | time_forward 3.2970 | time_backward 4.5850 |
[2023-09-01 16:49:10,125::train::INFO] [train] Iter 00197 | loss 4.0674 | loss(rot) 1.3684 | loss(pos) 2.1685 | loss(seq) 0.5305 | grad 59.0259 | lr 0.0010 | time_forward 3.3960 | time_backward 5.2260 |
[2023-09-01 16:49:18,139::train::INFO] [train] Iter 00198 | loss 3.5770 | loss(rot) 0.0393 | loss(pos) 3.5316 | loss(seq) 0.0061 | grad 5.6345 | lr 0.0010 | time_forward 3.1840 | time_backward 4.8280 |
[2023-09-01 16:49:25,301::train::INFO] [train] Iter 00199 | loss 3.1265 | loss(rot) 1.5285 | loss(pos) 0.9501 | loss(seq) 0.6479 | grad 4.0108 | lr 0.0010 | time_forward 2.8060 | time_backward 4.3530 |
[2023-09-01 16:49:32,798::train::INFO] [train] Iter 00200 | loss 2.9682 | loss(rot) 0.0222 | loss(pos) 2.9436 | loss(seq) 0.0024 | grad 6.4816 | lr 0.0010 | time_forward 3.0950 | time_backward 4.3870 |
[2023-09-01 16:49:41,473::train::INFO] [train] Iter 00201 | loss 1.9616 | loss(rot) 0.5927 | loss(pos) 1.1566 | loss(seq) 0.2123 | grad 4.4975 | lr 0.0010 | time_forward 3.3690 | time_backward 5.3030 |
[2023-09-01 16:49:50,036::train::INFO] [train] Iter 00202 | loss 3.0803 | loss(rot) 2.1039 | loss(pos) 0.6961 | loss(seq) 0.2802 | grad 5.9409 | lr 0.0010 | time_forward 3.3610 | time_backward 5.1860 |
[2023-09-01 16:49:52,733::train::INFO] [train] Iter 00203 | loss 3.3789 | loss(rot) 2.5198 | loss(pos) 0.4206 | loss(seq) 0.4385 | grad 2.6987 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4030 |
[2023-09-01 16:50:01,290::train::INFO] [train] Iter 00204 | loss 3.5148 | loss(rot) 2.7508 | loss(pos) 0.5644 | loss(seq) 0.1996 | grad 3.9265 | lr 0.0010 | time_forward 3.3480 | time_backward 5.1810 |
[2023-09-01 16:50:09,383::train::INFO] [train] Iter 00205 | loss 3.7200 | loss(rot) 1.9594 | loss(pos) 1.3244 | loss(seq) 0.4361 | grad 4.5122 | lr 0.0010 | time_forward 3.1470 | time_backward 4.9340 |
[2023-09-01 16:50:17,305::train::INFO] [train] Iter 00206 | loss 3.4001 | loss(rot) 3.0942 | loss(pos) 0.2556 | loss(seq) 0.0503 | grad 3.7866 | lr 0.0010 | time_forward 3.2220 | time_backward 4.6970 |
[2023-09-01 16:50:19,533::train::INFO] [train] Iter 00207 | loss 3.5910 | loss(rot) 2.5729 | loss(pos) 0.6969 | loss(seq) 0.3212 | grad 4.8796 | lr 0.0010 | time_forward 1.0440 | time_backward 1.1800 |
[2023-09-01 16:50:27,016::train::INFO] [train] Iter 00208 | loss 3.2836 | loss(rot) 2.2498 | loss(pos) 0.5806 | loss(seq) 0.4532 | grad 2.6367 | lr 0.0010 | time_forward 3.1650 | time_backward 4.3150 |
[2023-09-01 16:50:35,657::train::INFO] [train] Iter 00209 | loss 3.7945 | loss(rot) 2.0486 | loss(pos) 1.2558 | loss(seq) 0.4900 | grad 4.2047 | lr 0.0010 | time_forward 3.7750 | time_backward 4.8620 |
[2023-09-01 16:50:44,487::train::INFO] [train] Iter 00210 | loss 2.9785 | loss(rot) 0.0181 | loss(pos) 2.9597 | loss(seq) 0.0008 | grad 6.4500 | lr 0.0010 | time_forward 3.4400 | time_backward 5.3860 |
[2023-09-01 16:50:52,959::train::INFO] [train] Iter 00211 | loss 3.8480 | loss(rot) 2.2260 | loss(pos) 1.1622 | loss(seq) 0.4598 | grad 7.1122 | lr 0.0010 | time_forward 3.5490 | time_backward 4.9090 |
[2023-09-01 16:51:01,230::train::INFO] [train] Iter 00212 | loss 2.2634 | loss(rot) 1.0761 | loss(pos) 0.7419 | loss(seq) 0.4453 | grad 5.1664 | lr 0.0010 | time_forward 3.4830 | time_backward 4.7860 |
[2023-09-01 16:51:08,151::train::INFO] [train] Iter 00213 | loss 3.0367 | loss(rot) 2.6298 | loss(pos) 0.1864 | loss(seq) 0.2205 | grad 4.4638 | lr 0.0010 | time_forward 2.9600 | time_backward 3.9580 |
[2023-09-01 16:51:10,947::train::INFO] [train] Iter 00214 | loss 3.4352 | loss(rot) 0.3842 | loss(pos) 3.0029 | loss(seq) 0.0481 | grad 5.9677 | lr 0.0010 | time_forward 1.3280 | time_backward 1.4640 |
[2023-09-01 16:51:13,300::train::INFO] [train] Iter 00215 | loss 3.0386 | loss(rot) 1.8401 | loss(pos) 0.7159 | loss(seq) 0.4827 | grad 2.9085 | lr 0.0010 | time_forward 1.0880 | time_backward 1.2510 |
[2023-09-01 16:51:20,005::train::INFO] [train] Iter 00216 | loss 1.3346 | loss(rot) 0.4959 | loss(pos) 0.5620 | loss(seq) 0.2767 | grad 2.7215 | lr 0.0010 | time_forward 2.6750 | time_backward 4.0260 |
[2023-09-01 16:51:28,911::train::INFO] [train] Iter 00217 | loss 3.8141 | loss(rot) 2.4951 | loss(pos) 0.7133 | loss(seq) 0.6057 | grad 4.5360 | lr 0.0010 | time_forward 3.6310 | time_backward 5.2720 |
[2023-09-01 16:51:31,833::train::INFO] [train] Iter 00218 | loss 2.9433 | loss(rot) 0.0330 | loss(pos) 2.9103 | loss(seq) 0.0000 | grad 5.7482 | lr 0.0010 | time_forward 1.3200 | time_backward 1.5900 |
[2023-09-01 16:51:39,439::train::INFO] [train] Iter 00219 | loss 2.3122 | loss(rot) 0.5442 | loss(pos) 1.6703 | loss(seq) 0.0978 | grad 5.7333 | lr 0.0010 | time_forward 3.1110 | time_backward 4.4920 |
[2023-09-01 16:51:48,022::train::INFO] [train] Iter 00220 | loss 3.2694 | loss(rot) 1.5249 | loss(pos) 0.9952 | loss(seq) 0.7493 | grad 6.6036 | lr 0.0010 | time_forward 3.2220 | time_backward 5.3590 |
[2023-09-01 16:51:56,510::train::INFO] [train] Iter 00221 | loss 3.6934 | loss(rot) 2.9846 | loss(pos) 0.6917 | loss(seq) 0.0170 | grad 8.6219 | lr 0.0010 | time_forward 3.2380 | time_backward 5.2330 |
[2023-09-01 16:51:59,218::train::INFO] [train] Iter 00222 | loss 3.8545 | loss(rot) 3.6010 | loss(pos) 0.2306 | loss(seq) 0.0229 | grad 3.2384 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4560 |
[2023-09-01 16:52:02,038::train::INFO] [train] Iter 00223 | loss 3.0096 | loss(rot) 2.6323 | loss(pos) 0.3107 | loss(seq) 0.0666 | grad 5.1090 | lr 0.0010 | time_forward 1.3560 | time_backward 1.4610 |
[2023-09-01 16:52:09,623::train::INFO] [train] Iter 00224 | loss 3.2748 | loss(rot) 2.4554 | loss(pos) 0.5041 | loss(seq) 0.3153 | grad 5.2647 | lr 0.0010 | time_forward 2.9740 | time_backward 4.5780 |
[2023-09-01 16:52:18,525::train::INFO] [train] Iter 00225 | loss 1.9936 | loss(rot) 0.6995 | loss(pos) 0.9130 | loss(seq) 0.3811 | grad 2.2899 | lr 0.0010 | time_forward 3.3020 | time_backward 5.5970 |
[2023-09-01 16:52:27,256::train::INFO] [train] Iter 00226 | loss 2.7690 | loss(rot) 0.7298 | loss(pos) 1.6683 | loss(seq) 0.3709 | grad 3.5378 | lr 0.0010 | time_forward 3.6090 | time_backward 5.1100 |
[2023-09-01 16:52:35,885::train::INFO] [train] Iter 00227 | loss 3.2680 | loss(rot) 2.3647 | loss(pos) 0.5216 | loss(seq) 0.3817 | grad 3.7061 | lr 0.0010 | time_forward 3.3720 | time_backward 5.2440 |
[2023-09-01 16:52:40,347::train::INFO] [train] Iter 00228 | loss 4.4636 | loss(rot) 3.4681 | loss(pos) 0.7715 | loss(seq) 0.2240 | grad 4.8657 | lr 0.0010 | time_forward 2.0390 | time_backward 2.4210 |
[2023-09-01 16:52:42,983::train::INFO] [train] Iter 00229 | loss 3.4557 | loss(rot) 2.7240 | loss(pos) 0.3612 | loss(seq) 0.3705 | grad 2.4739 | lr 0.0010 | time_forward 1.1920 | time_backward 1.4400 |
[2023-09-01 16:52:51,398::train::INFO] [train] Iter 00230 | loss 2.6314 | loss(rot) 0.4438 | loss(pos) 1.9707 | loss(seq) 0.2169 | grad 2.9291 | lr 0.0010 | time_forward 3.7660 | time_backward 4.6460 |
[2023-09-01 16:52:58,783::train::INFO] [train] Iter 00231 | loss 3.6284 | loss(rot) 3.0351 | loss(pos) 0.5759 | loss(seq) 0.0174 | grad 7.4170 | lr 0.0010 | time_forward 3.1080 | time_backward 4.2730 |
[2023-09-01 16:53:03,675::train::INFO] [train] Iter 00232 | loss 2.8735 | loss(rot) 2.1854 | loss(pos) 0.3132 | loss(seq) 0.3748 | grad 3.9671 | lr 0.0010 | time_forward 2.0020 | time_backward 2.8870 |
[2023-09-01 16:53:06,442::train::INFO] [train] Iter 00233 | loss 3.4229 | loss(rot) 3.0848 | loss(pos) 0.3381 | loss(seq) 0.0000 | grad 3.9149 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4660 |
[2023-09-01 16:53:13,892::train::INFO] [train] Iter 00234 | loss 2.6574 | loss(rot) 1.3574 | loss(pos) 0.7309 | loss(seq) 0.5691 | grad 4.2475 | lr 0.0010 | time_forward 3.1660 | time_backward 4.2530 |
[2023-09-01 16:53:22,794::train::INFO] [train] Iter 00235 | loss 3.3205 | loss(rot) 2.9247 | loss(pos) 0.3788 | loss(seq) 0.0170 | grad 5.6935 | lr 0.0010 | time_forward 3.3650 | time_backward 5.5330 |
[2023-09-01 16:53:25,026::train::INFO] [train] Iter 00236 | loss 2.5765 | loss(rot) 1.3790 | loss(pos) 0.6621 | loss(seq) 0.5353 | grad 2.5237 | lr 0.0010 | time_forward 1.0070 | time_backward 1.2210 |
[2023-09-01 16:53:32,039::train::INFO] [train] Iter 00237 | loss 2.0259 | loss(rot) 1.1967 | loss(pos) 0.3104 | loss(seq) 0.5187 | grad 4.0996 | lr 0.0010 | time_forward 3.1320 | time_backward 3.8780 |
[2023-09-01 16:53:41,338::train::INFO] [train] Iter 00238 | loss 3.4778 | loss(rot) 3.2504 | loss(pos) 0.2142 | loss(seq) 0.0132 | grad 2.7326 | lr 0.0010 | time_forward 4.0310 | time_backward 5.2660 |
[2023-09-01 16:53:49,810::train::INFO] [train] Iter 00239 | loss 3.6369 | loss(rot) 0.1781 | loss(pos) 3.4394 | loss(seq) 0.0194 | grad 4.6962 | lr 0.0010 | time_forward 3.7050 | time_backward 4.7620 |
[2023-09-01 16:53:58,980::train::INFO] [train] Iter 00240 | loss 3.4238 | loss(rot) 2.4593 | loss(pos) 0.5963 | loss(seq) 0.3683 | grad 4.1017 | lr 0.0010 | time_forward 3.6890 | time_backward 5.4780 |
[2023-09-01 16:54:01,832::train::INFO] [train] Iter 00241 | loss 3.2003 | loss(rot) 0.2860 | loss(pos) 2.6324 | loss(seq) 0.2820 | grad 4.7163 | lr 0.0010 | time_forward 1.3270 | time_backward 1.5210 |
[2023-09-01 16:54:07,073::train::INFO] [train] Iter 00242 | loss 3.1782 | loss(rot) 1.5512 | loss(pos) 1.0654 | loss(seq) 0.5616 | grad 4.3182 | lr 0.0010 | time_forward 2.0430 | time_backward 3.1840 |
[2023-09-01 16:54:15,185::train::INFO] [train] Iter 00243 | loss 3.1923 | loss(rot) 2.9228 | loss(pos) 0.2695 | loss(seq) 0.0000 | grad 3.9096 | lr 0.0010 | time_forward 3.4940 | time_backward 4.6150 |
[2023-09-01 16:54:22,997::train::INFO] [train] Iter 00244 | loss 1.9611 | loss(rot) 0.5036 | loss(pos) 1.3984 | loss(seq) 0.0590 | grad 4.2292 | lr 0.0010 | time_forward 3.4010 | time_backward 4.4070 |
[2023-09-01 16:54:25,888::train::INFO] [train] Iter 00245 | loss 4.0272 | loss(rot) 0.1155 | loss(pos) 3.8658 | loss(seq) 0.0459 | grad 5.1118 | lr 0.0010 | time_forward 1.4410 | time_backward 1.4470 |
[2023-09-01 16:54:32,626::train::INFO] [train] Iter 00246 | loss 3.4006 | loss(rot) 2.9975 | loss(pos) 0.3606 | loss(seq) 0.0425 | grad 4.9581 | lr 0.0010 | time_forward 2.9480 | time_backward 3.7840 |
[2023-09-01 16:54:35,513::train::INFO] [train] Iter 00247 | loss 3.4305 | loss(rot) 1.9622 | loss(pos) 0.9380 | loss(seq) 0.5303 | grad 3.5427 | lr 0.0010 | time_forward 1.4080 | time_backward 1.4750 |
[2023-09-01 16:54:44,892::train::INFO] [train] Iter 00248 | loss 3.3141 | loss(rot) 0.7015 | loss(pos) 2.4318 | loss(seq) 0.1808 | grad 5.6606 | lr 0.0010 | time_forward 3.7960 | time_backward 5.5460 |
[2023-09-01 16:54:47,929::train::INFO] [train] Iter 00249 | loss 2.0105 | loss(rot) 0.9917 | loss(pos) 0.4736 | loss(seq) 0.5452 | grad 4.4680 | lr 0.0010 | time_forward 1.4310 | time_backward 1.6030 |
[2023-09-01 16:54:54,548::train::INFO] [train] Iter 00250 | loss 2.8544 | loss(rot) 1.9614 | loss(pos) 0.3977 | loss(seq) 0.4954 | grad 3.8609 | lr 0.0010 | time_forward 2.8680 | time_backward 3.7470 |
[2023-09-01 16:55:01,354::train::INFO] [train] Iter 00251 | loss 2.4875 | loss(rot) 0.1223 | loss(pos) 2.3407 | loss(seq) 0.0245 | grad 7.6720 | lr 0.0010 | time_forward 2.8430 | time_backward 3.9600 |
[2023-09-01 16:55:04,373::train::INFO] [train] Iter 00252 | loss 3.1706 | loss(rot) 1.7484 | loss(pos) 0.9232 | loss(seq) 0.4990 | grad 3.9218 | lr 0.0010 | time_forward 1.3700 | time_backward 1.6460 |
[2023-09-01 16:55:12,846::train::INFO] [train] Iter 00253 | loss 3.8477 | loss(rot) 2.7436 | loss(pos) 0.7041 | loss(seq) 0.3999 | grad 7.2887 | lr 0.0010 | time_forward 3.5800 | time_backward 4.8900 |
[2023-09-01 16:55:15,735::train::INFO] [train] Iter 00254 | loss 3.8053 | loss(rot) 2.9876 | loss(pos) 0.7470 | loss(seq) 0.0707 | grad 6.2286 | lr 0.0010 | time_forward 1.3730 | time_backward 1.5120 |
[2023-09-01 16:55:24,795::train::INFO] [train] Iter 00255 | loss 2.5800 | loss(rot) 1.6758 | loss(pos) 0.4346 | loss(seq) 0.4696 | grad 3.7613 | lr 0.0010 | time_forward 3.8520 | time_backward 5.2050 |
[2023-09-01 16:55:27,489::train::INFO] [train] Iter 00256 | loss 3.9498 | loss(rot) 0.0293 | loss(pos) 3.9189 | loss(seq) 0.0017 | grad 7.5643 | lr 0.0010 | time_forward 1.2910 | time_backward 1.3900 |
[2023-09-01 16:55:35,910::train::INFO] [train] Iter 00257 | loss 2.6519 | loss(rot) 1.3540 | loss(pos) 0.8100 | loss(seq) 0.4880 | grad 4.6482 | lr 0.0010 | time_forward 3.3950 | time_backward 5.0220 |
[2023-09-01 16:55:44,809::train::INFO] [train] Iter 00258 | loss 2.2607 | loss(rot) 0.5097 | loss(pos) 1.4392 | loss(seq) 0.3118 | grad 4.4917 | lr 0.0010 | time_forward 3.4890 | time_backward 5.4060 |
[2023-09-01 16:55:52,529::train::INFO] [train] Iter 00259 | loss 3.4425 | loss(rot) 2.9424 | loss(pos) 0.4304 | loss(seq) 0.0697 | grad 5.9852 | lr 0.0010 | time_forward 3.3800 | time_backward 4.3360 |
[2023-09-01 16:56:00,551::train::INFO] [train] Iter 00260 | loss 2.6259 | loss(rot) 0.0620 | loss(pos) 2.5572 | loss(seq) 0.0067 | grad 3.6645 | lr 0.0010 | time_forward 3.4160 | time_backward 4.6030 |
[2023-09-01 16:56:09,621::train::INFO] [train] Iter 00261 | loss 3.8875 | loss(rot) 2.4499 | loss(pos) 0.8898 | loss(seq) 0.5479 | grad 5.4770 | lr 0.0010 | time_forward 3.7280 | time_backward 5.3390 |
[2023-09-01 16:56:12,341::train::INFO] [train] Iter 00262 | loss 4.2824 | loss(rot) 2.9156 | loss(pos) 1.3211 | loss(seq) 0.0456 | grad 8.9222 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4270 |
[2023-09-01 16:56:15,063::train::INFO] [train] Iter 00263 | loss 2.3579 | loss(rot) 2.1041 | loss(pos) 0.2537 | loss(seq) 0.0000 | grad 4.6730 | lr 0.0010 | time_forward 1.2720 | time_backward 1.4140 |
[2023-09-01 16:56:17,735::train::INFO] [train] Iter 00264 | loss 3.4803 | loss(rot) 2.2999 | loss(pos) 0.6749 | loss(seq) 0.5056 | grad 4.6456 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4230 |
[2023-09-01 16:56:25,441::train::INFO] [train] Iter 00265 | loss 3.9102 | loss(rot) 2.2967 | loss(pos) 1.0475 | loss(seq) 0.5660 | grad 7.4423 | lr 0.0010 | time_forward 3.3250 | time_backward 4.3510 |
[2023-09-01 16:56:34,249::train::INFO] [train] Iter 00266 | loss 3.1905 | loss(rot) 2.8201 | loss(pos) 0.3692 | loss(seq) 0.0012 | grad 3.8256 | lr 0.0010 | time_forward 3.6950 | time_backward 5.1100 |
[2023-09-01 16:56:42,002::train::INFO] [train] Iter 00267 | loss 2.7203 | loss(rot) 0.0524 | loss(pos) 2.6626 | loss(seq) 0.0053 | grad 5.6496 | lr 0.0010 | time_forward 3.3220 | time_backward 4.4280 |
[2023-09-01 16:56:51,141::train::INFO] [train] Iter 00268 | loss 2.2102 | loss(rot) 0.6940 | loss(pos) 1.5114 | loss(seq) 0.0047 | grad 5.5019 | lr 0.0010 | time_forward 3.7720 | time_backward 5.3650 |
[2023-09-01 16:56:59,644::train::INFO] [train] Iter 00269 | loss 3.4490 | loss(rot) 2.9265 | loss(pos) 0.5078 | loss(seq) 0.0147 | grad 6.3983 | lr 0.0010 | time_forward 3.9260 | time_backward 4.5740 |
[2023-09-01 16:57:07,928::train::INFO] [train] Iter 00270 | loss 3.0993 | loss(rot) 1.1459 | loss(pos) 1.6462 | loss(seq) 0.3071 | grad 5.2870 | lr 0.0010 | time_forward 3.6330 | time_backward 4.6470 |
[2023-09-01 16:57:16,859::train::INFO] [train] Iter 00271 | loss 3.2352 | loss(rot) 2.8471 | loss(pos) 0.3874 | loss(seq) 0.0007 | grad 3.2958 | lr 0.0010 | time_forward 3.5980 | time_backward 5.3290 |
[2023-09-01 16:57:25,949::train::INFO] [train] Iter 00272 | loss 3.1516 | loss(rot) 2.7716 | loss(pos) 0.3339 | loss(seq) 0.0461 | grad 3.2678 | lr 0.0010 | time_forward 3.6390 | time_backward 5.4480 |
[2023-09-01 16:57:28,298::train::INFO] [train] Iter 00273 | loss 3.4653 | loss(rot) 1.9003 | loss(pos) 1.0394 | loss(seq) 0.5257 | grad 5.9390 | lr 0.0010 | time_forward 1.0870 | time_backward 1.2590 |
[2023-09-01 16:57:34,510::train::INFO] [train] Iter 00274 | loss 2.2214 | loss(rot) 1.9504 | loss(pos) 0.2079 | loss(seq) 0.0631 | grad 2.7351 | lr 0.0010 | time_forward 2.5980 | time_backward 3.6100 |
[2023-09-01 16:57:42,674::train::INFO] [train] Iter 00275 | loss 3.0970 | loss(rot) 2.9169 | loss(pos) 0.1644 | loss(seq) 0.0157 | grad 3.9419 | lr 0.0010 | time_forward 3.2760 | time_backward 4.8850 |
[2023-09-01 16:57:50,177::train::INFO] [train] Iter 00276 | loss 3.4523 | loss(rot) 2.8136 | loss(pos) 0.3706 | loss(seq) 0.2681 | grad 3.9354 | lr 0.0010 | time_forward 3.0500 | time_backward 4.4490 |
[2023-09-01 16:57:52,335::train::INFO] [train] Iter 00277 | loss 3.2126 | loss(rot) 2.6661 | loss(pos) 0.2188 | loss(seq) 0.3278 | grad 3.2258 | lr 0.0010 | time_forward 1.0040 | time_backward 1.1510 |
[2023-09-01 16:58:00,757::train::INFO] [train] Iter 00278 | loss 4.0666 | loss(rot) 0.9068 | loss(pos) 2.4785 | loss(seq) 0.6813 | grad 11.5908 | lr 0.0010 | time_forward 3.2380 | time_backward 5.1810 |
[2023-09-01 16:58:09,432::train::INFO] [train] Iter 00279 | loss 3.4781 | loss(rot) 3.0433 | loss(pos) 0.3709 | loss(seq) 0.0639 | grad 3.3640 | lr 0.0010 | time_forward 3.4630 | time_backward 5.1950 |
[2023-09-01 16:58:12,164::train::INFO] [train] Iter 00280 | loss 3.6159 | loss(rot) 3.0016 | loss(pos) 0.1996 | loss(seq) 0.4147 | grad 4.0319 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4820 |
[2023-09-01 16:58:21,102::train::INFO] [train] Iter 00281 | loss 2.1494 | loss(rot) 0.3017 | loss(pos) 1.7497 | loss(seq) 0.0980 | grad 4.5807 | lr 0.0010 | time_forward 3.7830 | time_backward 5.1510 |
[2023-09-01 16:58:28,654::train::INFO] [train] Iter 00282 | loss 2.9211 | loss(rot) 1.8921 | loss(pos) 0.8170 | loss(seq) 0.2120 | grad 6.6597 | lr 0.0010 | time_forward 3.3230 | time_backward 4.2260 |
[2023-09-01 16:58:31,360::train::INFO] [train] Iter 00283 | loss 3.0888 | loss(rot) 2.2983 | loss(pos) 0.7794 | loss(seq) 0.0110 | grad 8.7685 | lr 0.0010 | time_forward 1.3290 | time_backward 1.3740 |
[2023-09-01 16:58:39,573::train::INFO] [train] Iter 00284 | loss 2.9417 | loss(rot) 1.2711 | loss(pos) 1.0668 | loss(seq) 0.6038 | grad 5.6977 | lr 0.0010 | time_forward 3.2450 | time_backward 4.9150 |
[2023-09-01 16:58:47,325::train::INFO] [train] Iter 00285 | loss 3.7590 | loss(rot) 2.7305 | loss(pos) 0.9878 | loss(seq) 0.0407 | grad 11.6685 | lr 0.0010 | time_forward 3.3630 | time_backward 4.3850 |
[2023-09-01 16:58:54,961::train::INFO] [train] Iter 00286 | loss 1.4117 | loss(rot) 0.0805 | loss(pos) 1.3229 | loss(seq) 0.0083 | grad 5.6771 | lr 0.0010 | time_forward 3.2900 | time_backward 4.3420 |
[2023-09-01 16:59:03,623::train::INFO] [train] Iter 00287 | loss 3.0404 | loss(rot) 1.6936 | loss(pos) 1.0230 | loss(seq) 0.3238 | grad 3.5083 | lr 0.0010 | time_forward 3.3780 | time_backward 5.2810 |
[2023-09-01 16:59:12,128::train::INFO] [train] Iter 00288 | loss 3.0127 | loss(rot) 2.4359 | loss(pos) 0.4269 | loss(seq) 0.1499 | grad 3.2877 | lr 0.0010 | time_forward 3.6430 | time_backward 4.8460 |
[2023-09-01 16:59:24,380::train::INFO] [train] Iter 00289 | loss 3.2272 | loss(rot) 0.9550 | loss(pos) 1.9076 | loss(seq) 0.3646 | grad 4.8590 | lr 0.0010 | time_forward 3.6020 | time_backward 8.6460 |
[2023-09-01 16:59:27,363::train::INFO] [train] Iter 00290 | loss 3.4437 | loss(rot) 3.0178 | loss(pos) 0.4256 | loss(seq) 0.0003 | grad 5.8519 | lr 0.0010 | time_forward 1.3460 | time_backward 1.6320 |
[2023-09-01 16:59:36,493::train::INFO] [train] Iter 00291 | loss 4.0164 | loss(rot) 2.7815 | loss(pos) 0.7990 | loss(seq) 0.4358 | grad 4.1874 | lr 0.0010 | time_forward 3.9610 | time_backward 5.1260 |
[2023-09-01 16:59:45,181::train::INFO] [train] Iter 00292 | loss 2.4382 | loss(rot) 0.8500 | loss(pos) 1.4855 | loss(seq) 0.1027 | grad 5.1448 | lr 0.0010 | time_forward 3.7340 | time_backward 4.9510 |
[2023-09-01 16:59:48,091::train::INFO] [train] Iter 00293 | loss 3.4936 | loss(rot) 2.5409 | loss(pos) 0.6434 | loss(seq) 0.3094 | grad 5.4633 | lr 0.0010 | time_forward 1.4320 | time_backward 1.4740 |
[2023-09-01 16:59:56,855::train::INFO] [train] Iter 00294 | loss 3.1834 | loss(rot) 2.8823 | loss(pos) 0.2845 | loss(seq) 0.0165 | grad 3.2015 | lr 0.0010 | time_forward 3.5860 | time_backward 5.1750 |