Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
SciRIFF / README.md
David Wadden
Add paper link.
eddf83d
metadata
dataset_info:
  - config_name: '16384'
    features:
      - name: input
        dtype: string
      - name: output
        dtype: string
      - name: metadata
        struct:
          - name: domains
            sequence: string
          - name: input_context
            dtype: string
          - name: output_context
            dtype: string
          - name: source_type
            dtype: string
          - name: task_family
            dtype: string
      - name: _instance_id
        dtype: string
    splits:
      - name: train
        num_bytes: 651887545
        num_examples: 72646
      - name: validation
        num_bytes: 316306085
        num_examples: 34621
      - name: test
        num_bytes: 422473879
        num_examples: 41909
    download_size: 623896235
    dataset_size: 1390667509
  - config_name: '4096'
    features:
      - name: input
        dtype: string
      - name: output
        dtype: string
      - name: metadata
        struct:
          - name: domains
            sequence: string
          - name: input_context
            dtype: string
          - name: output_context
            dtype: string
          - name: source_type
            dtype: string
          - name: task_family
            dtype: string
      - name: _instance_id
        dtype: string
    splits:
      - name: train
        num_bytes: 388072842
        num_examples: 70521
      - name: validation
        num_bytes: 147030710
        num_examples: 30736
      - name: test
        num_bytes: 186329809
        num_examples: 35875
    download_size: 308815650
    dataset_size: 721433361
  - config_name: '8192'
    features:
      - name: input
        dtype: string
      - name: output
        dtype: string
      - name: metadata
        struct:
          - name: domains
            sequence: string
          - name: input_context
            dtype: string
          - name: output_context
            dtype: string
          - name: source_type
            dtype: string
          - name: task_family
            dtype: string
      - name: _instance_id
        dtype: string
    splits:
      - name: train
        num_bytes: 546901470
        num_examples: 72367
      - name: validation
        num_bytes: 252982177
        num_examples: 34001
      - name: test
        num_bytes: 313157272
        num_examples: 40064
    download_size: 491399393
    dataset_size: 1113040919
configs:
  - config_name: '16384'
    data_files:
      - split: train
        path: 16384/train-*
      - split: validation
        path: 16384/validation-*
      - split: test
        path: 16384/test-*
  - config_name: '4096'
    data_files:
      - split: train
        path: 4096/train-*
      - split: validation
        path: 4096/validation-*
      - split: test
        path: 4096/test-*
  - config_name: '8192'
    data_files:
      - split: train
        path: 8192/train-*
      - split: validation
        path: 8192/validation-*
      - split: test
        path: 8192/test-*
license: odc-by
language:
  - en
tags:
  - chemistry
  - biomedicine
  - clinical medicine
  - artificial intelligence
  - materials science
size_categories:
  - 100K<n<1M

SciRIFF

The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature.

There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:

import datasets
ds = datasets.load_dataset("allenai/SciRIFF", "4096")

Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the SciRIFF train mix dataset.

Table of Contents

Dataset details

Each instance in SciRIFF has the following fields:

  • input: Task input (i.e. user message).
  • output: Task output (i.e. expected model response).
  • _instance_id: A unique id for the instance, formatted like {task_name}:{split}:{instance_id}. For instance, qasa_abstractive_qa:test:182.
  • metadata: Task metadata. More information on the schema for task metadata can be found in the SciRIFF GitHub repo.
    • task_family: The category to which this task belongs. Options include summarization, ie, qa, entailment, and classification. Some categories have sub-categories which are largely self-explanatory; see the repo for more information.
    • domains: Scientific field(s) that the task covers. Options include: clinical_medicine, biomedicine, chemistry, artificial_intelligence, materials_science, and misc.
    • input_context: Whether the input is a paragraph, full text, etc. Options include: sentence, paragraph, multiple_paragraphs (including full paper text), and structured (e.g. code for a LaTex table).
    • source_type: Indicates whether the input comes from a single paper or multiple. Options include single_source, multiple_source.
    • output_context: Options include: label, sentence, paragraph, multiple_paragraphs, json, jsonlines.

License

SciRIFF is licensed under ODC-By. Licenses of the datasets from which SciRIFF is derived are listed below.

Task provenance

SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the BigBIO collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like datasets.load_dataset(bigbio/{bigbio_subset}).

SciRIFF Name Paper Link License Website / Download Link BigBio Subset
acl_arc_intent_classification ACL ARC - https://github.com/allenai/scicite/
anat_em_ner AnatEM CC BY https://nactem.ac.uk/anatomytagger/#AnatEM anat_em
annotated_materials_syntheses_events Materials Science Procedural Text Corpus MIT https://github.com/olivettigroup/annotated-materials-syntheses
bc7_litcovid_topic_classification BioCreative VII LitCOVID - https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/ bc7_litcovid
bioasq_{factoid,general,list,yesno}_qa BioASQ CC BY http://bioasq.org/ bioasq
biored_ner BioRED - https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/ biored
cdr_ner BioCreative V CDR - https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/ bc5cdr
chemdner_ner CHEMDNER - https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/ chemdner
chemprot_{ner,re} BioCreative VI ChemProt - https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/ chemprot
chemsum_single_document_summarization ChemSum - https://github.com/griff4692/calibrating-summaries
chemtables_te ChemTables GPL 3.0 https://huggingface.co/datasets/fbaigt/schema-to-json
chia_ner Chia CC BY https://github.com/WengLab-InformaticsResearch/CHIA chia
covid_deepset_qa COVID-QA Apache 2.0 https://github.com/deepset-ai/COVID-QA covid_qa_deepset
covidfact_entailment CovidFact - https://github.com/asaakyan/covidfact
craftchem_ner CRAFT-Chem - https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem
data_reco_mcq_{mc,sc} DataFinder Apache 2.0 https://github.com/viswavi/datafinder/tree/main
ddi_ner DDI CC BY https://github.com/isegura/DDICorpus ddi_corpus
discomat_te DISCoMaT CC BY-SA https://github.com/M3RG-IITD/DiSCoMaT
drug_combo_extraction_re Drug Combinations - https://github.com/allenai/drug-combo-extraction
evidence_inference Evidence inference MIT https://evidence-inference.ebm-nlp.com/
genia_ner JNLPBA CC BY https://github.com/spyysalo/jnlpba jnlpba
gnormplus_ner GNormPlus - https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/ gnormplus
healthver_entailment HealthVer nan https://github.com/sarrouti/healthver
linnaeus_ner LINNAEUS CC BY https://sourceforge.net/projects/linnaeus/ linnaeus
medmentions_ner MedMentions CC 0 https://github.com/chanzuckerberg/MedMentions medmentions
mltables_te AxCell Apache 2.0 https://github.com/paperswithcode/axcell
mslr2022_cochrane_multidoc_summarization Cochrane Apache 2.0 https://github.com/allenai/mslr-shared-task
mslr2022_ms2_multidoc_summarization MS^2 Apache 2.0 https://github.com/allenai/mslr-shared-task
multicite_intent_classification MultiCite CC BY-NC https://github.com/allenai/multicite
multixscience_multidoc_summarization Multi-XScience MIT https://github.com/yaolu/Multi-XScience
mup_single_document_summarization MUP Apache 2.0 https://github.com/allenai/mup
ncbi_ner NCBI Disease CC 0 https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/ ncbi_disease
nlmchem_ner NLM-Chem CC 0 https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/ nlmchem
nlmgene_ner NLM-Gene CC 0 https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/ nlm_gene
pico_ner EBM-NLP PICO - https://github.com/bepnye/EBM-NLP pico_extraction
pubmedqa_qa PubMedQA MIT https://github.com/pubmedqa/pubmedqa pubmed_qa
qasa_abstractive_qa QASA MIT https://github.com/lgresearch/QASA
qasper_{abstractive,extractive}_qa Qasper CC BY https://allenai.org/data/qasper
scicite_classification SciCite - https://allenai.org/data/scicite
scientific_lay_summarisation_
{elife,plos}_single_doc_summ
Lay Summarisation - https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation
scientific_papers_summarization_
single_doc_{arxiv,pubmed}
Scientific Papers - https://huggingface.co/datasets/armanc/scientific_papers
scierc_{ner,re} SciERC - http://nlp.cs.washington.edu/sciIE/
scifact_entailment SciFact CC BY-NC https://allenai.org/data/scifact
scireviewgen_multidoc_summarization SciReviewGen CC BY-NC https://github.com/tetsu9923/SciReviewGen
scitldr_aic SciTLDR Apache 2.0 https://github.com/allenai/scitldr

Task metadata

Below we include metadata on each task, as described in the metadata fields above.

SciRIFF Name Task Family Domains Input Context Source Type Output Context
acl_arc_intent_classification classification artificial_intelligence multiple_paragraphs single_source label
anat_em_ner ie.named_entity_recognition biomedicine paragraph single_source json
annotated_materials_syntheses_events ie.event_extraction materials_science paragraph single_source json
bc7_litcovid_topic_classification classification clinical_medicine paragraph single_source json
bioasq_factoid_qa qa.abstractive biomedicine multiple_paragraphs multiple_source sentence
bioasq_general_qa qa.abstractive biomedicine multiple_paragraphs multiple_source sentence
bioasq_list_qa qa.abstractive biomedicine multiple_paragraphs multiple_source json
bioasq_yesno_qa qa.yes_no biomedicine multiple_paragraphs multiple_source label
biored_ner ie.named_entity_recognition biomedicine paragraph single_source json
cdr_ner ie.named_entity_recognition biomedicine paragraph single_source json
chemdner_ner ie.named_entity_recognition biomedicine paragraph single_source json
chemprot_ner ie.named_entity_recognition biomedicine paragraph single_source json
chemprot_re ie.relation_extraction biomedicine paragraph single_source json
chemsum_single_document_summarization summarization chemistry multiple_paragraphs single_source paragraph
chemtables_te ie.structure_to_json chemistry structured single_source jsonlines
chia_ner ie.named_entity_recognition clinical_medicine paragraph single_source json
covid_deepset_qa qa.extractive biomedicine paragraph single_source sentence
covidfact_entailment entailment biomedicine, clinical_medicine paragraph single_source json
craftchem_ner ie.named_entity_recognition biomedicine sentence single_source json
data_reco_mcq_mc qa.multiple_choice artificial_intelligence multiple_paragraphs multiple_source json
data_reco_mcq_sc qa.multiple_choice artificial_intelligence multiple_paragraphs multiple_source label
ddi_ner ie.named_entity_recognition biomedicine paragraph single_source json
discomat_te ie.structure_to_json materials_science structured single_source jsonlines
drug_combo_extraction_re ie.relation_extraction clinical_medicine paragraph single_source json
evidence_inference ie.relation_extraction clinical_medicine paragraph single_source json
genia_ner ie.named_entity_recognition biomedicine paragraph single_source json
gnormplus_ner ie.named_entity_recognition biomedicine paragraph single_source json
healthver_entailment entailment clinical_medicine paragraph single_source json
linnaeus_ner ie.named_entity_recognition biomedicine multiple_paragraphs single_source json
medmentions_ner ie.named_entity_recognition biomedicine paragraph single_source json
mltables_te ie.structure_to_json artificial_intelligence structured single_source jsonlines
mslr2022_cochrane_multidoc_summarization summarization clinical_medicine paragraph multiple_source paragraph
mslr2022_ms2_multidoc_summarization summarization clinical_medicine paragraph multiple_source paragraph
multicite_intent_classification classification artificial_intelligence paragraph single_source json
multixscience_multidoc_summarization summarization artificial_intelligence, biomedicine,
materials_science, misc
multiple_paragraphs multiple_source paragraph
mup_single_document_summarization summarization artificial_intelligence multiple_paragraphs single_source paragraph
ncbi_ner ie.named_entity_recognition biomedicine paragraph single_source json
nlmchem_ner ie.named_entity_recognition biomedicine multiple_paragraphs single_source json
nlmgene_ner ie.named_entity_recognition biomedicine paragraph single_source json
pico_ner ie.named_entity_recognition clinical_medicine paragraph single_source json
pubmedqa_qa qa.yes_no biomedicine paragraph single_source label
qasa_abstractive_qa qa.abstractive artificial_intelligence multiple_paragraphs single_source paragraph
qasper_abstractive_qa qa.abstractive artificial_intelligence multiple_paragraphs single_source json
qasper_extractive_qa qa.extractive artificial_intelligence multiple_paragraphs single_source json
scicite_classification classification artificial_intelligence paragraph single_source label
scientific_lay_summarisation_
elife_single_doc_summ
summarization biomedicine multiple_paragraphs single_source paragraph
scientific_lay_summarisation_
plos_single_doc_summ
summarization biomedicine multiple_paragraphs single_source paragraph
scientific_papers_summarization_single_doc_arxiv summarization artificial_intelligence, misc multiple_paragraphs single_source paragraph
scientific_papers_summarization_single_doc_pubmed summarization biomedicine multiple_paragraphs single_source paragraph
scierc_ner ie.named_entity_recognition artificial_intelligence paragraph single_source json
scierc_re ie.relation_extraction artificial_intelligence paragraph single_source json
scifact_entailment entailment biomedicine, clinical_medicine paragraph single_source json
scireviewgen_multidoc_summarization summarization artificial_intelligence multiple_paragraphs multiple_source paragraph
scitldr_aic summarization artificial_intelligence multiple_paragraphs single_source sentence