Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 5,035 Bytes
1bb8d13
 
43c22bf
1bb8d13
43c22bf
1bb8d13
 
 
 
 
 
 
b94a8cf
 
 
 
 
1bb8d13
d1e73b5
1bb8d13
 
23543e2
04904fb
 
 
 
 
23543e2
04904fb
 
 
 
02aff0c
04904fb
 
 
 
 
 
 
02aff0c
04904fb
 
 
02aff0c
1bb8d13
67a4fb1
1bb8d13
 
67a4fb1
1bb8d13
 
 
 
 
 
 
 
 
90d2c06
1bb8d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c22bf
 
 
1bb8d13
 
 
 
 
 
954cbd4
1bb8d13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import json
import gc

import torch
import pandas as pd
from datasets import load_dataset
from lmppl import EncoderDecoderLM, LM, OpenAI

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)

prompt_dict = {
    "friend/ally of": "entities that are friends or allies",
    "competitor/rival of": "entities that are competitors or rivals",
    "known for": "examples of what entities are known for",
    "influenced by": "what has influenced different entities",
    "similar to": "examples of entities that are similar"
}
data = load_dataset("cardiffnlp/relentless", split="test")
full_result = []
for lm, ppl_class, batch, pretty_name in [
    ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
    ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
    ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
    ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
    ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
    ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
    ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
    ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
    ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
    ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
    ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
    ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
    ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
    ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
    ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
    ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
    ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
    ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
    # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
    ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
    ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
    ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{M-1.3B}"),
    ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{M-30B}"),
    ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
]:
    os.makedirs(f"results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
    scorer = None
    for d in data:
        ppl_file = f"results/lm_qa/{os.path.basename(lm)}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"

        if not os.path.exists(ppl_file):

            if scorer is None:
                if ppl_class is OpenAI:
                    scorer = ppl_class(OPENAI_API_KEY, model=lm)
                else:
                    scorer = ppl_class(lm, device_map='auto', low_cpu_mem_usage=True, offload_folder=f"./offload_folder/{os.path.basename(lm)}")

            proto = ",".join([f'["{a}", "{b}"]' for a, b in d['prototypical_examples']])
            prefix = f"Answer the question by yes or no. We know that {proto} are examples of {prompt_dict[d['relation_type']]}."
            if ppl_class is LM or ppl_class is OpenAI:
                prompt_input = [f'{prefix} Are ["{x}", "{y}"] {prompt_dict[d["relation_type"]]} as well?\n yes' for x, y in d['pairs']]
                ppl = scorer.get_perplexity(input_texts=prompt_input, batch=batch)
                output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)]
            elif ppl_class is EncoderDecoderLM:
                prompt_input = [f'{prefix} Are ["{x}", "{y}"] {prompt_dict[d["relation_type"]]} as well?' for x, y in d['pairs']]
                ppl = scorer.get_perplexity(input_texts=prompt_input, output_texts=["yes"] * len(prompt_input), batch=batch)
                output = [{"perplexity": p, "input": o, "output": "yes"} for p, o in zip(ppl, prompt_input)]
            else:
                raise ValueError(f"Unknown class {ppl_class}")

            with open(ppl_file, "w") as f:
                f.write("\n".join([json.dumps(i) for i in output]))

        with open(ppl_file) as f:
            ppl = [json.loads(i)['perplexity'] for i in f.read().split("\n") if len(i) > 0]
        true_rank = d['ranks']
        assert len(true_rank) == len(ppl), f"Mismatch in number of examples: {len(true_rank)} vs {len(ppl)}"
        rank_map = {p: n for n, p in enumerate(sorted(ppl), 1)}
        prediction = [rank_map[p] for p in ppl]
        tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
        cor = tmp.corr("spearman").values[0, 1]
        full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
    del scorer
    gc.collect()
    torch.cuda.empty_cache()

df = pd.DataFrame(full_result)
models = df['model'].unique()
df = df.pivot(columns="relation_type", index="model", values="correlation")
df = df.T[models].T
df['average'] = df.mean(1)
df.to_csv("results/lm_qa/lm.csv")
df = (100 * df).round()
print(df.to_markdown())
print(df.to_latex(escape=False))