Unnamed: 0
int64 | category
string | githuburl
string | customtopics
string | customabout
string | customarxiv
string | custompypi
string | featured
float64 | links
string | description
string | _repopath
string | _reponame
string | _stars
int64 | _forks
int64 | _watches
int64 | _language
string | _homepage
string | _github_description
string | _organization
string | _updated_at
string | _created_at
string | _age_weeks
int64 | _stars_per_week
float64 | _avatar_url
string | _description
string | _github_topics
string | _topics
string | _last_commit_date
string | sim
string | _pop_contributor_count
int64 | _pop_contributor_orgs_len
float64 | _pop_contributor_orgs_error
float64 | _pop_commit_frequency
float64 | _pop_updated_issues_count
int64 | _pop_closed_issues_count
int64 | _pop_created_since_days
int64 | _pop_updated_since_days
int64 | _pop_recent_releases_count
int64 | _pop_recent_releases_estimated_tags
int64 | _pop_recent_releases_adjusted_count
int64 | _pop_issue_count
float64 | _pop_comment_count
float64 | _pop_comment_count_lookback_days
float64 | _pop_comment_frequency
float64 | _pop_score
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1,062 | sim | https://github.com/netket/netket | [] | null | [] | [] | null | null | null | netket/netket | netket | 473 | 164 | 24 | Python | https://www.netket.org | Machine learning algorithms for many-body quantum systems | netket | 2024-01-13 | 2018-04-23 | 301 | 1.570683 | https://avatars.githubusercontent.com/u/38641916?v=4 | Machine learning algorithms for many-body quantum systems | ['complex-neural-network', 'deep-learning', 'exact-diagonalization', 'hamiltonian', 'jax', 'machine-learning', 'machine-learning-algorithms', 'markov-chain-monte-carlo', 'monte-carlo-methods', 'neural-networks', 'physics-simulation', 'quantum', 'quantum-state-tomography', 'unitaryhack', 'variational-method', 'variational-monte-carlo'] | ['complex-neural-network', 'deep-learning', 'exact-diagonalization', 'hamiltonian', 'jax', 'machine-learning', 'machine-learning-algorithms', 'markov-chain-monte-carlo', 'monte-carlo-methods', 'neural-networks', 'physics-simulation', 'quantum', 'quantum-state-tomography', 'unitaryhack', 'variational-method', 'variational-monte-carlo'] | 2024-01-12 | [('jackhidary/quantumcomputingbook', 0.626657247543335, 'study', 1), ('quantumlib/cirq', 0.5286350250244141, 'sim', 0), ('qiskit/qiskit', 0.5100851058959961, 'sim', 1)] | 63 | 5 | null | 3.75 | 121 | 80 | 70 | 0 | 8 | 10 | 8 | 121 | 226 | 90 | 1.9 | 41 |
1,753 | ml | https://github.com/deepgraphlearning/ultra | ['reasoning', 'knowledge-graph'] | null | [] | [] | null | null | null | deepgraphlearning/ultra | ULTRA | 238 | 31 | 5 | Python | null | A foundation model for knowledge graph reasoning | deepgraphlearning | 2024-01-12 | 2023-10-23 | 14 | 16.828283 | https://avatars.githubusercontent.com/u/38018154?v=4 | A foundation model for knowledge graph reasoning | [] | ['knowledge-graph', 'reasoning'] | 2024-01-13 | [('awslabs/dgl-ke', 0.5505498647689819, 'ml', 1), ('dylanhogg/llmgraph', 0.5485401749610901, 'ml', 1), ('accenture/ampligraph', 0.5169753432273865, 'data', 1), ('zjunlp/deepke', 0.5096688270568848, 'ml', 1)] | 4 | 3 | null | 0.21 | 11 | 10 | 3 | 0 | 0 | 0 | 0 | 11 | 25 | 90 | 2.3 | 41 |
1,655 | llm | https://github.com/langchain-ai/langsmith-sdk | [] | null | [] | [] | null | null | null | langchain-ai/langsmith-sdk | langsmith-sdk | 224 | 25 | 5 | Python | https://smith.langchain.com/ | LangSmith Client SDK Implementations | langchain-ai | 2024-01-11 | 2023-05-30 | 35 | 6.4 | https://avatars.githubusercontent.com/u/126733545?v=4 | LangSmith Client SDK Implementations | ['evaluation', 'language-model', 'observability'] | ['evaluation', 'language-model', 'observability'] | 2024-01-13 | [('langchain-ai/langsmith-cookbook', 0.6326169371604919, 'llm', 2), ('anthropics/anthropic-sdk-python', 0.5629613995552063, 'util', 1), ('gkamradt/langchain-tutorials', 0.5348765254020691, 'study', 0), ('langchain-ai/langgraph', 0.5179738998413086, 'llm', 0), ('alphasecio/langchain-examples', 0.5165998935699463, 'llm', 0), ('hwchase17/langchain', 0.5111579298973083, 'llm', 1), ('openai/tiktoken', 0.5109971761703491, 'nlp', 0), ('prefecthq/langchain-prefect', 0.5083007216453552, 'llm', 0)] | 15 | 2 | null | 5.94 | 116 | 108 | 8 | 0 | 70 | 126 | 70 | 116 | 92 | 90 | 0.8 | 41 |
1,059 | study | https://github.com/shangtongzhang/reinforcement-learning-an-introduction | [] | null | [] | [] | null | null | null | shangtongzhang/reinforcement-learning-an-introduction | reinforcement-learning-an-introduction | 12,960 | 4,791 | 565 | Python | null | Python Implementation of Reinforcement Learning: An Introduction | shangtongzhang | 2024-01-13 | 2016-09-13 | 385 | 33.662338 | null | Python Implementation of Reinforcement Learning: An Introduction | ['artificial-intelligence', 'reinforcement-learning'] | ['artificial-intelligence', 'reinforcement-learning'] | 2022-05-10 | [('deepmind/acme', 0.6519054770469666, 'ml-rl', 1), ('pytorch/rl', 0.6356885433197021, 'ml-rl', 1), ('openai/gym', 0.6223573088645935, 'ml-rl', 1), ('artemyk/dynpy', 0.583624005317688, 'sim', 0), ('thu-ml/tianshou', 0.5635957717895508, 'ml-rl', 0), ('scikit-learn/scikit-learn', 0.5567522644996643, 'ml', 0), ('humancompatibleai/imitation', 0.5537171363830566, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5474168062210083, 'ml-rl', 1), ('pymc-devs/pymc3', 0.5400987863540649, 'ml', 0), ('infer-actively/pymdp', 0.5399729013442993, 'ml', 0), ('pettingzoo-team/pettingzoo', 0.5307071805000305, 'ml-rl', 1), ('nvidia-omniverse/omniisaacgymenvs', 0.5251854062080383, 'sim', 0), ('arise-initiative/robosuite', 0.5221055746078491, 'ml-rl', 1), ('facebookresearch/reagent', 0.5210154056549072, 'ml-rl', 0), ('google/dopamine', 0.5188839435577393, 'ml-rl', 0), ('denys88/rl_games', 0.5131837725639343, 'ml-rl', 1), ('probml/pyprobml', 0.5084415078163147, 'ml', 0), ('gbeced/pyalgotrade', 0.5082697868347168, 'finance', 0), ('sympy/sympy', 0.5073643326759338, 'math', 0)] | 33 | 3 | null | 0 | 0 | 0 | 89 | 20 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 40 |
246 | util | https://github.com/jorgebastida/awslogs | [] | null | [] | [] | null | null | null | jorgebastida/awslogs | awslogs | 4,714 | 336 | 57 | Python | null | AWS CloudWatch logs for Humans™ | jorgebastida | 2024-01-12 | 2015-01-21 | 470 | 10.011529 | null | AWS CloudWatch logs for Humans™ | [] | [] | 2020-07-10 | [('rpgreen/apilogs', 0.5721848607063293, 'util', 0), ('nccgroup/scoutsuite', 0.5164755582809448, 'security', 0)] | 39 | 5 | null | 0 | 2 | 1 | 109 | 43 | 0 | 1 | 1 | 2 | 6 | 90 | 3 | 40 |
847 | profiling | https://github.com/pythonprofilers/memory_profiler | [] | null | [] | [] | null | null | null | pythonprofilers/memory_profiler | memory_profiler | 4,110 | 403 | 80 | Python | http://pypi.python.org/pypi/memory_profiler | Monitor Memory usage of Python code | pythonprofilers | 2024-01-14 | 2011-10-14 | 641 | 6.406146 | https://avatars.githubusercontent.com/u/32906038?v=4 | Monitor Memory usage of Python code | [] | [] | 2023-10-23 | [('pympler/pympler', 0.8423640131950378, 'perf', 0), ('pythonspeed/filprofiler', 0.664732813835144, 'profiling', 0), ('pyutils/line_profiler', 0.577487051486969, 'profiling', 0), ('nedbat/coveragepy', 0.5676537156105042, 'testing', 0), ('gaogaotiantian/viztracer', 0.5663729906082153, 'profiling', 0), ('rubik/radon', 0.5579990148544312, 'util', 0), ('dgilland/cacheout', 0.555606484413147, 'perf', 0), ('joblib/joblib', 0.5550679564476013, 'util', 0), ('bloomberg/memray', 0.5463239550590515, 'profiling', 0), ('alexmojaki/heartrate', 0.5310880541801453, 'debug', 0), ('landscapeio/prospector', 0.5307861566543579, 'util', 0), ('benfred/py-spy', 0.5219977498054504, 'profiling', 0), ('jendrikseipp/vulture', 0.5172761678695679, 'util', 0), ('pytables/pytables', 0.5096424221992493, 'data', 0), ('cython/cython', 0.5089790225028992, 'util', 0), ('erotemic/ubelt', 0.5078474879264832, 'util', 0)] | 103 | 7 | null | 0.06 | 3 | 1 | 149 | 3 | 0 | 4 | 4 | 3 | 1 | 90 | 0.3 | 40 |
1,179 | diffusion | https://github.com/salesforce/blip | [] | null | [] | [] | null | null | null | salesforce/blip | BLIP | 3,885 | 530 | 33 | Jupyter Notebook | null | PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | salesforce | 2024-01-13 | 2022-01-25 | 105 | 37 | https://avatars.githubusercontent.com/u/453694?v=4 | PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation | ['image-captioning', 'image-text-retrieval', 'vision-and-language-pre-training', 'vision-language', 'vision-language-transformer', 'visual-question-answering', 'visual-reasoning'] | ['image-captioning', 'image-text-retrieval', 'vision-and-language-pre-training', 'vision-language', 'vision-language-transformer', 'visual-question-answering', 'visual-reasoning'] | 2022-09-20 | [('nvlabs/prismer', 0.6734409928321838, 'diffusion', 1), ('ofa-sys/ofa', 0.6362955570220947, 'llm', 3), ('nvlabs/gcvit', 0.5959486365318298, 'diffusion', 0), ('pytorch/ignite', 0.5812243223190308, 'ml-dl', 0), ('lucidrains/imagen-pytorch', 0.579346776008606, 'ml-dl', 0), ('jerryyli/valhalla-nmt', 0.5753607749938965, 'ml-dl', 0), ('graykode/nlp-tutorial', 0.5725541710853577, 'study', 0), ('allenai/allennlp', 0.5719388127326965, 'nlp', 0), ('openai/finetune-transformer-lm', 0.5705159902572632, 'llm', 0), ('huggingface/transformers', 0.5568798184394836, 'nlp', 0), ('deci-ai/super-gradients', 0.5560441613197327, 'ml-dl', 0), ('alibaba/easynlp', 0.553688108921051, 'nlp', 0), ('openai/clip', 0.5517219305038452, 'ml-dl', 0), ('next-gpt/next-gpt', 0.5469942092895508, 'llm', 0), ('lightly-ai/lightly', 0.5466323494911194, 'ml', 0), ('srush/minichain', 0.5436856746673584, 'llm', 0), ('hysts/pytorch_image_classification', 0.5436573624610901, 'ml-dl', 0), ('lucidrains/dalle2-pytorch', 0.5417680740356445, 'diffusion', 0), ('intel/intel-extension-for-pytorch', 0.5368949770927429, 'perf', 0), ('mrdbourke/pytorch-deep-learning', 0.5360457897186279, 'study', 0), ('thudm/glm-130b', 0.5314812064170837, 'llm', 0), ('openai/image-gpt', 0.5261111855506897, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5254507064819336, 'llm', 0), ('microsoft/lora', 0.52529376745224, 'llm', 0), ('skorch-dev/skorch', 0.5246773362159729, 'ml-dl', 0), ('roboflow/notebooks', 0.523171603679657, 'study', 0), ('google-research/electra', 0.5222206115722656, 'ml-dl', 0), ('nvidia/apex', 0.5196071267127991, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5187211036682129, 'study', 0), ('microsoft/unilm', 0.5181792378425598, 'nlp', 0), ('databrickslabs/dolly', 0.516700029373169, 'llm', 0), ('pytorch-labs/gpt-fast', 0.5148594379425049, 'llm', 0), ('ibm/transition-amr-parser', 0.5134626626968384, 'nlp', 0), ('reasoning-machines/pal', 0.512751042842865, 'llm', 0), ('pytorch/captum', 0.5107000470161438, 'ml-interpretability', 0), ('bigscience-workshop/megatron-deepspeed', 0.5101778507232666, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5101778507232666, 'llm', 0), ('deepset-ai/farm', 0.5072547197341919, 'nlp', 0), ('timdettmers/bitsandbytes', 0.5067077875137329, 'util', 0), ('optimalscale/lmflow', 0.5060290694236755, 'llm', 0), ('lm-sys/fastchat', 0.5055869817733765, 'llm', 0), ('microsoft/semi-supervised-learning', 0.5032647848129272, 'ml', 0), ('huggingface/autotrain-advanced', 0.5011047124862671, 'ml', 0), ('nvidia/deeplearningexamples', 0.5009772181510925, 'ml-dl', 0), ('bytedance/lightseq', 0.5009039044380188, 'nlp', 0), ('lucidrains/vit-pytorch', 0.500484049320221, 'ml-dl', 0), ('rwightman/pytorch-image-models', 0.5003149509429932, 'ml-dl', 0), ('facebookresearch/mmf', 0.5001189112663269, 'ml-dl', 0)] | 4 | 1 | null | 0 | 19 | 3 | 24 | 16 | 0 | 0 | 0 | 19 | 17 | 90 | 0.9 | 40 |
1,026 | finance | https://github.com/polakowo/vectorbt | [] | null | [] | [] | null | null | null | polakowo/vectorbt | vectorbt | 3,466 | 537 | 116 | Python | https://vectorbt.dev | Find your trading edge, using the fastest engine for backtesting, algorithmic trading, and research. | polakowo | 2024-01-14 | 2017-11-14 | 324 | 10.697531 | null | Find your trading edge, using the fastest engine for backtesting, algorithmic trading, and research. | ['algorithmic-trading', 'algorithmic-traiding', 'backtesting', 'cryptocurrency', 'data-science', 'data-visualization', 'finance', 'machine-learning', 'portfolio-optimization', 'quantitative-analysis', 'quantitative-finance', 'time-series', 'trading', 'trading-strategies'] | ['algorithmic-trading', 'algorithmic-traiding', 'backtesting', 'cryptocurrency', 'data-science', 'data-visualization', 'finance', 'machine-learning', 'portfolio-optimization', 'quantitative-analysis', 'quantitative-finance', 'time-series', 'trading', 'trading-strategies'] | 2023-09-30 | [('idanya/algo-trader', 0.6762666702270508, 'finance', 3), ('openbb-finance/openbbterminal', 0.6711627244949341, 'finance', 4), ('quantconnect/lean', 0.6572080254554749, 'finance', 3), ('kernc/backtesting.py', 0.6390688419342041, 'finance', 5), ('ranaroussi/quantstats', 0.6319853663444519, 'finance', 4), ('zvtvz/zvt', 0.6255056858062744, 'finance', 6), ('ai4finance-foundation/finrl', 0.6179881691932678, 'finance', 2), ('freqtrade/freqtrade', 0.606457531452179, 'crypto', 2), ('numerai/example-scripts', 0.5881688594818115, 'finance', 2), ('gbeced/basana', 0.5863175392150879, 'finance', 3), ('cuemacro/finmarketpy', 0.5674868822097778, 'finance', 1), ('polyaxon/datatile', 0.5571960806846619, 'pandas', 2), ('stefmolin/stock-analysis', 0.5499805212020874, 'finance', 0), ('xplainable/xplainable', 0.532191812992096, 'ml-interpretability', 2), ('gbeced/pyalgotrade', 0.5312750935554504, 'finance', 0), ('quantopian/zipline', 0.519047737121582, 'finance', 1), ('google/tf-quant-finance', 0.5182610154151917, 'finance', 2), ('ccxt/ccxt', 0.5177646279335022, 'crypto', 2), ('mementum/backtrader', 0.5124863982200623, 'finance', 2), ('goldmansachs/gs-quant', 0.5025342106819153, 'finance', 1)] | 11 | 4 | null | 0.17 | 22 | 5 | 75 | 4 | 0 | 0 | 0 | 22 | 35 | 90 | 1.6 | 40 |
1,235 | llm | https://github.com/yizhongw/self-instruct | [] | null | [] | [] | null | null | null | yizhongw/self-instruct | self-instruct | 3,459 | 400 | 52 | Python | null | Aligning pretrained language models with instruction data generated by themselves. | yizhongw | 2024-01-14 | 2022-12-20 | 58 | 59.637931 | null | Aligning pretrained language models with instruction data generated by themselves. | ['general-purpose-model', 'instruction-tuning', 'language-model'] | ['general-purpose-model', 'instruction-tuning', 'language-model'] | 2023-03-27 | [('cg123/mergekit', 0.6453080177307129, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.6405363082885742, 'nlp', 0), ('tatsu-lab/stanford_alpaca', 0.5977901816368103, 'llm', 1), ('tiger-ai-lab/mammoth', 0.5941129922866821, 'llm', 1), ('openai/finetune-transformer-lm', 0.5861937999725342, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5800374150276184, 'llm', 1), ('neulab/prompt2model', 0.5685259699821472, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5658340454101562, 'llm', 1), ('guidance-ai/guidance', 0.5607982873916626, 'llm', 1), ('juncongmoo/pyllama', 0.5553812384605408, 'llm', 0), ('hannibal046/awesome-llm', 0.5532945394515991, 'study', 1), ('declare-lab/instruct-eval', 0.550851047039032, 'llm', 0), ('freedomintelligence/llmzoo', 0.5435721278190613, 'llm', 1), ('openbmb/toolbench', 0.542241096496582, 'llm', 1), ('thudm/glm-130b', 0.5371110439300537, 'llm', 0), ('hazyresearch/h3', 0.534803569316864, 'llm', 0), ('ai21labs/lm-evaluation', 0.5341971516609192, 'llm', 1), ('srush/minichain', 0.5332199931144714, 'llm', 0), ('hiyouga/llama-factory', 0.5308533310890198, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.530853271484375, 'llm', 2), ('jonasgeiping/cramming', 0.5202336311340332, 'nlp', 1), ('optimalscale/lmflow', 0.5196613073348999, 'llm', 1), ('lianjiatech/belle', 0.5185281038284302, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.513164758682251, 'llm', 1), ('infinitylogesh/mutate', 0.5120193362236023, 'nlp', 1), ('luohongyin/sail', 0.5114395022392273, 'llm', 1), ('bigscience-workshop/biomedical', 0.5062916278839111, 'data', 0), ('thudm/codegeex', 0.5008969902992249, 'llm', 0)] | 2 | 1 | null | 0.08 | 2 | 0 | 13 | 10 | 0 | 0 | 0 | 2 | 1 | 90 | 0.5 | 40 |
957 | ml-dl | https://github.com/facebookresearch/pytorch-biggraph | [] | null | [] | [] | null | null | null | facebookresearch/pytorch-biggraph | PyTorch-BigGraph | 3,329 | 449 | 91 | Python | https://torchbiggraph.readthedocs.io/ | Generate embeddings from large-scale graph-structured data. | facebookresearch | 2024-01-11 | 2018-10-01 | 278 | 11.96867 | https://avatars.githubusercontent.com/u/16943930?v=4 | Generate embeddings from large-scale graph-structured data. | [] | [] | 2024-01-06 | [('h4kor/graph-force', 0.6328504085540771, 'graph', 0), ('awslabs/dgl-ke', 0.6120842099189758, 'ml', 0), ('koaning/embetter', 0.5848337411880493, 'data', 0), ('vhranger/nodevectors', 0.5276350975036621, 'viz', 0), ('huggingface/text-embeddings-inference', 0.5272315144538879, 'llm', 0)] | 31 | 5 | null | 0.12 | 0 | 0 | 64 | 0 | 0 | 1 | 1 | 0 | 0 | 90 | 0 | 40 |
42 | nlp | https://github.com/life4/textdistance | [] | null | [] | [] | null | null | null | life4/textdistance | textdistance | 3,248 | 247 | 65 | Python | null | 📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage. | life4 | 2024-01-12 | 2017-05-05 | 351 | 9.238521 | https://avatars.githubusercontent.com/u/48201596?v=4 | 📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage. | ['algorithm', 'algorithms', 'damerau-levenshtein', 'damerau-levenshtein-distance', 'diff', 'distance', 'distance-calculation', 'hamming-distance', 'jellyfish', 'levenshtein', 'levenshtein-distance', 'textdistance'] | ['algorithm', 'algorithms', 'damerau-levenshtein', 'damerau-levenshtein-distance', 'diff', 'distance', 'distance-calculation', 'hamming-distance', 'jellyfish', 'levenshtein', 'levenshtein-distance', 'textdistance'] | 2023-12-29 | [('jamesturk/jellyfish', 0.6177361011505127, 'nlp', 1), ('scipy/scipy', 0.5068709850311279, 'math', 1), ('spotify/annoy', 0.5062219500541687, 'ml', 0)] | 14 | 5 | null | 0.31 | 2 | 2 | 82 | 1 | 2 | 2 | 2 | 2 | 1 | 90 | 0.5 | 40 |
780 | study | https://github.com/cosmicpython/book | [] | null | [] | [] | null | null | null | cosmicpython/book | book | 3,162 | 520 | 95 | Python | https://www.cosmicpython.com | A Book about Pythonic Application Architecture Patterns for Managing Complexity. Cosmos is the Opposite of Chaos you see. O'R. wouldn't actually let us call it "Cosmic Python" tho. | cosmicpython | 2024-01-13 | 2019-02-05 | 260 | 12.161538 | https://avatars.githubusercontent.com/u/47350834?v=4 | A Book about Pythonic Application Architecture Patterns for Managing Complexity. Cosmos is the Opposite of Chaos you see. O'R. wouldn't actually let us call it "Cosmic Python" tho. | [] | [] | 2023-09-11 | [('roban/cosmolopy', 0.5579319000244141, 'sim', 0), ('faif/python-patterns', 0.532017707824707, 'util', 0), ('google/gin-config', 0.5146122574806213, 'util', 0), ('timofurrer/awesome-asyncio', 0.5105115175247192, 'study', 0), ('eleutherai/pyfra', 0.5096278190612793, 'ml', 0), ('python/cpython', 0.5018055438995361, 'util', 0)] | 46 | 2 | null | 0.1 | 1 | 1 | 60 | 4 | 0 | 0 | 0 | 1 | 3 | 90 | 3 | 40 |
155 | pandas | https://github.com/adamerose/pandasgui | [] | null | [] | [] | null | null | null | adamerose/pandasgui | PandasGUI | 3,079 | 223 | 54 | Python | null | A GUI for Pandas DataFrames | adamerose | 2024-01-11 | 2019-06-12 | 241 | 12.730656 | null | A GUI for Pandas DataFrames | ['dataframe', 'gui', 'pandas', 'viewer'] | ['dataframe', 'gui', 'pandas', 'viewer'] | 2023-12-07 | [('tkrabel/bamboolib', 0.8184458017349243, 'pandas', 1), ('lux-org/lux', 0.6828799843788147, 'viz', 1), ('kanaries/pygwalker', 0.6812300682067871, 'pandas', 2), ('holoviz/panel', 0.6248031854629517, 'viz', 1), ('man-group/dtale', 0.6185036897659302, 'viz', 1), ('twopirllc/pandas-ta', 0.5920196771621704, 'finance', 2), ('beeware/toga', 0.590601921081543, 'gui', 1), ('mwaskom/seaborn', 0.5795894861221313, 'viz', 1), ('quantopian/qgrid', 0.5642687678337097, 'jupyter', 0), ('rsheftel/pandas_market_calendars', 0.5483811497688293, 'finance', 1), ('jmcarpenter2/swifter', 0.5478309988975525, 'pandas', 1), ('parthjadhav/tkinter-designer', 0.5451450943946838, 'gui', 1), ('pola-rs/polars', 0.5391742587089539, 'pandas', 1), ('blaze/blaze', 0.5380495190620422, 'pandas', 0), ('nalepae/pandarallel', 0.5294705629348755, 'pandas', 1), ('eleutherai/pyfra', 0.5291572213172913, 'ml', 0), ('zsailer/pandas_flavor', 0.5256001949310303, 'pandas', 1), ('federicoceratto/dashing', 0.5236207246780396, 'term', 0), ('scikit-learn-contrib/sklearn-pandas', 0.5230746865272522, 'pandas', 0), ('modin-project/modin', 0.5174034237861633, 'perf', 2), ('geopandas/geopandas', 0.51722252368927, 'gis', 1), ('hazyresearch/meerkat', 0.5161508321762085, 'viz', 1), ('cmudig/autoprofiler', 0.5127207040786743, 'jupyter', 1), ('pandas-dev/pandas', 0.5116315484046936, 'pandas', 2), ('rapidsai/cudf', 0.5097667574882507, 'pandas', 2), ('holoviz/hvplot', 0.5072020888328552, 'pandas', 0), ('bokeh/bokeh', 0.5031503438949585, 'viz', 0), ('holoviz/spatialpandas', 0.5028727054595947, 'pandas', 1), ('mementum/bta-lib', 0.5000632405281067, 'finance', 0)] | 15 | 1 | null | 0.06 | 9 | 3 | 56 | 1 | 0 | 9 | 9 | 9 | 4 | 90 | 0.4 | 40 |
698 | data | https://github.com/pyeve/cerberus | [] | null | [] | [] | null | null | null | pyeve/cerberus | cerberus | 3,071 | 238 | 50 | Python | http://python-cerberus.org | Lightweight, extensible data validation library for Python | pyeve | 2024-01-12 | 2012-10-10 | 589 | 5.206345 | https://avatars.githubusercontent.com/u/26229868?v=4 | Lightweight, extensible data validation library for Python | ['data-validation'] | ['data-validation'] | 2023-10-23 | [('pydantic/pydantic', 0.7001333832740784, 'util', 0), ('wtforms/wtforms', 0.657631516456604, 'web', 0), ('marshmallow-code/marshmallow', 0.6555448174476624, 'util', 0), ('tensorflow/data-validation', 0.6110429167747498, 'ml-ops', 0), ('unionai-oss/pandera', 0.6107540726661682, 'pandas', 1), ('python-odin/odin', 0.6078689098358154, 'util', 0), ('pytoolz/toolz', 0.5941500067710876, 'util', 0), ('pandas-dev/pandas', 0.5807719230651855, 'pandas', 0), ('rasbt/mlxtend', 0.5806938409805298, 'ml', 0), ('pylons/colander', 0.5786774754524231, 'util', 0), ('legrandin/pycryptodome', 0.5516589283943176, 'util', 0), ('andialbrecht/sqlparse', 0.5441608428955078, 'data', 0), ('wolever/parameterized', 0.5334105491638184, 'testing', 0), ('collerek/ormar', 0.5298268795013428, 'data', 0), ('snyk/faker-security', 0.5294828414916992, 'security', 0), ('pycaret/pycaret', 0.5282540321350098, 'ml', 0), ('lk-geimfari/mimesis', 0.5154099464416504, 'data', 0), ('pypy/pypy', 0.5118589997291565, 'util', 0), ('imageio/imageio', 0.5100802183151245, 'util', 0), ('facebook/pyre-check', 0.5100794434547424, 'typing', 0), ('pyston/pyston', 0.5083901882171631, 'util', 0), ('pmorissette/bt', 0.507025420665741, 'finance', 0), ('pytables/pytables', 0.5037830471992493, 'data', 0), ('featurelabs/featuretools', 0.503200888633728, 'ml', 0)] | 66 | 4 | null | 0.88 | 8 | 6 | 137 | 3 | 0 | 2 | 2 | 8 | 11 | 90 | 1.4 | 40 |
1,841 | finance | https://github.com/zvtvz/zvt | [] | null | [] | [] | null | null | null | zvtvz/zvt | zvt | 2,790 | 811 | 131 | Python | https://zvt.readthedocs.io/en/latest/ | modular quant framework. | zvtvz | 2024-01-12 | 2019-04-04 | 251 | 11.083995 | https://avatars.githubusercontent.com/u/49115722?v=4 | modular quant framework. | ['algorithmic-trading', 'backtesting', 'cryptocurrency', 'fintech', 'fundamental-analysis', 'machine-learning', 'ml', 'quant', 'quantitative-finance', 'quantitative-trading', 'stock', 'stock-market', 'technical-analysis', 'trading-bot', 'trading-platform', 'trading-strategies', 'zvt'] | ['algorithmic-trading', 'backtesting', 'cryptocurrency', 'fintech', 'fundamental-analysis', 'machine-learning', 'ml', 'quant', 'quantitative-finance', 'quantitative-trading', 'stock', 'stock-market', 'technical-analysis', 'trading-bot', 'trading-platform', 'trading-strategies', 'zvt'] | 2023-11-09 | [('ranaroussi/quantstats', 0.6442165970802307, 'finance', 4), ('quantconnect/lean', 0.6376045942306519, 'finance', 3), ('polakowo/vectorbt', 0.6255056858062744, 'finance', 6), ('goldmansachs/gs-quant', 0.6025742888450623, 'finance', 1), ('numerai/example-scripts', 0.5974596738815308, 'finance', 2), ('microsoft/qlib', 0.5502883791923523, 'finance', 6), ('google/tf-quant-finance', 0.5456732511520386, 'finance', 1), ('kernc/backtesting.py', 0.5392759442329407, 'finance', 3), ('idanya/algo-trader', 0.5369071364402771, 'finance', 5), ('ai4finance-foundation/finrl', 0.5343793034553528, 'finance', 2), ('openbb-finance/openbbterminal', 0.5273526310920715, 'finance', 3), ('quantopian/zipline', 0.5200475454330444, 'finance', 2), ('stefmolin/stock-analysis', 0.5058038830757141, 'finance', 2), ('gbeced/basana', 0.5045093297958374, 'finance', 4)] | 64 | 4 | null | 0.25 | 3 | 0 | 58 | 2 | 1 | 15 | 1 | 3 | 2 | 90 | 0.7 | 40 |
1,438 | testing | https://github.com/cobrateam/splinter | [] | null | [] | [] | null | null | null | cobrateam/splinter | splinter | 2,672 | 532 | 95 | Python | http://splinter.readthedocs.org/en/stable/index.html | splinter - python test framework for web applications | cobrateam | 2024-01-14 | 2010-09-18 | 697 | 3.831217 | https://avatars.githubusercontent.com/u/403905?v=4 | splinter - python test framework for web applications | ['automation', 'selenium', 'webdriver'] | ['automation', 'selenium', 'webdriver'] | 2024-01-09 | [('seleniumbase/seleniumbase', 0.7703961730003357, 'testing', 2), ('microsoft/playwright-python', 0.6916419267654419, 'testing', 1), ('roniemartinez/dude', 0.5549781918525696, 'util', 1), ('masoniteframework/masonite', 0.5544414520263672, 'web', 0), ('wolever/parameterized', 0.5428141355514526, 'testing', 0), ('buildbot/buildbot', 0.5403817296028137, 'util', 0), ('scrapy/scrapy', 0.5401042699813843, 'data', 0), ('alirezamika/autoscraper', 0.5292969346046448, 'data', 1), ('webpy/webpy', 0.5233193635940552, 'web', 0), ('pallets/flask', 0.5134128332138062, 'web', 0), ('nedbat/coveragepy', 0.512545645236969, 'testing', 0), ('r0x0r/pywebview', 0.5121274590492249, 'gui', 0), ('eleutherai/pyfra', 0.5119724273681641, 'ml', 0), ('reflex-dev/reflex', 0.5109301805496216, 'web', 0)] | 179 | 3 | null | 1.35 | 30 | 26 | 162 | 0 | 1 | 4 | 1 | 30 | 23 | 90 | 0.8 | 40 |
1,127 | ml | https://github.com/scikit-learn-contrib/hdbscan | [] | null | [] | [] | null | null | null | scikit-learn-contrib/hdbscan | hdbscan | 2,600 | 479 | 57 | Jupyter Notebook | http://hdbscan.readthedocs.io/en/latest/ | A high performance implementation of HDBSCAN clustering. | scikit-learn-contrib | 2024-01-12 | 2015-04-22 | 457 | 5.678627 | https://avatars.githubusercontent.com/u/17349883?v=4 | A high performance implementation of HDBSCAN clustering. | ['cluster-analysis', 'clustering', 'clustering-algorithm', 'clustering-evaluation', 'machine-learning', 'machine-learning-algorithms'] | ['cluster-analysis', 'clustering', 'clustering-algorithm', 'clustering-evaluation', 'machine-learning', 'machine-learning-algorithms'] | 2023-11-20 | [] | 86 | 4 | null | 0.48 | 12 | 3 | 106 | 2 | 5 | 5 | 5 | 12 | 8 | 90 | 0.7 | 40 |
337 | perf | https://github.com/tlkh/asitop | [] | null | [] | [] | null | null | null | tlkh/asitop | asitop | 2,346 | 125 | 27 | Python | https://tlkh.github.io/asitop/ | Perf monitoring CLI tool for Apple Silicon | tlkh | 2024-01-14 | 2021-10-27 | 117 | 19.905455 | null | Perf monitoring CLI tool for Apple Silicon | ['apple-silicon', 'cli', 'cpu', 'gpu', 'm1', 'macos'] | ['apple-silicon', 'cli', 'cpu', 'gpu', 'm1', 'macos'] | 2023-01-24 | [('ml-explore/mlx', 0.5542373061180115, 'ml', 1), ('tlkh/tf-metal-experiments', 0.540374219417572, 'perf', 2), ('mrdbourke/m1-machine-learning-test', 0.5042293071746826, 'ml', 0)] | 8 | 2 | null | 0.02 | 14 | 0 | 27 | 12 | 0 | 0 | 0 | 14 | 36 | 90 | 2.6 | 40 |
352 | ml-interpretability | https://github.com/seldonio/alibi | [] | null | [] | [] | null | null | null | seldonio/alibi | alibi | 2,246 | 279 | 47 | Python | https://docs.seldon.io/projects/alibi/en/stable/ | Algorithms for explaining machine learning models | seldonio | 2024-01-13 | 2019-02-26 | 257 | 8.7393 | https://avatars.githubusercontent.com/u/10297834?v=4 | Algorithms for explaining machine learning models | ['counterfactual', 'explanations', 'interpretability', 'machine-learning', 'xai'] | ['counterfactual', 'explanations', 'interpretability', 'machine-learning', 'xai'] | 2023-11-13 | [('marcotcr/lime', 0.7131057977676392, 'ml-interpretability', 0), ('maif/shapash', 0.6979689002037048, 'ml', 2), ('carla-recourse/carla', 0.6956292986869812, 'ml', 2), ('slundberg/shap', 0.6683449745178223, 'ml-interpretability', 2), ('interpretml/interpret', 0.6674531102180481, 'ml-interpretability', 3), ('pair-code/lit', 0.6469577550888062, 'ml-interpretability', 1), ('teamhg-memex/eli5', 0.6379401683807373, 'ml', 1), ('xplainable/xplainable', 0.6222488880157471, 'ml-interpretability', 2), ('oegedijk/explainerdashboard', 0.6191368699073792, 'ml-interpretability', 1), ('csinva/imodels', 0.6186242699623108, 'ml', 2), ('tensorflow/lucid', 0.5702253580093384, 'ml-interpretability', 2), ('tensorflow/data-validation', 0.5581661462783813, 'ml-ops', 0), ('rafiqhasan/auto-tensorflow', 0.5504202842712402, 'ml-dl', 1), ('huggingface/evaluate', 0.5494807958602905, 'ml', 1), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.545021116733551, 'study', 1), ('patchy631/machine-learning', 0.5448355078697205, 'ml', 0), ('eleutherai/pythia', 0.5343512296676636, 'ml-interpretability', 1), ('eugeneyan/testing-ml', 0.5242266654968262, 'testing', 1), ('selfexplainml/piml-toolbox', 0.5072975158691406, 'ml-interpretability', 0), ('pytorch/captum', 0.5067712664604187, 'ml-interpretability', 1), ('microsoft/robustlearn', 0.5054094791412354, 'time-series', 0), ('google-research/google-research', 0.5054081678390503, 'ml', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5047518014907837, 'study', 1), ('linkedin/fasttreeshap', 0.5031470060348511, 'ml', 2)] | 19 | 2 | null | 1.77 | 18 | 7 | 59 | 2 | 4 | 6 | 4 | 18 | 16 | 90 | 0.9 | 40 |
1,224 | util | https://github.com/dateutil/dateutil | [] | null | [] | [] | null | null | null | dateutil/dateutil | dateutil | 2,193 | 470 | 45 | Python | null | Useful extensions to the standard Python datetime features | dateutil | 2024-01-13 | 2014-11-19 | 479 | 4.57011 | https://avatars.githubusercontent.com/u/9849410?v=4 | Useful extensions to the standard Python datetime features | ['datetime', 'parsing', 'time', 'timezones'] | ['datetime', 'parsing', 'time', 'timezones'] | 2023-11-13 | [('sdispater/pendulum', 0.7966391444206238, 'util', 3), ('scrapinghub/dateparser', 0.7123557329177856, 'util', 2), ('arrow-py/arrow', 0.7106708884239197, 'util', 3), ('stub42/pytz', 0.621961236000061, 'util', 0), ('rjt1990/pyflux', 0.5882995128631592, 'time-series', 0), ('google/temporian', 0.5748814344406128, 'time-series', 0), ('alkaline-ml/pmdarima', 0.536246657371521, 'time-series', 0), ('tdameritrade/stumpy', 0.530729353427887, 'time-series', 0), ('rasbt/watermark', 0.5191126465797424, 'util', 0), ('firmai/atspy', 0.5173526406288147, 'time-series', 0), ('pytoolz/toolz', 0.5082383155822754, 'util', 0), ('pastas/pastas', 0.502344012260437, 'time-series', 0)] | 131 | 5 | null | 0.1 | 41 | 11 | 111 | 2 | 0 | 2 | 2 | 41 | 39 | 90 | 1 | 40 |
1,480 | web | https://github.com/masoniteframework/masonite | [] | null | [] | [] | null | null | null | masoniteframework/masonite | masonite | 2,109 | 130 | 63 | Python | http://docs.masoniteproject.com | The Modern And Developer Centric Python Web Framework. Be sure to read the documentation and join the Discord channel for questions: https://discord.gg/TwKeFahmPZ | masoniteframework | 2024-01-13 | 2017-12-06 | 320 | 6.573019 | https://avatars.githubusercontent.com/u/35498523?v=4 | The Modern And Developer Centric Python Web Framework. Be sure to read the documentation and join the Discord channel for questions: https://discord.gg/TwKeFahmPZ | ['framework', 'masonite', 'web', 'webframework'] | ['framework', 'masonite', 'web', 'webframework'] | 2024-01-01 | [('pallets/flask', 0.7340575456619263, 'web', 0), ('klen/muffin', 0.7306077480316162, 'web', 1), ('webpy/webpy', 0.7172554731369019, 'web', 0), ('bottlepy/bottle', 0.6854233741760254, 'web', 0), ('pylons/pyramid', 0.6714824438095093, 'web', 0), ('eleutherai/pyfra', 0.6563796401023865, 'ml', 0), ('pyscript/pyscript', 0.6563617587089539, 'web', 0), ('willmcgugan/textual', 0.6535159349441528, 'term', 1), ('falconry/falcon', 0.6416914463043213, 'web', 2), ('pallets/werkzeug', 0.6412118673324585, 'web', 0), ('r0x0r/pywebview', 0.6317577362060547, 'gui', 0), ('cherrypy/cherrypy', 0.6259151697158813, 'web', 0), ('reflex-dev/reflex', 0.6244274973869324, 'web', 1), ('clips/pattern', 0.6094305515289307, 'nlp', 0), ('pallets/quart', 0.607140302658081, 'web', 0), ('timofurrer/awesome-asyncio', 0.6026535034179688, 'study', 0), ('scrapy/scrapy', 0.6013022065162659, 'data', 1), ('neoteroi/blacksheep', 0.5978954434394836, 'web', 2), ('encode/httpx', 0.5954501628875732, 'web', 0), ('pypy/pypy', 0.5918770432472229, 'util', 0), ('python/cpython', 0.5917008519172668, 'util', 0), ('holoviz/panel', 0.5894260406494141, 'viz', 0), ('requests/toolbelt', 0.5709607005119324, 'util', 0), ('dylanhogg/awesome-python', 0.5680248141288757, 'study', 0), ('ethereum/web3.py', 0.5657337307929993, 'crypto', 0), ('indico/indico', 0.5639700293540955, 'web', 0), ('encode/uvicorn', 0.5623204708099365, 'web', 0), ('roniemartinez/dude', 0.560670018196106, 'util', 1), ('bokeh/bokeh', 0.5602609515190125, 'viz', 0), ('hugapi/hug', 0.5562730431556702, 'util', 0), ('emmett-framework/emmett', 0.5554807186126709, 'web', 0), ('cobrateam/splinter', 0.5544414520263672, 'testing', 0), ('pyodide/pyodide', 0.5539262294769287, 'util', 0), ('seleniumbase/seleniumbase', 0.5500764846801758, 'testing', 0), ('buildbot/buildbot', 0.549967885017395, 'util', 0), ('microsoft/playwright-python', 0.549170970916748, 'testing', 0), ('pytoolz/toolz', 0.5471121668815613, 'util', 0), ('plotly/dash', 0.5463806390762329, 'viz', 0), ('1200wd/bitcoinlib', 0.5462782979011536, 'crypto', 0), ('alirn76/panther', 0.5462374091148376, 'web', 1), ('hoffstadt/dearpygui', 0.5427703261375427, 'gui', 0), ('urwid/urwid', 0.5398597121238708, 'term', 0), ('plotly/plotly.py', 0.5396803021430969, 'viz', 0), ('backtick-se/cowait', 0.5356951951980591, 'util', 0), ('amaargiru/pyroad', 0.5333690643310547, 'study', 0), ('pywebio/pywebio', 0.5325572490692139, 'web', 0), ('flet-dev/flet', 0.5303350687026978, 'web', 1), ('adafruit/circuitpython', 0.5271365642547607, 'util', 0), ('minimaxir/simpleaichat', 0.5257116556167603, 'llm', 0), ('simple-salesforce/simple-salesforce', 0.5242258310317993, 'data', 0), ('primal100/pybitcointools', 0.5237247347831726, 'crypto', 0), ('pyston/pyston', 0.523208498954773, 'util', 0), ('cohere-ai/notebooks', 0.5226303935050964, 'llm', 0), ('tornadoweb/tornado', 0.5226184725761414, 'web', 0), ('voila-dashboards/voila', 0.5220005512237549, 'jupyter', 0), ('man-c/pycoingecko', 0.5191899538040161, 'crypto', 0), ('pyinfra-dev/pyinfra', 0.5186633467674255, 'util', 0), ('python-restx/flask-restx', 0.5184113383293152, 'web', 0), ('eventual-inc/daft', 0.5179644227027893, 'pandas', 0), ('psf/requests', 0.5165953040122986, 'web', 0), ('replicate/replicate-python', 0.5155618190765381, 'ml', 0), ('pysimplegui/pysimplegui', 0.5136278867721558, 'gui', 0), ('ta-lib/ta-lib-python', 0.512328028678894, 'finance', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5106345415115356, 'study', 0), ('websocket-client/websocket-client', 0.5101653933525085, 'web', 0), ('sqlalchemy/mako', 0.5073601603507996, 'template', 0), ('alirezamika/autoscraper', 0.5066377520561218, 'data', 0), ('nficano/python-lambda', 0.5054439306259155, 'util', 0), ('pylons/waitress', 0.5041007399559021, 'web', 0), ('goldmansachs/gs-quant', 0.5026025176048279, 'finance', 0), ('kivy/kivy', 0.5023773312568665, 'util', 0), ('maartenbreddels/ipyvolume', 0.5016263127326965, 'jupyter', 0), ('tkrabel/bamboolib', 0.5014203190803528, 'pandas', 0)] | 87 | 3 | null | 0.48 | 25 | 11 | 74 | 0 | 3 | 19 | 3 | 25 | 3 | 90 | 0.1 | 40 |
1,578 | data | https://github.com/accenture/ampligraph | ['knowledge-graph'] | null | [] | [] | null | null | null | accenture/ampligraph | AmpliGraph | 2,045 | 247 | 67 | Python | null | Python library for Representation Learning on Knowledge Graphs https://docs.ampligraph.org | accenture | 2024-01-13 | 2019-01-09 | 263 | 7.750406 | https://avatars.githubusercontent.com/u/10454368?v=4 | Python library for Representation Learning on Knowledge Graphs https://docs.ampligraph.org | ['graph-embeddings', 'graph-representation-learning', 'knowledge-graph', 'knowledge-graph-embeddings', 'machine-learning', 'relational-learning', 'representation-learning'] | ['graph-embeddings', 'graph-representation-learning', 'knowledge-graph', 'knowledge-graph-embeddings', 'machine-learning', 'relational-learning', 'representation-learning'] | 2023-07-12 | [('awslabs/dgl-ke', 0.7346105575561523, 'ml', 2), ('dmlc/dgl', 0.6121450066566467, 'ml-dl', 0), ('zjunlp/deepke', 0.593433678150177, 'ml', 1), ('dylanhogg/llmgraph', 0.5810795426368713, 'ml', 1), ('pyg-team/pytorch_geometric', 0.58009934425354, 'ml-dl', 0), ('a-r-j/graphein', 0.5756738185882568, 'sim', 0), ('strawberry-graphql/strawberry', 0.5520169734954834, 'web', 0), ('stellargraph/stellargraph', 0.5474543571472168, 'graph', 1), ('chandlerbang/awesome-self-supervised-gnn', 0.5335105061531067, 'study', 1), ('graphistry/pygraphistry', 0.532095193862915, 'data', 0), ('benedekrozemberczki/tigerlily', 0.5214887857437134, 'ml-dl', 2), ('deepgraphlearning/ultra', 0.5169753432273865, 'ml', 1), ('jina-ai/vectordb', 0.5142897367477417, 'data', 0), ('qdrant/fastembed', 0.5070711970329285, 'ml', 0), ('danielegrattarola/spektral', 0.5038337707519531, 'ml-dl', 0)] | 20 | 4 | null | 6.08 | 1 | 1 | 61 | 6 | 2 | 3 | 2 | 1 | 2 | 90 | 2 | 40 |
376 | ml-interpretability | https://github.com/jalammar/ecco | [] | null | [] | [] | null | null | null | jalammar/ecco | ecco | 1,849 | 153 | 24 | Jupyter Notebook | https://ecco.readthedocs.io | Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0). | jalammar | 2024-01-12 | 2020-11-07 | 168 | 10.977947 | null | Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0). | ['explorables', 'language-models', 'natural-language-processing', 'nlp', 'pytorch', 'visualization'] | ['explorables', 'language-models', 'natural-language-processing', 'nlp', 'pytorch', 'visualization'] | 2023-08-10 | [('allenai/allennlp', 0.5496200323104858, 'nlp', 3), ('alibaba/easynlp', 0.549338698387146, 'nlp', 2), ('koaning/whatlies', 0.5461040735244751, 'nlp', 1), ('brandtbucher/specialist', 0.5420230031013489, 'perf', 0), ('hannibal046/awesome-llm', 0.5404885411262512, 'study', 0), ('lianjiatech/belle', 0.5401182174682617, 'llm', 0), ('guidance-ai/guidance', 0.5360292196273804, 'llm', 0), ('vizzuhq/ipyvizzu', 0.5353596806526184, 'jupyter', 0), ('freedomintelligence/llmzoo', 0.5306503772735596, 'llm', 0), ('jbesomi/texthero', 0.5305410623550415, 'nlp', 1), ('ai21labs/lm-evaluation', 0.5280724167823792, 'llm', 0), ('opengeos/leafmap', 0.5254456996917725, 'gis', 0), ('bigscience-workshop/megatron-deepspeed', 0.5253652930259705, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5253652930259705, 'llm', 0), ('lm-sys/fastchat', 0.5213225483894348, 'llm', 0), ('bokeh/bokeh', 0.5211085081100464, 'viz', 1), ('maartengr/bertopic', 0.5192667841911316, 'nlp', 1), ('explosion/spacy', 0.5182880163192749, 'nlp', 2), ('flairnlp/flair', 0.517105758190155, 'nlp', 3), ('ctlllll/llm-toolmaker', 0.5147423148155212, 'llm', 0), ('explosion/spacy-models', 0.513950765132904, 'nlp', 2), ('conceptofmind/toolformer', 0.5121808648109436, 'llm', 0), ('openlmlab/moss', 0.5079621076583862, 'llm', 1), ('graykode/nlp-tutorial', 0.5071130990982056, 'study', 3), ('killianlucas/open-interpreter', 0.5064843893051147, 'llm', 0), ('holoviz/holoviz', 0.5038740634918213, 'viz', 0), ('plotly/plotly.py', 0.5030951499938965, 'viz', 1)] | 11 | 7 | null | 0.06 | 5 | 0 | 39 | 5 | 0 | 4 | 4 | 5 | 4 | 90 | 0.8 | 40 |
656 | util | https://github.com/numba/llvmlite | [] | null | [] | [] | null | null | null | numba/llvmlite | llvmlite | 1,760 | 317 | 56 | Python | http://llvmlite.pydata.org/ | A lightweight LLVM python binding for writing JIT compilers | numba | 2024-01-13 | 2014-08-07 | 494 | 3.557609 | https://avatars.githubusercontent.com/u/1628082?v=4 | A lightweight LLVM python binding for writing JIT compilers | [] | [] | 2023-12-13 | [('exaloop/codon', 0.6857039332389832, 'perf', 0), ('rustpython/rustpython', 0.638462483882904, 'util', 0), ('numba/numba', 0.5931792855262756, 'perf', 0), ('oracle/graalpython', 0.586859405040741, 'util', 0), ('cqcl/tket', 0.5800346732139587, 'util', 0), ('pyston/pyston', 0.5717125535011292, 'util', 0), ('citadel-ai/langcheck', 0.5582582950592041, 'llm', 0), ('pypy/pypy', 0.5528749227523804, 'util', 0), ('alpha-vllm/llama2-accessory', 0.539250910282135, 'llm', 0), ('psf/black', 0.5366169810295105, 'util', 0), ('google/jax', 0.534612774848938, 'ml', 0), ('pytoolz/toolz', 0.5343791842460632, 'util', 0), ('nomic-ai/pygpt4all', 0.5271598100662231, 'llm', 0), ('google/gin-config', 0.5255877375602722, 'util', 0), ('cython/cython', 0.5224786996841431, 'util', 0), ('astral-sh/ruff', 0.5217279195785522, 'util', 0), ('lcompilers/lpython', 0.5191760063171387, 'util', 0), ('instagram/monkeytype', 0.5182361602783203, 'typing', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5170167088508606, 'study', 0), ('py4j/py4j', 0.5133116245269775, 'util', 0), ('salesforce/codet5', 0.5081905126571655, 'nlp', 0), ('google/latexify_py', 0.5081674456596375, 'util', 0), ('python/cpython', 0.5075445175170898, 'util', 0), ('nvidia/cuda-python', 0.5029944181442261, 'ml', 0), ('micropython/micropython', 0.5028732419013977, 'util', 0)] | 88 | 3 | null | 2.87 | 37 | 22 | 115 | 1 | 2 | 12 | 2 | 37 | 61 | 90 | 1.6 | 40 |
1,027 | finance | https://github.com/domokane/financepy | [] | null | [] | [] | null | null | null | domokane/financepy | FinancePy | 1,743 | 271 | 60 | Jupyter Notebook | https://financepy.com/ | A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives. | domokane | 2024-01-13 | 2019-10-27 | 222 | 7.84126 | null | A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives. | ['asset-allocation', 'bonds', 'credit', 'currency', 'derivatives', 'derivatives-pricing', 'finance', 'fixed-income', 'investment', 'numba', 'pricing', 'risk', 'risk-management', 'students', 'valuation'] | ['asset-allocation', 'bonds', 'credit', 'currency', 'derivatives', 'derivatives-pricing', 'finance', 'fixed-income', 'investment', 'numba', 'pricing', 'risk', 'risk-management', 'students', 'valuation'] | 2023-12-10 | [('pmorissette/ffn', 0.6907992959022522, 'finance', 0), ('goldmansachs/gs-quant', 0.6860893964767456, 'finance', 2), ('cuemacro/finmarketpy', 0.6049692630767822, 'finance', 0), ('quantopian/pyfolio', 0.6018176078796387, 'finance', 0), ('ta-lib/ta-lib-python', 0.5799912810325623, 'finance', 1), ('quantecon/quantecon.py', 0.5794845819473267, 'sim', 0), ('gbeced/pyalgotrade', 0.5683234333992004, 'finance', 0), ('mementum/backtrader', 0.5463677048683167, 'finance', 0), ('1200wd/bitcoinlib', 0.5450164675712585, 'crypto', 0), ('pytoolz/toolz', 0.5421152114868164, 'util', 0), ('ranaroussi/quantstats', 0.526004433631897, 'finance', 1), ('pandas-dev/pandas', 0.5133991837501526, 'pandas', 0), ('cuemacro/findatapy', 0.5130403637886047, 'finance', 0), ('bashtage/arch', 0.5076860785484314, 'time-series', 2), ('eleutherai/pyfra', 0.5048255920410156, 'ml', 0), ('robcarver17/pysystemtrade', 0.5038099884986877, 'finance', 0), ('krzjoa/awesome-python-data-science', 0.5010226368904114, 'study', 0)] | 29 | 3 | null | 4.52 | 12 | 5 | 51 | 1 | 0 | 0 | 0 | 12 | 17 | 90 | 1.4 | 40 |
606 | testing | https://github.com/pytest-dev/pytest-mock | [] | null | [] | [] | null | null | null | pytest-dev/pytest-mock | pytest-mock | 1,705 | 135 | 36 | Python | https://pytest-mock.readthedocs.io/en/latest/ | Thin-wrapper around the mock package for easier use with pytest | pytest-dev | 2024-01-12 | 2014-07-17 | 497 | 3.42566 | https://avatars.githubusercontent.com/u/8897583?v=4 | Thin-wrapper around the mock package for easier use with pytest | ['mock', 'pytest'] | ['mock', 'pytest'] | 2023-12-20 | [('pytest-dev/pytest', 0.6347528100013733, 'testing', 0), ('pytest-dev/pytest-cov', 0.6337581872940063, 'testing', 1), ('ionelmc/pytest-benchmark', 0.6237248182296753, 'testing', 1), ('pytest-dev/pytest-asyncio', 0.6129404306411743, 'testing', 0), ('samuelcolvin/dirty-equals', 0.6112805008888245, 'util', 1), ('pytest-dev/pytest-xdist', 0.6102861762046814, 'testing', 1), ('lundberg/respx', 0.5953378081321716, 'testing', 2), ('getsentry/responses', 0.5724997520446777, 'testing', 0), ('samuelcolvin/pytest-pretty', 0.5683526992797852, 'testing', 1), ('computationalmodelling/nbval', 0.5595971345901489, 'jupyter', 1), ('teemu/pytest-sugar', 0.5402851700782776, 'testing', 1), ('nteract/testbook', 0.5319708585739136, 'jupyter', 1), ('wolever/parameterized', 0.5089722275733948, 'testing', 0), ('taverntesting/tavern', 0.5072631239891052, 'testing', 1)] | 68 | 7 | null | 0.92 | 17 | 16 | 116 | 1 | 2 | 7 | 2 | 17 | 18 | 90 | 1.1 | 40 |
1,040 | llm | https://github.com/openai/gpt-discord-bot | [] | null | [] | [] | null | null | null | openai/gpt-discord-bot | gpt-discord-bot | 1,636 | 633 | 35 | Python | null | Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages. | openai | 2024-01-12 | 2022-12-21 | 57 | 28.276543 | https://avatars.githubusercontent.com/u/14957082?v=4 | Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages. | [] | [] | 2024-01-09 | [('nomic-ai/gpt4all', 0.5539908409118652, 'llm', 0), ('minimaxir/simpleaichat', 0.552017331123352, 'llm', 0), ('rasahq/rasa', 0.5486682057380676, 'llm', 0), ('togethercomputer/openchatkit', 0.5345660448074341, 'nlp', 0), ('eternnoir/pytelegrambotapi', 0.5340373516082764, 'util', 0), ('gunthercox/chatterbot', 0.5279523730278015, 'nlp', 0), ('microsoft/autogen', 0.5150191783905029, 'llm', 0), ('embedchain/embedchain', 0.5135484933853149, 'llm', 0), ('run-llama/rags', 0.5125691890716553, 'llm', 0), ('rcgai/simplyretrieve', 0.5008484125137329, 'llm', 0)] | 3 | 0 | null | 0.19 | 24 | 22 | 13 | 0 | 0 | 0 | 0 | 24 | 21 | 90 | 0.9 | 40 |
448 | gis | https://github.com/jupyter-widgets/ipyleaflet | [] | null | [] | [] | null | null | null | jupyter-widgets/ipyleaflet | ipyleaflet | 1,435 | 363 | 66 | TypeScript | https://ipyleaflet.readthedocs.io | A Jupyter - Leaflet.js bridge | jupyter-widgets | 2024-01-12 | 2014-05-07 | 507 | 2.825598 | https://avatars.githubusercontent.com/u/25869250?v=4 | A Jupyter - Leaflet.js bridge | ['jupyter', 'jupyterlab-extension', 'leaflet', 'visualization'] | ['jupyter', 'jupyterlab-extension', 'leaflet', 'visualization'] | 2024-01-12 | [('giswqs/mapwidget', 0.6565911769866943, 'gis', 2), ('jupyter-widgets/ipywidgets', 0.6435815095901489, 'jupyter', 1), ('python-visualization/folium', 0.6334434151649475, 'gis', 0), ('vizzuhq/ipyvizzu', 0.6106564402580261, 'jupyter', 1), ('voila-dashboards/voila', 0.5810590386390686, 'jupyter', 2), ('jupyterlab/jupyterlab-desktop', 0.5790235996246338, 'jupyter', 1), ('jupyter/notebook', 0.5543774366378784, 'jupyter', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5437476634979248, 'jupyter', 2), ('maartenbreddels/ipyvolume', 0.540547251701355, 'jupyter', 1), ('aws/graph-notebook', 0.5392546653747559, 'jupyter', 1), ('jupyterlite/jupyterlite', 0.539129376411438, 'jupyter', 2), ('opengeos/leafmap', 0.5388780832290649, 'gis', 1), ('jupyterlab/jupyterlab', 0.523621678352356, 'jupyter', 1), ('quantopian/qgrid', 0.5120397806167603, 'jupyter', 0), ('bloomberg/ipydatagrid', 0.5112629532814026, 'jupyter', 1), ('ipython/ipykernel', 0.504456102848053, 'util', 1), ('jakevdp/pythondatasciencehandbook', 0.5016043186187744, 'study', 0), ('jupyter/nbviewer', 0.5015178918838501, 'jupyter', 1)] | 87 | 4 | null | 0.46 | 41 | 26 | 118 | 0 | 3 | 8 | 3 | 41 | 68 | 90 | 1.7 | 40 |
1,859 | sim | https://github.com/nvidia-omniverse/isaacgymenvs | ['gym'] | null | [] | [] | null | null | null | nvidia-omniverse/isaacgymenvs | IsaacGymEnvs | 1,357 | 309 | 36 | Python | null | Isaac Gym Reinforcement Learning Environments | nvidia-omniverse | 2024-01-14 | 2021-08-27 | 126 | 10.721219 | https://avatars.githubusercontent.com/u/57824658?v=4 | Isaac Gym Reinforcement Learning Environments | [] | ['gym'] | 2023-10-18 | [('nvidia-omniverse/omniisaacgymenvs', 0.8064512610435486, 'sim', 0), ('farama-foundation/gymnasium', 0.6873985528945923, 'ml-rl', 1), ('pettingzoo-team/pettingzoo', 0.6462188959121704, 'ml-rl', 1), ('humancompatibleai/imitation', 0.617064356803894, 'ml-rl', 0), ('kzl/decision-transformer', 0.5959394574165344, 'ml-rl', 1), ('inspirai/timechamber', 0.56003338098526, 'sim', 0), ('thu-ml/tianshou', 0.5374286770820618, 'ml-rl', 0), ('huggingface/deep-rl-class', 0.534843921661377, 'study', 0), ('openai/baselines', 0.5117769837379456, 'ml-rl', 0), ('google/dopamine', 0.5014722943305969, 'ml-rl', 0)] | 13 | 3 | null | 0.29 | 46 | 14 | 29 | 3 | 0 | 2 | 2 | 46 | 56 | 90 | 1.2 | 40 |
946 | diffusion | https://github.com/coyote-a/ultimate-upscale-for-automatic1111 | [] | null | [] | [] | null | null | null | coyote-a/ultimate-upscale-for-automatic1111 | ultimate-upscale-for-automatic1111 | 1,331 | 136 | 15 | Python | null | null | coyote-a | 2024-01-14 | 2023-01-02 | 56 | 23.707379 | null | coyote-a/ultimate-upscale-for-automatic1111 | [] | [] | 2023-09-09 | [] | 8 | 1 | null | 0.29 | 6 | 2 | 13 | 4 | 0 | 0 | 0 | 6 | 12 | 90 | 2 | 40 |
487 | gis | https://github.com/scitools/cartopy | [] | null | [] | [] | null | null | null | scitools/cartopy | cartopy | 1,318 | 354 | 55 | Python | https://scitools.org.uk/cartopy/docs/latest | Cartopy - a cartographic python library with matplotlib support | scitools | 2024-01-12 | 2012-08-03 | 599 | 2.198237 | https://avatars.githubusercontent.com/u/1391487?v=4 | Cartopy - a cartographic python library with matplotlib support | ['cartopy', 'geometry', 'maps', 'matplotlib', 'projections', 'spatial'] | ['cartopy', 'geometry', 'maps', 'matplotlib', 'projections', 'spatial'] | 2024-01-10 | [('pyproj4/pyproj', 0.7539182305335999, 'gis', 0), ('holoviz/geoviews', 0.7182220220565796, 'gis', 1), ('raphaelquast/eomaps', 0.6839972138404846, 'gis', 2), ('residentmario/geoplot', 0.6602010726928711, 'gis', 1), ('dfki-ric/pytransform3d', 0.6194444298744202, 'math', 1), ('matplotlib/basemap', 0.6154806613922119, 'gis', 1), ('altair-viz/altair', 0.6086525917053223, 'viz', 0), ('earthlab/earthpy', 0.6048831343650818, 'gis', 0), ('marceloprates/prettymaps', 0.5919488072395325, 'viz', 2), ('mwaskom/seaborn', 0.5874788761138916, 'viz', 1), ('pysal/pysal', 0.5811754465103149, 'gis', 0), ('has2k1/plotnine', 0.5810568332672119, 'viz', 0), ('cuemacro/chartpy', 0.5699009299278259, 'viz', 1), ('matplotlib/matplotlib', 0.566702663898468, 'viz', 1), ('plotly/plotly.py', 0.5586792826652527, 'viz', 0), ('imageio/imageio', 0.5579615831375122, 'util', 0), ('opengeos/leafmap', 0.5553449988365173, 'gis', 0), ('albahnsen/pycircular', 0.5550414323806763, 'math', 0), ('holoviz/hvplot', 0.5497469305992126, 'pandas', 0), ('csurfer/pyheat', 0.542796790599823, 'profiling', 1), ('artelys/geonetworkx', 0.5421754121780396, 'gis', 0), ('holoviz/holoviz', 0.5334916114807129, 'viz', 0), ('jakevdp/pythondatasciencehandbook', 0.5279793739318848, 'study', 1), ('gregorhd/mapcompare', 0.5211345553398132, 'gis', 0), ('kanaries/pygwalker', 0.5204256772994995, 'pandas', 1), ('man-group/dtale', 0.519442617893219, 'viz', 0), ('python-pillow/pillow', 0.5182700157165527, 'util', 0), ('enthought/mayavi', 0.5173063278198242, 'viz', 0), ('pypa/installer', 0.5148464441299438, 'util', 0), ('pyglet/pyglet', 0.5082891583442688, 'gamedev', 0), ('graphistry/pygraphistry', 0.5080820918083191, 'data', 0), ('geopandas/geopandas', 0.5073442459106445, 'gis', 1), ('vispy/vispy', 0.5065507888793945, 'viz', 0), ('bokeh/bokeh', 0.5045799612998962, 'viz', 0)] | 124 | 4 | null | 2.65 | 72 | 47 | 139 | 0 | 1 | 4 | 1 | 72 | 137 | 90 | 1.9 | 40 |
1,871 | ml | https://github.com/eric-mitchell/direct-preference-optimization | ['dpo'] | null | [] | [] | null | null | null | eric-mitchell/direct-preference-optimization | direct-preference-optimization | 1,147 | 82 | 13 | Python | null | Reference implementation for DPO (Direct Preference Optimization) | eric-mitchell | 2024-01-13 | 2023-06-22 | 31 | 36.166667 | null | Reference implementation for DPO (Direct Preference Optimization) | [] | ['dpo'] | 2023-12-14 | [] | 2 | 0 | null | 0.25 | 27 | 13 | 7 | 1 | 0 | 0 | 0 | 27 | 32 | 90 | 1.2 | 40 |
1,068 | llm | https://github.com/bigscience-workshop/megatron-deepspeed | [] | null | [] | [] | null | null | null | bigscience-workshop/megatron-deepspeed | Megatron-DeepSpeed | 1,144 | 199 | 24 | Python | null | Ongoing research training transformer language models at scale, including: BERT & GPT-2 | bigscience-workshop | 2024-01-13 | 2021-07-02 | 134 | 8.501062 | https://avatars.githubusercontent.com/u/82455566?v=4 | Ongoing research training transformer language models at scale, including: BERT & GPT-2 | [] | [] | 2023-12-08 | [('microsoft/megatron-deepspeed', 1.0000001192092896, 'llm', 0), ('nvidia/megatron-lm', 0.6671424508094788, 'llm', 0), ('lvwerra/trl', 0.6662755608558655, 'llm', 0), ('jonasgeiping/cramming', 0.6582860946655273, 'nlp', 0), ('huggingface/transformers', 0.6457441449165344, 'nlp', 0), ('explosion/spacy-transformers', 0.6363678574562073, 'llm', 0), ('hannibal046/awesome-llm', 0.6277967095375061, 'study', 0), ('extreme-bert/extreme-bert', 0.6164913773536682, 'llm', 0), ('graykode/nlp-tutorial', 0.6075314879417419, 'study', 0), ('karpathy/mingpt', 0.6039530634880066, 'llm', 0), ('lianjiatech/belle', 0.5846147537231445, 'llm', 0), ('huggingface/text-generation-inference', 0.5798518061637878, 'llm', 0), ('nielsrogge/transformers-tutorials', 0.5679675936698914, 'study', 0), ('next-gpt/next-gpt', 0.5671409964561462, 'llm', 0), ('whu-zqh/chatgpt-vs.-bert', 0.5593957901000977, 'llm', 0), ('eleutherai/gpt-neo', 0.5555706024169922, 'llm', 0), ('eleutherai/knowledge-neurons', 0.548306405544281, 'ml-interpretability', 0), ('ai21labs/lm-evaluation', 0.5460460186004639, 'llm', 0), ('microsoft/lora', 0.5398515462875366, 'llm', 0), ('minimaxir/gpt-2-simple', 0.5385422110557556, 'llm', 0), ('deepset-ai/farm', 0.5374853014945984, 'nlp', 0), ('jalammar/ecco', 0.5253652930259705, 'ml-interpretability', 0), ('promptslab/awesome-prompt-engineering', 0.5253517031669617, 'study', 0), ('bigscience-workshop/biomedical', 0.5243796706199646, 'data', 0), ('xtekky/gpt4free', 0.5237749814987183, 'llm', 0), ('paddlepaddle/paddlenlp', 0.5230602622032166, 'llm', 0), ('ist-daslab/gptq', 0.5179560780525208, 'llm', 0), ('jina-ai/finetuner', 0.5171146988868713, 'ml', 0), ('bytedance/lightseq', 0.515959620475769, 'nlp', 0), ('lm-sys/fastchat', 0.51581871509552, 'llm', 0), ('alignmentresearch/tuned-lens', 0.515650749206543, 'ml-interpretability', 0), ('freedomintelligence/llmzoo', 0.5145018100738525, 'llm', 0), ('cdpierse/transformers-interpret', 0.5142018795013428, 'ml-interpretability', 0), ('bobazooba/xllm', 0.5139332413673401, 'llm', 0), ('lucidrains/toolformer-pytorch', 0.5127219557762146, 'llm', 0), ('llmware-ai/llmware', 0.5115044116973877, 'llm', 0), ('microsoft/autogen', 0.5109838843345642, 'llm', 0), ('salesforce/blip', 0.5101778507232666, 'diffusion', 0), ('thilinarajapakse/simpletransformers', 0.5100935697555542, 'nlp', 0), ('openai/finetune-transformer-lm', 0.5082074999809265, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5077611804008484, 'llm', 0), ('openai/gpt-2', 0.5042035579681396, 'llm', 0), ('alibaba/easynlp', 0.5024697184562683, 'nlp', 0), ('muennighoff/sgpt', 0.5024375915527344, 'llm', 0)] | 49 | 4 | null | 0.04 | 4 | 2 | 31 | 1 | 0 | 4 | 4 | 4 | 3 | 90 | 0.8 | 40 |
622 | data | https://github.com/intake/intake | [] | null | [] | [] | null | null | null | intake/intake | intake | 954 | 136 | 42 | Python | https://intake.readthedocs.io/ | Intake is a lightweight package for finding, investigating, loading and disseminating data. | intake | 2024-01-11 | 2017-08-14 | 337 | 2.829661 | https://avatars.githubusercontent.com/u/1469464?v=4 | Intake is a lightweight package for finding, investigating, loading and disseminating data. | ['data-access', 'data-catalog'] | ['data-access', 'data-catalog'] | 2023-10-10 | [('hyperqueryhq/whale', 0.5861302614212036, 'data', 1), ('airbnb/omniduct', 0.567048192024231, 'data', 0), ('lean-dojo/leandojo', 0.5443071722984314, 'math', 0), ('simonw/datasette', 0.5237489938735962, 'data', 0), ('linealabs/lineapy', 0.5228672623634338, 'jupyter', 0), ('saulpw/visidata', 0.5221759080886841, 'term', 0), ('airbytehq/airbyte', 0.5141798853874207, 'data', 0), ('google/ml-metadata', 0.506055474281311, 'ml-ops', 0), ('dlt-hub/dlt', 0.5047716498374939, 'data', 0), ('kubeflow-kale/kale', 0.5041489005088806, 'ml-ops', 0), ('jovianml/opendatasets', 0.5019022226333618, 'data', 0)] | 86 | 5 | null | 2.1 | 7 | 1 | 78 | 3 | 0 | 7 | 7 | 7 | 26 | 90 | 3.7 | 40 |
443 | gis | https://github.com/pyproj4/pyproj | [] | null | [] | [] | null | null | null | pyproj4/pyproj | pyproj | 951 | 211 | 33 | Python | https://pyproj4.github.io/pyproj | Python interface to PROJ (cartographic projections and coordinate transformations library) | pyproj4 | 2024-01-10 | 2014-12-29 | 474 | 2.005725 | https://avatars.githubusercontent.com/u/48302803?v=4 | Python interface to PROJ (cartographic projections and coordinate transformations library) | ['cartographic-projection', 'coordinate-systems', 'coordinate-transformation', 'geodesic', 'geospatial'] | ['cartographic-projection', 'coordinate-systems', 'coordinate-transformation', 'geodesic', 'geospatial'] | 2023-11-08 | [('scitools/cartopy', 0.7539182305335999, 'gis', 0), ('holoviz/geoviews', 0.6277405023574829, 'gis', 0), ('residentmario/geoplot', 0.5774697065353394, 'gis', 0), ('artelys/geonetworkx', 0.5713775753974915, 'gis', 0), ('raphaelquast/eomaps', 0.5670640468597412, 'gis', 1), ('dfki-ric/pytransform3d', 0.5527838468551636, 'math', 0), ('geopandas/geopandas', 0.5460281372070312, 'gis', 1), ('opengeos/leafmap', 0.5364670157432556, 'gis', 1), ('pysal/pysal', 0.5152866244316101, 'gis', 0), ('has2k1/plotnine', 0.5081332921981812, 'viz', 0), ('pytoolz/toolz', 0.5079793334007263, 'util', 0)] | 65 | 5 | null | 1.37 | 21 | 15 | 110 | 2 | 6 | 7 | 6 | 20 | 62 | 90 | 3.1 | 40 |
1,845 | ml-dl | https://github.com/jeshraghian/snntorch | [] | null | [] | [] | null | null | null | jeshraghian/snntorch | snntorch | 924 | 166 | 25 | Python | https://snntorch.readthedocs.io/en/latest/ | Deep and online learning with spiking neural networks in Python | jeshraghian | 2024-01-12 | 2020-09-28 | 174 | 5.305989 | null | Deep and online learning with spiking neural networks in Python | ['machine-learning', 'neural-networks', 'neuron-models', 'neuroscience', 'pytorch', 'snn', 'spike', 'spiking', 'spiking-neural-networks'] | ['machine-learning', 'neural-networks', 'neuron-models', 'neuroscience', 'pytorch', 'snn', 'spike', 'spiking', 'spiking-neural-networks'] | 2023-12-14 | [('online-ml/river', 0.615203320980072, 'ml', 1), ('ageron/handson-ml2', 0.5824640989303589, 'ml', 0), ('pytorch/pytorch', 0.5666177272796631, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.5650865435600281, 'ml', 2), ('scikit-learn/scikit-learn', 0.5448082089424133, 'ml', 1), ('gradio-app/gradio', 0.5395351648330688, 'viz', 1), ('adafruit/circuitpython', 0.5297858119010925, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5287100076675415, 'study', 0), ('rasbt/machine-learning-book', 0.5273086428642273, 'study', 3), ('skorch-dev/skorch', 0.5167255401611328, 'ml-dl', 2), ('awslabs/gluonts', 0.5149070620536804, 'time-series', 3), ('intel/intel-extension-for-pytorch', 0.5118179321289062, 'perf', 2), ('pycaret/pycaret', 0.5082858800888062, 'ml', 1), ('lightly-ai/lightly', 0.5078932046890259, 'ml', 2), ('yzhao062/pyod', 0.5056750178337097, 'data', 2), ('pytorch/ignite', 0.5029792189598083, 'ml-dl', 2), ('joblib/joblib', 0.5017874836921692, 'util', 0)] | 28 | 5 | null | 3.54 | 31 | 12 | 40 | 1 | 2 | 10 | 2 | 31 | 38 | 90 | 1.2 | 40 |
1,207 | ml | https://github.com/hazyresearch/safari | [] | null | [] | [] | null | null | null | hazyresearch/safari | safari | 802 | 73 | 36 | Assembly | null | Convolutions for Sequence Modeling | hazyresearch | 2024-01-12 | 2023-02-14 | 50 | 16.04 | https://avatars.githubusercontent.com/u/2165246?v=4 | Convolutions for Sequence Modeling | [] | [] | 2023-09-29 | [('amazon-science/dq-bart', 0.5790391564369202, 'nlp', 0), ('bytedance/lightseq', 0.5279725790023804, 'nlp', 0)] | 6 | 3 | null | 0.48 | 6 | 4 | 11 | 4 | 0 | 0 | 0 | 6 | 20 | 90 | 3.3 | 40 |
1,618 | util | https://github.com/samuelcolvin/dirty-equals | [] | null | [] | [] | null | null | null | samuelcolvin/dirty-equals | dirty-equals | 744 | 35 | 12 | Python | https://dirty-equals.helpmanual.io | Doing dirty (but extremely useful) things with equals. | samuelcolvin | 2024-01-07 | 2022-01-26 | 104 | 7.095368 | null | Doing dirty (but extremely useful) things with equals. | ['pytest', 'testing-tools', 'unit-testing'] | ['pytest', 'testing-tools', 'unit-testing'] | 2023-11-15 | [('pytest-dev/pytest', 0.6580618023872375, 'testing', 1), ('ionelmc/pytest-benchmark', 0.6507035493850708, 'testing', 1), ('pytest-dev/pytest-mock', 0.6112805008888245, 'testing', 1), ('pytest-dev/pytest-cov', 0.5618858933448792, 'testing', 1), ('nteract/testbook', 0.5593006014823914, 'jupyter', 2), ('pytest-dev/pytest-xdist', 0.546781599521637, 'testing', 1), ('nedbat/coveragepy', 0.5362508296966553, 'testing', 0), ('teemu/pytest-sugar', 0.5335487723350525, 'testing', 1), ('computationalmodelling/nbval', 0.5271663665771484, 'jupyter', 1), ('wolever/parameterized', 0.524022102355957, 'testing', 0), ('samuelcolvin/pytest-pretty', 0.5239970088005066, 'testing', 1), ('pmorissette/bt', 0.5151998996734619, 'finance', 0), ('eugeneyan/python-collab-template', 0.514961302280426, 'template', 1)] | 16 | 4 | null | 0.62 | 16 | 13 | 24 | 2 | 4 | 8 | 4 | 16 | 24 | 90 | 1.5 | 40 |
1,543 | util | https://github.com/yukinarit/pyserde | ['serialization', 'dataclasses'] | null | [] | [] | null | null | null | yukinarit/pyserde | pyserde | 611 | 32 | 8 | Python | https://yukinarit.github.io/pyserde/guide/en | Yet another serialization library on top of dataclasses, inspired by serde-rs. | yukinarit | 2024-01-13 | 2018-12-05 | 268 | 2.272582 | null | Yet another serialization library on top of dataclasses, inspired by serde-rs. | ['dataclasses', 'json', 'msgpack', 'serde', 'serialization', 'toml', 'typing', 'yaml'] | ['dataclasses', 'json', 'msgpack', 'serde', 'serialization', 'toml', 'typing', 'yaml'] | 2024-01-13 | [('lidatong/dataclasses-json', 0.686412513256073, 'util', 2), ('pylons/colander', 0.6523554921150208, 'util', 1), ('marshmallow-code/marshmallow', 0.6370522379875183, 'util', 2), ('google/flatbuffers', 0.6145598292350769, 'perf', 1), ('python-odin/odin', 0.5727947354316711, 'util', 3), ('jsonpickle/jsonpickle', 0.5483598113059998, 'data', 2), ('samuelcolvin/rtoml', 0.5448687076568604, 'data', 1), ('fabiocaccamo/python-benedict', 0.5148563981056213, 'util', 3)] | 27 | 7 | null | 2.04 | 36 | 28 | 62 | 0 | 20 | 9 | 20 | 35 | 42 | 90 | 1.2 | 40 |
866 | util | https://github.com/ipython/ipykernel | [] | null | [] | [] | null | null | null | ipython/ipykernel | ipykernel | 596 | 361 | 37 | Python | https://ipykernel.readthedocs.io/en/stable/ | IPython Kernel for Jupyter | ipython | 2024-01-12 | 2015-04-09 | 459 | 1.296457 | https://avatars.githubusercontent.com/u/230453?v=4 | IPython Kernel for Jupyter | ['ipython', 'ipython-kernel', 'jupyter', 'jupyter-notebook', 'kernel'] | ['ipython', 'ipython-kernel', 'jupyter', 'jupyter-notebook', 'kernel'] | 2024-01-13 | [('jupyter/notebook', 0.6881211400032043, 'jupyter', 2), ('ipython/ipyparallel', 0.6646348237991333, 'perf', 1), ('jupyterlab/jupyterlab', 0.662561297416687, 'jupyter', 1), ('jupyter/nbformat', 0.6578472852706909, 'jupyter', 0), ('ipython/ipython', 0.6446179747581482, 'util', 2), ('computationalmodelling/nbval', 0.6354666948318481, 'jupyter', 1), ('jupyterlab/jupyterlab-desktop', 0.6094779968261719, 'jupyter', 2), ('jupyter-widgets/ipywidgets', 0.6043174862861633, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5854012966156006, 'jupyter', 2), ('jupyter/nbconvert', 0.5823147892951965, 'jupyter', 0), ('jakevdp/pythondatasciencehandbook', 0.5796281099319458, 'study', 1), ('chaoleili/jupyterlab_tensorboard', 0.5732330679893494, 'jupyter', 0), ('aws/graph-notebook', 0.568101167678833, 'jupyter', 2), ('mwouts/jupytext', 0.5664380788803101, 'jupyter', 1), ('ageron/handson-ml2', 0.55137699842453, 'ml', 0), ('cohere-ai/notebooks', 0.5502215623855591, 'llm', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5428215265274048, 'study', 0), ('rasbt/watermark', 0.541002631187439, 'util', 2), ('nteract/testbook', 0.5405094623565674, 'jupyter', 1), ('gotcha/ipdb', 0.5379695892333984, 'debug', 1), ('voila-dashboards/voila', 0.5356465578079224, 'jupyter', 2), ('jupyterlite/jupyterlite', 0.5333779454231262, 'jupyter', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5254985690116882, 'jupyter', 3), ('wesm/pydata-book', 0.5184985995292664, 'study', 0), ('koaning/drawdata', 0.5152633190155029, 'jupyter', 1), ('quantopian/qgrid', 0.514000654220581, 'jupyter', 0), ('faster-cpython/tools', 0.5114536285400391, 'perf', 0), ('mamba-org/gator', 0.5081201791763306, 'jupyter', 1), ('vizzuhq/ipyvizzu', 0.5079095363616943, 'jupyter', 3), ('tkrabel/bamboolib', 0.5052734017372131, 'pandas', 1), ('jupyterlab/jupyter-ai', 0.5044593811035156, 'jupyter', 1), ('jupyter-widgets/ipyleaflet', 0.504456102848053, 'gis', 1), ('python/cpython', 0.5019452571868896, 'util', 0)] | 176 | 7 | null | 1.52 | 45 | 28 | 107 | 0 | 18 | 15 | 18 | 45 | 43 | 90 | 1 | 40 |
1,086 | ml | https://github.com/opentensor/bittensor | [] | null | [] | [] | null | null | null | opentensor/bittensor | bittensor | 575 | 177 | 28 | Python | https://www.bittensor.com/ | Internet-scale Neural Networks | opentensor | 2024-01-14 | 2020-07-28 | 183 | 3.142077 | https://avatars.githubusercontent.com/u/61063461?v=4 | Internet-scale Neural Networks | ['ai', 'blockchain', 'cryptocurrency', 'deep-learning', 'machine-learning', 'neural-networks', 'p2p', 'p2p-network', 'polkadot', 'pytorch', 'substrate', 'torch'] | ['ai', 'blockchain', 'cryptocurrency', 'deep-learning', 'machine-learning', 'neural-networks', 'p2p', 'p2p-network', 'polkadot', 'pytorch', 'substrate', 'torch'] | 2024-01-09 | [('alpa-projects/alpa', 0.556601345539093, 'ml-dl', 2), ('hpcaitech/colossalai', 0.552403450012207, 'llm', 2), ('ai4finance-foundation/finrl', 0.5417373776435852, 'finance', 0), ('explosion/thinc', 0.5385252833366394, 'ml-dl', 4), ('ddbourgin/numpy-ml', 0.5296874642372131, 'ml', 2), ('mosaicml/composer', 0.5280351042747498, 'ml-dl', 4), ('microsoft/onnxruntime', 0.5280240774154663, 'ml', 4), ('lutzroeder/netron', 0.5261327028274536, 'ml', 5), ('onnx/onnx', 0.5157052874565125, 'ml', 3), ('keras-team/keras', 0.5132687091827393, 'ml-dl', 4), ('adap/flower', 0.5103121399879456, 'ml-ops', 4), ('numerai/example-scripts', 0.5083948969841003, 'finance', 2), ('tensorflow/tensorflow', 0.5074020028114319, 'ml-dl', 2), ('keras-rl/keras-rl', 0.5059829950332642, 'ml-rl', 2), ('automatic1111/stable-diffusion-webui', 0.5035480856895447, 'diffusion', 4), ('freqtrade/freqtrade', 0.5012444853782654, 'crypto', 1)] | 48 | 2 | null | 13.79 | 172 | 162 | 42 | 0 | 24 | 12 | 24 | 172 | 49 | 90 | 0.3 | 40 |
1,808 | data | https://github.com/jina-ai/vectordb | ['vectordb'] | null | [] | [] | null | null | null | jina-ai/vectordb | vectordb | 415 | 29 | 8 | Python | null | A Python vector database you just need - no more, no less. | jina-ai | 2024-01-12 | 2023-05-02 | 39 | 10.641026 | https://avatars.githubusercontent.com/u/60539444?v=4 | A Python vector database you just need - no more, no less. | ['embedding-similarity', 'neural-search', 'sentence-embeddings', 'vector-database', 'vector-database-embedding', 'vector-search'] | ['embedding-similarity', 'neural-search', 'sentence-embeddings', 'vector-database', 'vector-database-embedding', 'vector-search', 'vectordb'] | 2023-10-23 | [('qdrant/fastembed', 0.7195001244544983, 'ml', 2), ('kagisearch/vectordb', 0.6794906258583069, 'data', 1), ('neuml/txtai', 0.6555339097976685, 'nlp', 4), ('chroma-core/chroma', 0.6463486552238464, 'data', 1), ('activeloopai/deeplake', 0.639483630657196, 'ml-ops', 2), ('milvus-io/bootcamp', 0.6278480887413025, 'data', 1), ('lancedb/lancedb', 0.612372100353241, 'data', 2), ('koaning/embetter', 0.5935912728309631, 'data', 0), ('qdrant/qdrant', 0.5856242775917053, 'data', 3), ('plasticityai/magnitude', 0.5780693888664246, 'nlp', 0), ('dgarnitz/vectorflow', 0.5692445039749146, 'data', 0), ('nomic-ai/nomic', 0.5595861077308655, 'nlp', 0), ('featureform/embeddinghub', 0.549279510974884, 'nlp', 1), ('qdrant/qdrant-client', 0.5459500551223755, 'util', 2), ('ddangelov/top2vec', 0.5428557395935059, 'nlp', 0), ('llmware-ai/llmware', 0.5389397740364075, 'llm', 0), ('jina-ai/clip-as-service', 0.5312561988830566, 'nlp', 1), ('ibis-project/ibis', 0.5219907760620117, 'data', 0), ('qdrant/vector-db-benchmark', 0.5212831497192383, 'perf', 2), ('tiangolo/sqlmodel', 0.52092444896698, 'data', 0), ('accenture/ampligraph', 0.5142897367477417, 'data', 0), ('amansrivastava17/embedding-as-service', 0.5125251412391663, 'nlp', 0), ('qdrant/qdrant-haystack', 0.5077526569366455, 'data', 0), ('docarray/docarray', 0.5065739154815674, 'data', 1), ('koaning/whatlies', 0.5039339661598206, 'nlp', 0), ('mcfunley/pugsql', 0.5005654096603394, 'data', 0)] | 6 | 2 | null | 1.79 | 4 | 2 | 9 | 3 | 10 | 24 | 10 | 4 | 9 | 90 | 2.2 | 40 |
730 | ml-ops | https://github.com/skops-dev/skops | [] | null | [] | [] | null | null | null | skops-dev/skops | skops | 385 | 49 | 10 | Python | https://skops.readthedocs.io/en/stable/ | skops is a Python library helping you share your scikit-learn based models and put them in production | skops-dev | 2024-01-05 | 2022-05-04 | 90 | 4.237421 | https://avatars.githubusercontent.com/u/104910083?v=4 | skops is a Python library helping you share your scikit-learn based models and put them in production | ['huggingface', 'machine-learning', 'mlops', 'scikit-learn'] | ['huggingface', 'machine-learning', 'mlops', 'scikit-learn'] | 2024-01-05 | [('fmind/mlops-python-package', 0.6394261121749878, 'template', 1), ('kubeflow/fairing', 0.6278438568115234, 'ml-ops', 0), ('koaning/scikit-lego', 0.6168782711029053, 'ml', 2), ('automl/auto-sklearn', 0.5991626381874084, 'ml', 1), ('intel/scikit-learn-intelex', 0.5795713067054749, 'perf', 2), ('polyaxon/polyaxon', 0.5779671669006348, 'ml-ops', 2), ('iryna-kondr/scikit-llm', 0.5726227760314941, 'llm', 2), ('featurelabs/featuretools', 0.5711256265640259, 'ml', 2), ('huggingface/huggingface_hub', 0.5664080381393433, 'ml', 1), ('gradio-app/gradio', 0.5616341233253479, 'viz', 1), ('rasbt/machine-learning-book', 0.5548707246780396, 'study', 2), ('csinva/imodels', 0.5491555333137512, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5375784635543823, 'ml', 2), ('kubeflow-kale/kale', 0.5353480577468872, 'ml-ops', 1), ('wandb/client', 0.5322269201278687, 'ml', 2), ('scikit-learn-contrib/sklearn-pandas', 0.5230203866958618, 'pandas', 0), ('ageron/handson-ml2', 0.5202804207801819, 'ml', 0), ('jovianml/opendatasets', 0.5186297297477722, 'data', 1), ('dylanhogg/awesome-python', 0.5161980986595154, 'study', 1), ('fatiando/verde', 0.513488233089447, 'gis', 1), ('selfexplainml/piml-toolbox', 0.5126495957374573, 'ml-interpretability', 0), ('firmai/atspy', 0.5083118081092834, 'time-series', 0), ('pycaret/pycaret', 0.5067681074142456, 'ml', 1), ('scikit-learn-contrib/metric-learn', 0.504301130771637, 'ml', 2), ('microsoft/nni', 0.5024822950363159, 'ml', 2), ('scikit-learn/scikit-learn', 0.5013717412948608, 'ml', 1)] | 16 | 5 | null | 1.77 | 15 | 13 | 21 | 0 | 5 | 6 | 5 | 15 | 32 | 90 | 2.1 | 40 |
1,902 | data | https://github.com/meilisearch/meilisearch-python | ['search-engine', 'sdk', 'rust', 'api'] | Meilisearch is an open-source search engine | [] | [] | null | null | null | meilisearch/meilisearch-python | meilisearch-python | 372 | 119 | 7 | Python | https://www.meilisearch.com/ | Python wrapper for the Meilisearch API | meilisearch | 2024-01-16 | 2019-12-04 | 216 | 1.715415 | https://avatars.githubusercontent.com/u/43250847?v=4 | Python wrapper for the Meilisearch API | ['client', 'meilisearch', 'sdk'] | ['api', 'client', 'meilisearch', 'rust', 'sdk', 'search-engine'] | 2024-01-16 | [('typesense/typesense-python', 0.5989935994148254, 'data', 3), ('dmarx/psaw', 0.5636150240898132, 'data', 0), ('googleapis/google-api-python-client', 0.5505169034004211, 'util', 0), ('qdrant/qdrant-client', 0.538914680480957, 'util', 0), ('man-c/pycoingecko', 0.5315601229667664, 'crypto', 1), ('nv7-github/googlesearch', 0.5313740968704224, 'util', 0), ('goldsmith/wikipedia', 0.5276321768760681, 'data', 0), ('snyk-labs/pysnyk', 0.5068243741989136, 'security', 1)] | 55 | 3 | null | 5.19 | 60 | 57 | 50 | 0 | 10 | 11 | 10 | 60 | 160 | 90 | 2.7 | 40 |
1,897 | llm | https://github.com/langchain-ai/langgraph | ['langchain', 'multi-actor', 'agents'] | LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. | [] | [] | null | null | null | langchain-ai/langgraph | langgraph | 367 | 22 | 11 | Python | null | null | langchain-ai | 2024-01-14 | 2023-08-09 | 24 | 14.764368 | https://avatars.githubusercontent.com/u/126733545?v=4 | LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. | [] | ['agents', 'langchain', 'multi-actor'] | 2024-01-09 | [('alphasecio/langchain-examples', 0.6478251814842224, 'llm', 1), ('gkamradt/langchain-tutorials', 0.6401094794273376, 'study', 0), ('hwchase17/langchain', 0.6307724118232727, 'llm', 1), ('prefecthq/langchain-prefect', 0.6234740018844604, 'llm', 1), ('logspace-ai/langflow', 0.6137604713439941, 'llm', 1), ('microsoft/autogen', 0.6005686521530151, 'llm', 0), ('dylanhogg/llmgraph', 0.5856835842132568, 'ml', 0), ('nat/openplayground', 0.5708506107330322, 'llm', 0), ('zilliztech/gptcache', 0.5597312450408936, 'llm', 1), ('chatarena/chatarena', 0.5562337636947632, 'llm', 0), ('aiwaves-cn/agents', 0.5516238808631897, 'nlp', 0), ('young-geng/easylm', 0.5411015748977661, 'llm', 0), ('jina-ai/thinkgpt', 0.5343421697616577, 'llm', 0), ('nomic-ai/gpt4all', 0.533517599105835, 'llm', 0), ('tigerlab-ai/tiger', 0.5296244025230408, 'llm', 0), ('spcl/graph-of-thoughts', 0.5278857350349426, 'llm', 0), ('langchain-ai/langsmith-cookbook', 0.5267937183380127, 'llm', 0), ('mlc-ai/web-llm', 0.5244644284248352, 'llm', 0), ('lm-sys/fastchat', 0.5237873792648315, 'llm', 0), ('thudm/chatglm2-6b', 0.5230793356895447, 'llm', 0), ('deepset-ai/haystack', 0.5211980938911438, 'llm', 0), ('deep-diver/pingpong', 0.5210304260253906, 'llm', 0), ('langchain-ai/langsmith-sdk', 0.5179738998413086, 'llm', 0), ('hannibal046/awesome-llm', 0.5179132223129272, 'study', 0), ('hiyouga/llama-factory', 0.5161830186843872, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5161828994750977, 'llm', 0), ('operand/agency', 0.5159871578216553, 'llm', 1), ('geekan/metagpt', 0.5153509974479675, 'llm', 0), ('embedchain/embedchain', 0.5151159763336182, 'llm', 0), ('run-llama/rags', 0.5150389671325684, 'llm', 0), ('agenta-ai/agenta', 0.5138852000236511, 'llm', 1), ('pathwaycom/llm-app', 0.5122884511947632, 'llm', 0), ('next-gpt/next-gpt', 0.5100759863853455, 'llm', 0), ('oobabooga/text-generation-webui', 0.5098942518234253, 'llm', 0), ('guardrails-ai/guardrails', 0.5052242875099182, 'llm', 0), ('eugeneyan/open-llms', 0.5050806403160095, 'study', 0), ('lianjiatech/belle', 0.5042188763618469, 'llm', 0), ('lupantech/chameleon-llm', 0.5040978193283081, 'llm', 0), ('mnotgod96/appagent', 0.5023365020751953, 'llm', 0), ('eth-sri/lmql', 0.5018105506896973, 'llm', 0), ('bobazooba/xllm', 0.5015073418617249, 'llm', 0), ('ctlllll/llm-toolmaker', 0.501153290271759, 'llm', 0), ('salesforce/xgen', 0.5001147389411926, 'llm', 0)] | 3 | 1 | null | 3.21 | 30 | 24 | 5 | 0 | 0 | 15 | 15 | 30 | 6 | 90 | 0.2 | 40 |
1,698 | util | https://github.com/mkdocstrings/griffe | [] | null | [] | [] | null | null | null | mkdocstrings/griffe | griffe | 232 | 35 | 6 | Python | https://mkdocstrings.github.io/griffe | Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API. | mkdocstrings | 2024-01-13 | 2021-09-09 | 124 | 1.860252 | https://avatars.githubusercontent.com/u/75664361?v=4 | Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API. | ['api', 'breaking-changes', 'docs', 'mkdocstrings-collector', 'parser', 'signature'] | ['api', 'breaking-changes', 'docs', 'mkdocstrings-collector', 'parser', 'signature'] | 2023-12-06 | [('mitmproxy/pdoc', 0.6451767683029175, 'util', 2), ('landscapeio/prospector', 0.5961143970489502, 'util', 0), ('omry/omegaconf', 0.5919175744056702, 'util', 0), ('pdoc3/pdoc', 0.5867151618003845, 'util', 1), ('python-odin/odin', 0.5799145102500916, 'util', 0), ('eugeneyan/python-collab-template', 0.5616798400878906, 'template', 0), ('amaargiru/pyroad', 0.5457209944725037, 'study', 0), ('mkdocstrings/python', 0.5423215627670288, 'util', 0), ('mgedmin/check-manifest', 0.537682056427002, 'util', 0), ('pypi/warehouse', 0.5345215797424316, 'util', 0), ('pytoolz/toolz', 0.5321711301803589, 'util', 0), ('erotemic/ubelt', 0.5309567451477051, 'util', 0), ('jazzband/pip-tools', 0.5269049406051636, 'util', 0), ('pypa/hatch', 0.5250239968299866, 'util', 0), ('pydantic/pydantic', 0.5223087072372437, 'util', 0), ('pympler/pympler', 0.5151218771934509, 'perf', 0), ('legrandin/pycryptodome', 0.5096718668937683, 'util', 0), ('dosisod/refurb', 0.5076294541358948, 'util', 0), ('python-rope/rope', 0.5066107511520386, 'util', 0), ('uqfoundation/dill', 0.506209135055542, 'data', 0), ('pypy/pypy', 0.5051857829093933, 'util', 0), ('samuelcolvin/python-devtools', 0.5050040483474731, 'debug', 0), ('pyca/cryptography', 0.5040481090545654, 'util', 0), ('getsentry/responses', 0.5013567209243774, 'testing', 0), ('instagram/libcst', 0.5002207159996033, 'util', 0)] | 26 | 6 | null | 5.1 | 15 | 10 | 29 | 0 | 22 | 38 | 22 | 16 | 43 | 90 | 2.7 | 40 |
277 | data | https://github.com/airbnb/knowledge-repo | [] | null | [] | [] | null | null | null | airbnb/knowledge-repo | knowledge-repo | 5,406 | 709 | 175 | Python | null | A next-generation curated knowledge sharing platform for data scientists and other technical professions. | airbnb | 2024-01-12 | 2016-08-17 | 388 | 13.902278 | https://avatars.githubusercontent.com/u/698437?v=4 | A next-generation curated knowledge sharing platform for data scientists and other technical professions. | ['data', 'data-analysis', 'data-science', 'knowledge'] | ['data', 'data-analysis', 'data-science', 'knowledge'] | 2023-04-17 | [('krzjoa/awesome-python-data-science', 0.5916482210159302, 'study', 2), ('drivendata/cookiecutter-data-science', 0.5590470433235168, 'template', 1), ('zenodo/zenodo', 0.5470719933509827, 'util', 0), ('saulpw/visidata', 0.5398018956184387, 'term', 0), ('airbytehq/airbyte', 0.5395446419715881, 'data', 2), ('merantix-momentum/squirrel-core', 0.537761390209198, 'ml', 1), ('firmai/industry-machine-learning', 0.5338939428329468, 'study', 1), ('google/ml-metadata', 0.5292649865150452, 'ml-ops', 0), ('hyperqueryhq/whale', 0.520332932472229, 'data', 0), ('netflix/metaflow', 0.5116251707077026, 'ml-ops', 1), ('simonw/datasette', 0.5094085335731506, 'data', 0), ('brettkromkamp/contextualise', 0.5030013918876648, 'data', 0)] | 73 | 4 | null | 1.48 | 0 | 0 | 90 | 9 | 1 | 4 | 1 | 0 | 0 | 90 | 0 | 39 |
992 | finance | https://github.com/quantopian/pyfolio | [] | null | [] | [] | null | null | null | quantopian/pyfolio | pyfolio | 5,308 | 1,719 | 304 | Jupyter Notebook | https://quantopian.github.io/pyfolio | Portfolio and risk analytics in Python | quantopian | 2024-01-13 | 2015-06-01 | 452 | 11.739652 | https://avatars.githubusercontent.com/u/1393215?v=4 | Portfolio and risk analytics in Python | [] | [] | 2020-07-15 | [('ranaroussi/quantstats', 0.6542462706565857, 'finance', 0), ('goldmansachs/gs-quant', 0.6110407114028931, 'finance', 0), ('quantopian/empyrical', 0.6045350432395935, 'finance', 0), ('domokane/financepy', 0.6018176078796387, 'finance', 0), ('eleutherai/pyfra', 0.5698432922363281, 'ml', 0), ('gbeced/pyalgotrade', 0.5584282875061035, 'finance', 0), ('scikit-learn/scikit-learn', 0.5517749786376953, 'ml', 0), ('robcarver17/pysystemtrade', 0.5509036779403687, 'finance', 0), ('cuemacro/finmarketpy', 0.5475354194641113, 'finance', 0), ('pymc-devs/pymc3', 0.5452370047569275, 'ml', 0), ('pmorissette/ffn', 0.5423455834388733, 'finance', 0), ('quantecon/quantecon.py', 0.5116593837738037, 'sim', 0), ('firmai/atspy', 0.5053930282592773, 'time-series', 0)] | 59 | 4 | null | 0 | 13 | 5 | 105 | 47 | 0 | 2 | 2 | 13 | 10 | 90 | 0.8 | 39 |
387 | nlp | https://github.com/makcedward/nlpaug | [] | null | [] | [] | null | null | null | makcedward/nlpaug | nlpaug | 4,222 | 454 | 42 | Jupyter Notebook | https://makcedward.github.io/ | Data augmentation for NLP | makcedward | 2024-01-13 | 2019-03-21 | 253 | 16.640766 | null | Data augmentation for NLP | ['adversarial-attacks', 'adversarial-example', 'ai', 'artificial-intelligence', 'augmentation', 'data-science', 'machine-learning', 'ml', 'natural-language-processing', 'nlp'] | ['adversarial-attacks', 'adversarial-example', 'ai', 'artificial-intelligence', 'augmentation', 'data-science', 'machine-learning', 'ml', 'natural-language-processing', 'nlp'] | 2022-07-07 | [('explosion/spacy', 0.5835755467414856, 'nlp', 6), ('nltk/nltk', 0.5745749473571777, 'nlp', 3), ('aleju/imgaug', 0.5599479079246521, 'ml', 2), ('infinitylogesh/mutate', 0.5548282265663147, 'nlp', 0), ('explosion/spacy-llm', 0.5450884103775024, 'llm', 3), ('alibaba/easynlp', 0.5402962565422058, 'nlp', 2), ('explosion/thinc', 0.5350939631462097, 'ml-dl', 5), ('thilinarajapakse/simpletransformers', 0.5320999026298523, 'nlp', 0), ('explosion/spacy-models', 0.5314129590988159, 'nlp', 3), ('huggingface/autotrain-advanced', 0.5261876583099365, 'ml', 2), ('rasahq/rasa', 0.5259739756584167, 'llm', 3), ('allenai/allennlp', 0.5257618427276611, 'nlp', 3), ('keras-team/keras-nlp', 0.5205011367797852, 'nlp', 3), ('norskregnesentral/skweak', 0.5184004902839661, 'nlp', 2), ('sdv-dev/sdv', 0.517977237701416, 'data', 1), ('jbesomi/texthero', 0.5141093134880066, 'nlp', 2), ('huggingface/datasets', 0.5126201510429382, 'nlp', 3), ('intellabs/fastrag', 0.5120058655738831, 'nlp', 1), ('interpretml/interpret', 0.5114248394966125, 'ml-interpretability', 3), ('bentoml/bentoml', 0.5093832612037659, 'ml-ops', 2), ('cleanlab/cleanlab', 0.505994439125061, 'ml', 1), ('llmware-ai/llmware', 0.5014007091522217, 'llm', 3)] | 33 | 6 | null | 0 | 0 | 0 | 59 | 19 | 0 | 5 | 5 | 0 | 0 | 90 | 0 | 39 |
13 | ml | https://github.com/districtdatalabs/yellowbrick | [] | null | [] | [] | null | null | null | districtdatalabs/yellowbrick | yellowbrick | 4,142 | 554 | 103 | Python | http://www.scikit-yb.org/ | Visual analysis and diagnostic tools to facilitate machine learning model selection. | districtdatalabs | 2024-01-12 | 2016-05-18 | 401 | 10.307145 | https://avatars.githubusercontent.com/u/7107115?v=4 | Visual analysis and diagnostic tools to facilitate machine learning model selection. | ['anaconda', 'estimator', 'machine-learning', 'matplotlib', 'model-selection', 'scikit-learn', 'visual-analysis', 'visualization', 'visualizer'] | ['anaconda', 'estimator', 'machine-learning', 'matplotlib', 'model-selection', 'scikit-learn', 'visual-analysis', 'visualization', 'visualizer'] | 2023-07-05 | [('automl/auto-sklearn', 0.6410435438156128, 'ml', 1), ('huggingface/evaluate', 0.6335552334785461, 'ml', 1), ('teamhg-memex/eli5', 0.6274762749671936, 'ml', 2), ('tensorflow/data-validation', 0.6272578239440918, 'ml-ops', 0), ('huggingface/datasets', 0.621246874332428, 'nlp', 1), ('wandb/client', 0.6167464256286621, 'ml', 1), ('nccr-itmo/fedot', 0.6075289249420166, 'ml-ops', 1), ('selfexplainml/piml-toolbox', 0.6020028591156006, 'ml-interpretability', 0), ('scikit-learn/scikit-learn', 0.5833300948143005, 'ml', 1), ('microsoft/nni', 0.5821363925933838, 'ml', 1), ('pyvista/pyvista', 0.578895092010498, 'viz', 1), ('polyaxon/datatile', 0.5754048228263855, 'pandas', 1), ('featurelabs/featuretools', 0.5721520185470581, 'ml', 2), ('lutzroeder/netron', 0.570451557636261, 'ml', 2), ('gradio-app/gradio', 0.5597376227378845, 'viz', 1), ('rasbt/mlxtend', 0.5595728754997253, 'ml', 1), ('epistasislab/tpot', 0.5539801120758057, 'ml', 3), ('apple/coremltools', 0.5530053377151489, 'ml', 1), ('pair-code/lit', 0.5486710071563721, 'ml-interpretability', 2), ('firmai/industry-machine-learning', 0.5426095128059387, 'study', 1), ('csinva/imodels', 0.5383384227752686, 'ml', 2), ('skops-dev/skops', 0.5375784635543823, 'ml-ops', 2), ('scikit-optimize/scikit-optimize', 0.5361714959144592, 'ml', 3), ('evidentlyai/evidently', 0.531039834022522, 'ml-ops', 1), ('hazyresearch/meerkat', 0.5290077924728394, 'viz', 1), ('ddbourgin/numpy-ml', 0.5262637138366699, 'ml', 1), ('polyaxon/polyaxon', 0.5260629653930664, 'ml-ops', 1), ('oegedijk/explainerdashboard', 0.5237336158752441, 'ml-interpretability', 0), ('patchy631/machine-learning', 0.5236752033233643, 'ml', 0), ('pyqtgraph/pyqtgraph', 0.5196901559829712, 'viz', 1), ('eugeneyan/testing-ml', 0.5194308757781982, 'testing', 1), ('man-group/dtale', 0.5179511308670044, 'viz', 1), ('microsoft/flaml', 0.5168565511703491, 'ml', 2), ('scikit-learn-contrib/metric-learn', 0.516703188419342, 'ml', 2), ('mlflow/mlflow', 0.5155874490737915, 'ml-ops', 1), ('lux-org/lux', 0.5121427178382874, 'viz', 1), ('doccano/doccano', 0.5116096138954163, 'nlp', 1), ('sktime/sktime', 0.5111024975776672, 'time-series', 2), ('determined-ai/determined', 0.5109866857528687, 'ml-ops', 1), ('mosaicml/composer', 0.5096165537834167, 'ml-dl', 1), ('intel/scikit-learn-intelex', 0.5062663555145264, 'perf', 2), ('koaning/scikit-lego', 0.5034389495849609, 'ml', 2), ('firmai/atspy', 0.5014930367469788, 'time-series', 0), ('roboflow/supervision', 0.5006172060966492, 'ml', 1), ('tensorflow/lucid', 0.5002766251564026, 'ml-interpretability', 2)] | 113 | 2 | null | 0.08 | 1 | 0 | 93 | 6 | 0 | 3 | 3 | 1 | 1 | 90 | 1 | 39 |
0 | data | https://github.com/andialbrecht/sqlparse | [] | null | [] | [] | null | null | null | andialbrecht/sqlparse | sqlparse | 3,494 | 663 | 96 | Python | null | A non-validating SQL parser module for Python | andialbrecht | 2024-01-14 | 2012-04-18 | 614 | 5.682621 | null | A non-validating SQL parser module for Python | [] | [] | 2023-10-12 | [('tiangolo/sqlmodel', 0.6739121079444885, 'data', 0), ('sqlalchemy/sqlalchemy', 0.6582309007644653, 'data', 0), ('tobymao/sqlglot', 0.6332684755325317, 'data', 0), ('ibis-project/ibis', 0.6058615446090698, 'data', 0), ('macbre/sql-metadata', 0.5947306156158447, 'data', 0), ('collerek/ormar', 0.5768142938613892, 'data', 0), ('mcfunley/pugsql', 0.5752284526824951, 'data', 0), ('kayak/pypika', 0.5649843811988831, 'data', 0), ('machow/siuba', 0.5550650358200073, 'pandas', 0), ('pyparsing/pyparsing', 0.5442314147949219, 'util', 0), ('pyeve/cerberus', 0.5441608428955078, 'data', 0), ('pydantic/pydantic', 0.534013569355011, 'util', 0), ('instagram/libcst', 0.5294908285140991, 'util', 0), ('simonw/sqlite-utils', 0.5041010975837708, 'data', 0)] | 103 | 3 | null | 0.71 | 22 | 4 | 143 | 3 | 0 | 3 | 3 | 22 | 13 | 90 | 0.6 | 39 |
383 | llm | https://github.com/minimaxir/gpt-2-simple | [] | null | [] | [] | null | null | null | minimaxir/gpt-2-simple | gpt-2-simple | 3,358 | 681 | 77 | Python | null | Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts | minimaxir | 2024-01-13 | 2019-04-13 | 250 | 13.409013 | null | Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts | ['openai', 'tensorflow', 'text-generation', 'textgenrnn'] | ['openai', 'tensorflow', 'text-generation', 'textgenrnn'] | 2022-05-22 | [('minimaxir/aitextgen', 0.7194006443023682, 'llm', 0), ('huggingface/text-generation-inference', 0.6420865058898926, 'llm', 0), ('microsoft/pycodegpt', 0.629753589630127, 'llm', 0), ('karpathy/mingpt', 0.6132301688194275, 'llm', 0), ('xtekky/gpt4free', 0.604681670665741, 'llm', 1), ('infinitylogesh/mutate', 0.5839410424232483, 'nlp', 1), ('minimaxir/textgenrnn', 0.5805365443229675, 'nlp', 2), ('langchain-ai/opengpts', 0.5654781460762024, 'llm', 0), ('google-research/electra', 0.5602125525474548, 'ml-dl', 1), ('sharonzhou/long_stable_diffusion', 0.5567746758460999, 'diffusion', 0), ('weaviate/demo-text2vec-openai', 0.555767834186554, 'util', 1), ('openlmlab/moss', 0.5483125448226929, 'llm', 1), ('bytedance/lightseq', 0.5469551682472229, 'nlp', 0), ('nateshmbhat/pyttsx3', 0.5467420220375061, 'util', 0), ('lianjiatech/belle', 0.5449079871177673, 'llm', 0), ('lucidrains/dalle2-pytorch', 0.5398170948028564, 'diffusion', 0), ('openai/openai-cookbook', 0.5388956665992737, 'ml', 1), ('bigscience-workshop/megatron-deepspeed', 0.5385422110557556, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5385422110557556, 'llm', 0), ('pytorch-labs/gpt-fast', 0.5367690920829773, 'llm', 0), ('hannibal046/awesome-llm', 0.5346177220344543, 'study', 0), ('guardrails-ai/guardrails', 0.5327882766723633, 'llm', 1), ('lucidrains/deep-daze', 0.5265099406242371, 'ml', 0), ('run-llama/rags', 0.5192126035690308, 'llm', 1), ('nvidia/tensorrt-llm', 0.5171143412590027, 'viz', 0), ('microsoft/autogen', 0.5105615258216858, 'llm', 0), ('allenai/allennlp', 0.510489821434021, 'nlp', 0), ('promptslab/promptify', 0.5102137327194214, 'nlp', 1), ('openai/tiktoken', 0.5088499784469604, 'nlp', 0), ('explosion/spacy-transformers', 0.5079010128974915, 'llm', 1), ('eleutherai/gpt-neo', 0.5072481632232666, 'llm', 0), ('pndurette/gtts', 0.5039756298065186, 'util', 0)] | 21 | 5 | null | 0 | 1 | 0 | 58 | 20 | 0 | 4 | 4 | 1 | 1 | 90 | 1 | 39 |
617 | util | https://github.com/suor/funcy | [] | null | [] | [] | null | null | null | suor/funcy | funcy | 3,206 | 140 | 71 | Python | null | A fancy and practical functional tools | suor | 2024-01-13 | 2012-10-13 | 589 | 5.439166 | null | A fancy and practical functional tools | ['functional-programming', 'utilities'] | ['functional-programming', 'utilities'] | 2023-12-17 | [('evhub/coconut', 0.6461945176124573, 'util', 1), ('pytoolz/toolz', 0.6413887143135071, 'util', 0), ('gondolav/pyfuncol', 0.5316035747528076, 'util', 0), ('pytoolz/cytoolz', 0.5295758247375488, 'util', 0), ('ethereum/eth-utils', 0.5216156244277954, 'crypto', 0)] | 33 | 2 | null | 0.56 | 17 | 13 | 137 | 1 | 0 | 5 | 5 | 17 | 16 | 90 | 0.9 | 39 |
1,412 | viz | https://github.com/netflix/flamescope | ['data-visualization'] | null | [] | [] | null | null | null | netflix/flamescope | flamescope | 2,951 | 181 | 342 | Python | null | FlameScope is a visualization tool for exploring different time ranges as Flame Graphs. | netflix | 2024-01-13 | 2018-03-30 | 304 | 9.689024 | https://avatars.githubusercontent.com/u/913567?v=4 | FlameScope is a visualization tool for exploring different time ranges as Flame Graphs. | [] | ['data-visualization'] | 2022-04-21 | [('mwaskom/seaborn', 0.5240253806114197, 'viz', 1), ('matplotlib/mplfinance', 0.5054373741149902, 'finance', 0)] | 26 | 6 | null | 0 | 1 | 0 | 71 | 21 | 0 | 0 | 0 | 1 | 4 | 90 | 4 | 39 |
1,475 | util | https://github.com/pexpect/pexpect | ['automation'] | null | [] | [] | null | null | null | pexpect/pexpect | pexpect | 2,476 | 475 | 91 | Python | http://pexpect.readthedocs.io/ | A Python module for controlling interactive programs in a pseudo-terminal | pexpect | 2024-01-12 | 2013-09-17 | 541 | 4.57671 | https://avatars.githubusercontent.com/u/5480175?v=4 | A Python module for controlling interactive programs in a pseudo-terminal | [] | ['automation'] | 2023-11-25 | [('tmbo/questionary', 0.6019250750541687, 'term', 0), ('google/python-fire', 0.5853911638259888, 'term', 0), ('python/cpython', 0.5793547630310059, 'util', 0), ('pallets/click', 0.5701817870140076, 'term', 0), ('jquast/blessed', 0.5613400340080261, 'term', 0), ('google/pyglove', 0.557771623134613, 'util', 0), ('urwid/urwid', 0.553383469581604, 'term', 0), ('pyscript/pyscript-cli', 0.5519907474517822, 'web', 0), ('hoffstadt/dearpygui', 0.5491853952407837, 'gui', 0), ('pyston/pyston', 0.5372031331062317, 'util', 0), ('microsoft/playwright-python', 0.5341052412986755, 'testing', 1), ('tiangolo/typer', 0.5308032035827637, 'term', 0), ('textualize/trogon', 0.5282593965530396, 'term', 0), ('stanfordnlp/dspy', 0.5249006152153015, 'llm', 0), ('pypy/pypy', 0.5242745280265808, 'util', 0), ('eleutherai/pyfra', 0.5216565728187561, 'ml', 0), ('pytoolz/toolz', 0.5134918093681335, 'util', 0), ('ianmiell/shutit', 0.5116491317749023, 'util', 0), ('willmcgugan/textual', 0.5012505054473877, 'term', 0)] | 108 | 5 | null | 0.56 | 13 | 5 | 126 | 2 | 1 | 2 | 1 | 13 | 14 | 90 | 1.1 | 39 |
892 | ml | https://github.com/shankarpandala/lazypredict | [] | null | [] | [] | null | null | null | shankarpandala/lazypredict | lazypredict | 2,347 | 276 | 27 | Python | null | Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning | shankarpandala | 2024-01-13 | 2019-11-16 | 219 | 10.695964 | null | Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning | ['automl', 'classification', 'machine-learning', 'regression'] | ['automl', 'classification', 'machine-learning', 'regression'] | 2022-09-28 | [('microsoft/flaml', 0.6851475834846497, 'ml', 4), ('microsoft/nni', 0.5795509815216064, 'ml', 2), ('winedarksea/autots', 0.5729676485061646, 'time-series', 2), ('automl/auto-sklearn', 0.5726633667945862, 'ml', 1), ('rafiqhasan/auto-tensorflow', 0.5576849579811096, 'ml-dl', 2), ('nccr-itmo/fedot', 0.5503329038619995, 'ml-ops', 2), ('mljar/mljar-supervised', 0.5433629155158997, 'ml', 2), ('awslabs/autogluon', 0.5431965589523315, 'ml', 2), ('mosaicml/composer', 0.5417070984840393, 'ml-dl', 1), ('keras-team/autokeras', 0.5269849896430969, 'ml-dl', 2), ('xplainable/xplainable', 0.5252819061279297, 'ml-interpretability', 1), ('eugeneyan/testing-ml', 0.5170032382011414, 'testing', 1), ('firmai/atspy', 0.5108960866928101, 'time-series', 0), ('huggingface/evaluate', 0.5062326788902283, 'ml', 1), ('patchy631/machine-learning', 0.5044746398925781, 'ml', 0), ('teamhg-memex/eli5', 0.5024835467338562, 'ml', 1), ('selfexplainml/piml-toolbox', 0.500099241733551, 'ml-interpretability', 0)] | 17 | 7 | null | 0 | 10 | 2 | 51 | 16 | 0 | 3 | 3 | 10 | 6 | 90 | 0.6 | 39 |
1,843 | util | https://github.com/pndurette/gtts | ['tts'] | null | [] | [] | null | null | null | pndurette/gtts | gTTS | 2,078 | 347 | 66 | Python | http://gtts.readthedocs.org/ | Python library and CLI tool to interface with Google Translate's text-to-speech API | pndurette | 2024-01-14 | 2014-05-15 | 506 | 4.10093 | null | Python library and CLI tool to interface with Google Translate's text-to-speech API | ['cli', 'gtts', 'speech', 'speech-api', 'text-to-speech', 'tts'] | ['cli', 'gtts', 'speech', 'speech-api', 'text-to-speech', 'tts'] | 2024-01-07 | [('googleapis/python-speech', 0.7090864181518555, 'ml', 0), ('uberi/speech_recognition', 0.7022308707237244, 'ml', 0), ('nateshmbhat/pyttsx3', 0.6920114159584045, 'util', 1), ('facebookresearch/seamless_communication', 0.5938905477523804, 'nlp', 1), ('espnet/espnet', 0.5670027732849121, 'nlp', 0), ('pemistahl/lingua-py', 0.5668443441390991, 'nlp', 0), ('irmen/pyminiaudio', 0.5513820648193359, 'util', 0), ('dialogflow/dialogflow-python-client-v2', 0.5459315776824951, 'nlp', 0), ('spotify/pedalboard', 0.5376996994018555, 'util', 0), ('speechbrain/speechbrain', 0.5305692553520203, 'nlp', 0), ('dsdanielpark/bard-api', 0.5274245738983154, 'llm', 0), ('minimaxir/simpleaichat', 0.526296854019165, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5201086401939392, 'nlp', 0), ('googleapis/google-api-python-client', 0.5190337300300598, 'util', 0), ('killianlucas/open-interpreter', 0.5171147584915161, 'llm', 0), ('m-bain/whisperx', 0.509675920009613, 'nlp', 1), ('minimaxir/gpt-2-simple', 0.5039756298065186, 'llm', 0), ('plachtaa/vall-e-x', 0.5036769509315491, 'llm', 2)] | 37 | 2 | null | 0.73 | 15 | 15 | 118 | 0 | 4 | 4 | 4 | 15 | 16 | 90 | 1.1 | 39 |
816 | data | https://github.com/uqfoundation/dill | [] | null | [] | [] | 1 | null | null | uqfoundation/dill | dill | 2,062 | 208 | 23 | Python | http://dill.rtfd.io | serialize all of Python | uqfoundation | 2024-01-13 | 2013-06-28 | 552 | 3.731644 | https://avatars.githubusercontent.com/u/2855931?v=4 | serialize all of Python | [] | [] | 2024-01-01 | [('jsonpickle/jsonpickle', 0.601097047328949, 'data', 0), ('marshmallow-code/marshmallow', 0.5810075402259827, 'util', 0), ('instagram/libcst', 0.5361902713775635, 'util', 0), ('python-odin/odin', 0.5188406705856323, 'util', 0), ('replicate/replicate-python', 0.5080131888389587, 'ml', 0), ('mkdocstrings/griffe', 0.506209135055542, 'util', 0)] | 43 | 5 | null | 0.65 | 32 | 12 | 128 | 0 | 1 | 2 | 1 | 33 | 31 | 90 | 0.9 | 39 |
693 | util | https://github.com/grantjenks/python-diskcache | [] | null | [] | [] | null | null | null | grantjenks/python-diskcache | python-diskcache | 1,953 | 151 | 22 | Python | http://www.grantjenks.com/docs/diskcache/ | Python disk-backed cache (Django-compatible). Faster than Redis and Memcached. Pure-Python. | grantjenks | 2024-01-14 | 2016-02-03 | 416 | 4.685058 | null | Python disk-backed cache (Django-compatible). Faster than Redis and Memcached. Pure-Python. | ['cache', 'filesystem', 'key-value-store', 'persistence'] | ['cache', 'filesystem', 'key-value-store', 'persistence'] | 2023-08-31 | [('python-cachier/cachier', 0.6893970966339111, 'perf', 1), ('dgilland/cacheout', 0.6435301899909973, 'perf', 0), ('aio-libs/aiocache', 0.6346278786659241, 'data', 1), ('long2ice/fastapi-cache', 0.6009683609008789, 'web', 1), ('erotemic/ubelt', 0.5623111724853516, 'util', 0), ('klen/py-frameworks-bench', 0.5420731902122498, 'perf', 0), ('pytables/pytables', 0.5363883376121521, 'data', 0), ('joblib/joblib', 0.5340135097503662, 'util', 0), ('fsspec/filesystem_spec', 0.5200872421264648, 'util', 0), ('spotify/annoy', 0.5176307559013367, 'ml', 0), ('samuelcolvin/arq', 0.5104993581771851, 'data', 0), ('samuelcolvin/watchfiles', 0.5041387677192688, 'util', 1), ('neoteroi/blacksheep', 0.5029258728027344, 'web', 0)] | 24 | 3 | null | 0.56 | 12 | 3 | 97 | 5 | 0 | 11 | 11 | 12 | 28 | 90 | 2.3 | 39 |
32 | nlp | https://github.com/jamesturk/jellyfish | [] | null | [] | [] | null | null | null | jamesturk/jellyfish | jellyfish | 1,944 | 160 | 44 | Jupyter Notebook | https://jamesturk.github.io/jellyfish/ | 🪼 a python library for doing approximate and phonetic matching of strings. | jamesturk | 2024-01-12 | 2010-07-09 | 707 | 2.747426 | null | 🪼 a python library for doing approximate and phonetic matching of strings. | ['fuzzy-search', 'hamming', 'jaro-winkler', 'levenshtein', 'metaphone', 'soundex'] | ['fuzzy-search', 'hamming', 'jaro-winkler', 'levenshtein', 'metaphone', 'soundex'] | 2023-11-17 | [('life4/textdistance', 0.6177361011505127, 'nlp', 1), ('uberi/speech_recognition', 0.545852541923523, 'ml', 0), ('pytoolz/toolz', 0.5310186147689819, 'util', 0), ('spotify/pedalboard', 0.5257704854011536, 'util', 0)] | 31 | 7 | null | 1.67 | 13 | 10 | 165 | 2 | 0 | 4 | 4 | 13 | 22 | 90 | 1.7 | 39 |
1,333 | util | https://github.com/carpedm20/emoji | [] | null | [] | [] | null | null | null | carpedm20/emoji | emoji | 1,776 | 299 | 26 | Python | null | emoji terminal output for Python | carpedm20 | 2024-01-13 | 2014-08-18 | 493 | 3.60139 | null | emoji terminal output for Python | ['emoji'] | ['emoji'] | 2023-12-05 | [('trananhkma/fucking-awesome-python', 0.5481189489364624, 'study', 0), ('tartley/colorama', 0.5459503531455994, 'util', 0), ('willmcgugan/rich', 0.5216153264045715, 'term', 1), ('jquast/blessed', 0.5172060132026672, 'term', 0)] | 65 | 2 | null | 0.77 | 6 | 3 | 115 | 1 | 8 | 3 | 8 | 6 | 11 | 90 | 1.8 | 39 |
1,855 | template | https://github.com/cjolowicz/cookiecutter-hypermodern-python | ['hypermodern'] | Cookiecutter template for a Python package based on the Hypermodern Python article series. | [] | [] | null | null | null | cjolowicz/cookiecutter-hypermodern-python | cookiecutter-hypermodern-python | 1,665 | 243 | 19 | Python | http://cookiecutter-hypermodern-python.readthedocs.io/ | Hypermodern Python Cookiecutter | cjolowicz | 2024-01-11 | 2020-02-07 | 207 | 8.021335 | null | Hypermodern Python Cookiecutter | [] | ['hypermodern'] | 2023-07-08 | [('ionelmc/cookiecutter-pylibrary', 0.6513864994049072, 'template', 0), ('lyz-code/cookiecutter-python-project', 0.6242104768753052, 'template', 0), ('tedivm/robs_awesome_python_template', 0.5808916687965393, 'template', 0), ('giswqs/pypackage', 0.5635570883750916, 'template', 0)] | 21 | 6 | null | 1.04 | 8 | 1 | 48 | 6 | 0 | 6 | 6 | 8 | 4 | 90 | 0.5 | 39 |
1,303 | sim | https://github.com/microsoft/promptcraft-robotics | ['prompt-engineering'] | null | [] | [] | null | null | null | microsoft/promptcraft-robotics | PromptCraft-Robotics | 1,587 | 167 | 40 | Python | https://aka.ms/ChatGPT-Robotics | Community for applying LLMs to robotics and a robot simulator with ChatGPT integration | microsoft | 2024-01-13 | 2023-02-08 | 50 | 31.205056 | https://avatars.githubusercontent.com/u/6154722?v=4 | Community for applying LLMs to robotics and a robot simulator with ChatGPT integration | ['airsim', 'chatgpt', 'llm', 'prompt-engineering', 'robotics', 'simulation'] | ['airsim', 'chatgpt', 'llm', 'prompt-engineering', 'robotics', 'simulation'] | 2023-04-19 | [('nomic-ai/gpt4all', 0.6439793109893799, 'llm', 0), ('hwchase17/langchain', 0.6214913129806519, 'llm', 0), ('microsoft/promptflow', 0.6192827224731445, 'llm', 3), ('deep-diver/llm-as-chatbot', 0.6085308194160461, 'llm', 0), ('embedchain/embedchain', 0.596112847328186, 'llm', 2), ('microsoft/chatgpt-robot-manipulation-prompts', 0.580747663974762, 'llm', 0), ('chatarena/chatarena', 0.5778838992118835, 'llm', 1), ('mmabrouk/chatgpt-wrapper', 0.5717716217041016, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5677699446678162, 'perf', 0), ('pathwaycom/llm-app', 0.5630580186843872, 'llm', 1), ('microsoft/lmops', 0.5502687096595764, 'llm', 1), ('h2oai/h2o-llmstudio', 0.5414144992828369, 'llm', 2), ('iryna-kondr/scikit-llm', 0.5381367206573486, 'llm', 2), ('microsoft/autogen', 0.5330193638801575, 'llm', 1), ('confident-ai/deepeval', 0.5318647623062134, 'testing', 2), ('agenta-ai/agenta', 0.5304033756256104, 'llm', 2), ('microsoft/semantic-kernel', 0.5297889113426208, 'llm', 1), ('shishirpatil/gorilla', 0.5253349542617798, 'llm', 2), ('run-llama/rags', 0.5236408710479736, 'llm', 2), ('prefecthq/marvin', 0.5221617817878723, 'nlp', 1), ('chainlit/chainlit', 0.5212441086769104, 'llm', 2), ('dylanhogg/llmgraph', 0.5207331776618958, 'ml', 2), ('cheshire-cat-ai/core', 0.513721764087677, 'llm', 1), ('humanoidagents/humanoidagents', 0.51203453540802, 'sim', 2), ('mnotgod96/appagent', 0.5117555260658264, 'llm', 2)] | 4 | 1 | null | 0.1 | 3 | 2 | 11 | 9 | 1 | 1 | 1 | 3 | 3 | 90 | 1 | 39 |
350 | ml | https://github.com/jina-ai/finetuner | [] | null | [] | [] | null | null | null | jina-ai/finetuner | finetuner | 1,373 | 64 | 25 | Python | https://finetuner.jina.ai | :dart: Task-oriented embedding tuning for BERT, CLIP, etc. | jina-ai | 2024-01-13 | 2021-08-11 | 128 | 10.655211 | https://avatars.githubusercontent.com/u/60539444?v=4 | :dart: Task-oriented embedding tuning for BERT, CLIP, etc. | ['bert', 'few-shot-learning', 'fine-tuning', 'finetuning', 'jina', 'metric-learning', 'negative-sampling', 'neural-search', 'openai-clip', 'pretrained-models', 'siamese-network', 'similarity-learning', 'transfer-learning', 'triplet-loss'] | ['bert', 'few-shot-learning', 'fine-tuning', 'finetuning', 'jina', 'metric-learning', 'negative-sampling', 'neural-search', 'openai-clip', 'pretrained-models', 'siamese-network', 'similarity-learning', 'transfer-learning', 'triplet-loss'] | 2023-07-26 | [('jina-ai/clip-as-service', 0.7554095387458801, 'nlp', 2), ('paddlepaddle/paddlenlp', 0.6416314840316772, 'llm', 3), ('llmware-ai/llmware', 0.6378600597381592, 'llm', 1), ('extreme-bert/extreme-bert', 0.6179499626159668, 'llm', 1), ('alibaba/easynlp', 0.6169459819793701, 'nlp', 3), ('ukplab/sentence-transformers', 0.5992518663406372, 'nlp', 0), ('huggingface/transformers', 0.5934631824493408, 'nlp', 2), ('ddangelov/top2vec', 0.587577760219574, 'nlp', 1), ('amansrivastava17/embedding-as-service', 0.5800686478614807, 'nlp', 1), ('whu-zqh/chatgpt-vs.-bert', 0.577040433883667, 'llm', 1), ('explosion/spacy-transformers', 0.5754354596138, 'llm', 2), ('neuml/txtai', 0.56916743516922, 'nlp', 1), ('deepset-ai/farm', 0.5661262273788452, 'nlp', 3), ('jonasgeiping/cramming', 0.5652620792388916, 'nlp', 0), ('intellabs/fastrag', 0.5626152157783508, 'nlp', 0), ('qdrant/quaterion', 0.5520226359367371, 'ml', 2), ('bigscience-workshop/petals', 0.5490538477897644, 'data', 1), ('graykode/nlp-tutorial', 0.5485501885414124, 'study', 1), ('explosion/thinc', 0.5483794808387756, 'ml-dl', 0), ('qdrant/fastembed', 0.5480974912643433, 'ml', 0), ('plasticityai/magnitude', 0.5438824892044067, 'nlp', 0), ('nvidia/deeplearningexamples', 0.5358811616897583, 'ml-dl', 0), ('bytedance/lightseq', 0.5338277220726013, 'nlp', 1), ('luodian/otter', 0.5296557545661926, 'llm', 0), ('docarray/docarray', 0.5270631313323975, 'data', 1), ('koaning/embetter', 0.526446521282196, 'data', 0), ('bigscience-workshop/megatron-deepspeed', 0.5171146988868713, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5171146988868713, 'llm', 0), ('huggingface/neuralcoref', 0.5169621706008911, 'nlp', 0), ('muennighoff/sgpt', 0.512883186340332, 'llm', 1), ('qanastek/drbert', 0.5117612481117249, 'llm', 1), ('eleutherai/lm-evaluation-harness', 0.5112559199333191, 'llm', 0), ('openai/clip', 0.505680501461029, 'ml-dl', 0), ('maartengr/bertopic', 0.5031505227088928, 'nlp', 1), ('lm-sys/fastchat', 0.5029986500740051, 'llm', 0), ('thilinarajapakse/simpletransformers', 0.5025129914283752, 'nlp', 0), ('freedomintelligence/llmzoo', 0.5019564628601074, 'llm', 0)] | 35 | 3 | null | 1.06 | 8 | 6 | 30 | 6 | 10 | 17 | 10 | 8 | 1 | 90 | 0.1 | 39 |
509 | typing | https://github.com/agronholm/typeguard | ['typechecker', 'code-quality'] | null | [] | [] | null | null | null | agronholm/typeguard | typeguard | 1,372 | 101 | 22 | Python | null | Run-time type checker for Python | agronholm | 2024-01-13 | 2015-12-27 | 422 | 3.248985 | null | Run-time type checker for Python | [] | ['code-quality', 'typechecker'] | 2024-01-09 | [('microsoft/pyright', 0.9137517213821411, 'typing', 2), ('facebook/pyre-check', 0.8064729571342468, 'typing', 2), ('google/pytype', 0.7289842367172241, 'typing', 2), ('python/mypy', 0.7131239771842957, 'typing', 2), ('instagram/monkeytype', 0.6599376201629639, 'typing', 1), ('pycqa/mccabe', 0.5824611186981201, 'util', 0), ('patrick-kidger/torchtyping', 0.5700576305389404, 'typing', 0), ('python/typeshed', 0.5519527792930603, 'typing', 1), ('jendrikseipp/vulture', 0.5461918711662292, 'util', 1), ('grantjenks/blue', 0.5374644994735718, 'util', 1), ('rubik/radon', 0.5345003604888916, 'util', 0), ('pydantic/pydantic', 0.5333467721939087, 'util', 0), ('psf/black', 0.5326973795890808, 'util', 1), ('google/yapf', 0.5313608050346375, 'util', 1), ('landscapeio/prospector', 0.528834879398346, 'util', 0), ('tiangolo/typer', 0.5242935419082642, 'term', 0), ('nedbat/coveragepy', 0.5188262462615967, 'testing', 0), ('pympler/pympler', 0.5068668127059937, 'perf', 0), ('pycqa/pycodestyle', 0.5046524405479431, 'util', 0)] | 33 | 4 | null | 3.96 | 19 | 11 | 98 | 0 | 2 | 8 | 2 | 19 | 21 | 90 | 1.1 | 39 |
900 | viz | https://github.com/datapane/datapane | [] | null | [] | [] | null | null | null | datapane/datapane | datapane | 1,330 | 96 | 19 | Python | https://datapane.com | Build and share data reports in 100% Python | datapane | 2024-01-13 | 2020-04-23 | 196 | 6.761075 | https://avatars.githubusercontent.com/u/55440415?v=4 | Build and share data reports in 100% Python | ['dashboard', 'data-visualization', 'reporting'] | ['dashboard', 'data-visualization', 'reporting'] | 2023-09-07 | [('federicoceratto/dashing', 0.6180770993232727, 'term', 1), ('mwaskom/seaborn', 0.5832452774047852, 'viz', 1), ('plotly/dash', 0.5667321681976318, 'viz', 1), ('holoviz/panel', 0.5654339790344238, 'viz', 0), ('altair-viz/altair', 0.556462287902832, 'viz', 0), ('pytables/pytables', 0.5492084622383118, 'data', 0), ('lux-org/lux', 0.5429391860961914, 'viz', 0), ('man-group/dtale', 0.5396667718887329, 'viz', 1), ('kanaries/pygwalker', 0.5378132462501526, 'pandas', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5317434668540955, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.5247305035591125, 'jupyter', 1), ('enthought/mayavi', 0.5168454051017761, 'viz', 0)] | 13 | 4 | null | 2.87 | 1 | 1 | 45 | 4 | 0 | 15 | 15 | 1 | 1 | 90 | 1 | 39 |
163 | llm | https://github.com/explosion/spacy-transformers | [] | null | [] | [] | null | null | null | explosion/spacy-transformers | spacy-transformers | 1,306 | 162 | 32 | Python | https://spacy.io/usage/embeddings-transformers | 🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy | explosion | 2024-01-13 | 2019-07-26 | 235 | 5.543966 | https://avatars.githubusercontent.com/u/20011530?v=4 | 🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy | ['bert', 'google', 'gpt-2', 'huggingface', 'language-model', 'machine-learning', 'natural-language-processing', 'natural-language-understanding', 'nlp', 'openai', 'pytorch', 'pytorch-model', 'spacy', 'spacy-extension', 'spacy-pipeline', 'transfer-learning', 'xlnet'] | ['bert', 'google', 'gpt-2', 'huggingface', 'language-model', 'machine-learning', 'natural-language-processing', 'natural-language-understanding', 'nlp', 'openai', 'pytorch', 'pytorch-model', 'spacy', 'spacy-extension', 'spacy-pipeline', 'transfer-learning', 'xlnet'] | 2023-12-19 | [('explosion/spacy-models', 0.6662450432777405, 'nlp', 4), ('huggingface/transformers', 0.6527365446090698, 'nlp', 6), ('bigscience-workshop/megatron-deepspeed', 0.6363678574562073, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6363678574562073, 'llm', 0), ('extreme-bert/extreme-bert', 0.6331859230995178, 'llm', 6), ('huggingface/neuralcoref', 0.6309342980384827, 'nlp', 6), ('explosion/spacy-stanza', 0.6275186538696289, 'nlp', 5), ('explosion/spacy-streamlit', 0.5857328772544861, 'nlp', 4), ('jina-ai/finetuner', 0.5754354596138, 'ml', 2), ('alibaba/easynlp', 0.5717461109161377, 'nlp', 5), ('jonasgeiping/cramming', 0.5527690649032593, 'nlp', 2), ('karpathy/mingpt', 0.5479704141616821, 'llm', 0), ('deepset-ai/farm', 0.5454752445220947, 'nlp', 4), ('lucidrains/toolformer-pytorch', 0.5443832278251648, 'llm', 1), ('paddlepaddle/paddlenlp', 0.539587140083313, 'llm', 2), ('bobazooba/xllm', 0.529644787311554, 'llm', 2), ('lianjiatech/belle', 0.5292598009109497, 'llm', 0), ('llmware-ai/llmware', 0.5283253192901611, 'llm', 4), ('neuralmagic/sparseml', 0.525894284248352, 'ml-dl', 3), ('thilinarajapakse/simpletransformers', 0.5258124470710754, 'nlp', 0), ('explosion/spacy-llm', 0.524055004119873, 'llm', 5), ('explosion/thinc', 0.5206478238105774, 'ml-dl', 5), ('explosion/spacy', 0.5188299417495728, 'nlp', 4), ('qanastek/drbert', 0.5139819979667664, 'llm', 3), ('huggingface/optimum', 0.5108177661895752, 'ml', 1), ('google-research/electra', 0.5100114941596985, 'ml-dl', 1), ('microsoft/autogen', 0.5083666443824768, 'llm', 0), ('minimaxir/gpt-2-simple', 0.5079010128974915, 'llm', 1), ('lm-sys/fastchat', 0.5027205348014832, 'llm', 1)] | 22 | 6 | null | 0.87 | 6 | 6 | 54 | 1 | 10 | 11 | 10 | 6 | 1 | 90 | 0.2 | 39 |
446 | gis | https://github.com/pysal/pysal | [] | null | [] | [] | 1 | null | null | pysal/pysal | pysal | 1,236 | 303 | 84 | Jupyter Notebook | http://pysal.org/pysal | PySAL: Python Spatial Analysis Library Meta-Package | pysal | 2024-01-14 | 2013-02-19 | 571 | 2.164623 | https://avatars.githubusercontent.com/u/3769919?v=4 | PySAL: Python Spatial Analysis Library Meta-Package | [] | [] | 2023-12-11 | [('makepath/xarray-spatial', 0.6753366589546204, 'gis', 0), ('earthlab/earthpy', 0.6416592597961426, 'gis', 0), ('artelys/geonetworkx', 0.625034749507904, 'gis', 0), ('toblerity/rtree', 0.6110436320304871, 'gis', 0), ('scikit-geometry/scikit-geometry', 0.5866171717643738, 'gis', 0), ('albahnsen/pycircular', 0.581803023815155, 'math', 0), ('scitools/cartopy', 0.5811754465103149, 'gis', 0), ('altair-viz/altair', 0.5805773735046387, 'viz', 0), ('residentmario/geoplot', 0.579075276851654, 'gis', 0), ('geopandas/geopandas', 0.5672765374183655, 'gis', 0), ('opengeos/leafmap', 0.5648621320724487, 'gis', 0), ('pytoolz/toolz', 0.5646018385887146, 'util', 0), ('marcomusy/vedo', 0.560834527015686, 'viz', 0), ('scipy/scipy', 0.5544923543930054, 'math', 0), ('has2k1/plotnine', 0.5488908290863037, 'viz', 0), ('eleutherai/pyfra', 0.547865092754364, 'ml', 0), ('numpy/numpy', 0.5434750318527222, 'math', 0), ('gboeing/pynamical', 0.5425774455070496, 'sim', 0), ('pyutils/line_profiler', 0.5387760400772095, 'profiling', 0), ('contextlab/hypertools', 0.535285472869873, 'ml', 0), ('holoviz/geoviews', 0.535015881061554, 'gis', 0), ('stan-dev/pystan', 0.5347137451171875, 'ml', 0), ('pandas-dev/pandas', 0.5282700061798096, 'pandas', 0), ('scikit-mobility/scikit-mobility', 0.5261431336402893, 'gis', 0), ('scitools/iris', 0.5261117815971375, 'gis', 0), ('enthought/mayavi', 0.5210456848144531, 'viz', 0), ('rasbt/mlxtend', 0.5194495320320129, 'ml', 0), ('pycaret/pycaret', 0.5162516236305237, 'ml', 0), ('pyproj4/pyproj', 0.5152866244316101, 'gis', 0), ('csurfer/pyheat', 0.5142292380332947, 'profiling', 0), ('wesm/pydata-book', 0.5121508836746216, 'study', 0), ('scikit-learn-contrib/metric-learn', 0.5091261267662048, 'ml', 0), ('mwaskom/seaborn', 0.5034690499305725, 'viz', 0), ('alkaline-ml/pmdarima', 0.5029148459434509, 'time-series', 0)] | 78 | 6 | null | 0.15 | 7 | 5 | 133 | 1 | 3 | 3 | 3 | 7 | 22 | 90 | 3.1 | 39 |
1,447 | ml-rl | https://github.com/humancompatibleai/imitation | [] | null | [] | [] | null | null | null | humancompatibleai/imitation | imitation | 1,050 | 198 | 17 | Python | https://imitation.readthedocs.io/ | Clean PyTorch implementations of imitation and reward learning algorithms | humancompatibleai | 2024-01-14 | 2018-12-08 | 268 | 3.911655 | https://avatars.githubusercontent.com/u/33107497?v=4 | Clean PyTorch implementations of imitation and reward learning algorithms | ['gymnasium', 'imitation-learning', 'inverse-reinforcement-learning', 'reward-learning'] | ['gymnasium', 'imitation-learning', 'inverse-reinforcement-learning', 'reward-learning'] | 2023-12-15 | [('thu-ml/tianshou', 0.7333576679229736, 'ml-rl', 1), ('pytorch/rl', 0.6811489462852478, 'ml-rl', 0), ('denys88/rl_games', 0.6343870759010315, 'ml-rl', 0), ('nvidia-omniverse/isaacgymenvs', 0.617064356803894, 'sim', 0), ('nvidia-omniverse/omniisaacgymenvs', 0.6052762866020203, 'sim', 0), ('openai/baselines', 0.5837662816047668, 'ml-rl', 0), ('google/dopamine', 0.576420783996582, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5637737512588501, 'ml-rl', 0), ('deepmind/acme', 0.5565671920776367, 'ml-rl', 0), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5537171363830566, 'study', 0), ('pettingzoo-team/pettingzoo', 0.5525628924369812, 'ml-rl', 1), ('openai/gym', 0.5389503836631775, 'ml-rl', 0), ('mrdbourke/pytorch-deep-learning', 0.5296970009803772, 'study', 0), ('kzl/decision-transformer', 0.5276908874511719, 'ml-rl', 0), ('unity-technologies/ml-agents', 0.5231532454490662, 'ml-rl', 0), ('pytorch/ignite', 0.5217827558517456, 'ml-dl', 0), ('keras-rl/keras-rl', 0.5172331929206848, 'ml-rl', 0), ('arise-initiative/robosuite', 0.5085115432739258, 'ml-rl', 0), ('inspirai/timechamber', 0.50629061460495, 'sim', 0)] | 34 | 4 | null | 1.12 | 40 | 27 | 62 | 1 | 2 | 2 | 2 | 40 | 65 | 90 | 1.6 | 39 |
813 | viz | https://github.com/facultyai/dash-bootstrap-components | [] | null | [] | [] | null | null | null | facultyai/dash-bootstrap-components | dash-bootstrap-components | 1,036 | 220 | 23 | JavaScript | https://dash-bootstrap-components.opensource.faculty.ai/ | Bootstrap components for Plotly Dash | facultyai | 2024-01-12 | 2018-09-21 | 279 | 3.705672 | https://avatars.githubusercontent.com/u/10586141?v=4 | Bootstrap components for Plotly Dash | ['bootstrap', 'dashboards', 'julia', 'plotly-dash', 'r'] | ['bootstrap', 'dashboards', 'julia', 'plotly-dash', 'r'] | 2024-01-06 | [('plotly/plotly.py', 0.5394929051399231, 'viz', 1)] | 31 | 2 | null | 1.06 | 16 | 10 | 65 | 0 | 14 | 31 | 14 | 16 | 20 | 90 | 1.2 | 39 |
1,312 | llm | https://github.com/nomic-ai/pygpt4all | [] | null | [] | [] | null | null | null | nomic-ai/pygpt4all | pygpt4all | 1,019 | 162 | 13 | C++ | https://nomic-ai.github.io/pygpt4all/ | Official supported Python bindings for llama.cpp + gpt4all | nomic-ai | 2024-01-12 | 2023-04-03 | 43 | 23.619205 | https://avatars.githubusercontent.com/u/102670180?v=4 | Official supported Python bindings for llama.cpp + gpt4all | [] | [] | 2023-05-12 | [('abetlen/llama-cpp-python', 0.7292018532752991, 'llm', 0), ('numba/llvmlite', 0.5271598100662231, 'util', 0)] | 12 | 3 | null | 1.48 | 0 | 0 | 10 | 8 | 5 | 6 | 5 | 0 | 0 | 90 | 0 | 39 |
614 | jupyter | https://github.com/nbqa-dev/nbqa | [] | null | [] | [] | null | null | null | nbqa-dev/nbqa | nbQA | 924 | 36 | 8 | Python | https://nbqa.readthedocs.io/en/latest/index.html | Run ruff, isort, pyupgrade, mypy, pylint, flake8, and more on Jupyter Notebooks | nbqa-dev | 2024-01-12 | 2020-07-11 | 185 | 4.983051 | https://avatars.githubusercontent.com/u/69012749?v=4 | Run ruff, isort, pyupgrade, mypy, pylint, flake8, and more on Jupyter Notebooks | ['black', 'codequality', 'doctest', 'flake8', 'isort', 'jupyter-notebook', 'lint', 'mypy', 'pre-commit', 'pre-commit-hook', 'pylint', 'pyupgrade', 'ruff', 'yapf'] | ['black', 'codequality', 'doctest', 'flake8', 'isort', 'jupyter-notebook', 'lint', 'mypy', 'pre-commit', 'pre-commit-hook', 'pylint', 'pyupgrade', 'ruff', 'yapf'] | 2023-11-27 | [('mwouts/jupytext', 0.5719586610794067, 'jupyter', 1), ('psf/black', 0.5564059019088745, 'util', 2), ('cohere-ai/notebooks', 0.550182044506073, 'llm', 0), ('jupyter/nbformat', 0.5436616539955139, 'jupyter', 0), ('jupyter/nbdime', 0.5352687239646912, 'jupyter', 1), ('grantjenks/blue', 0.5135296583175659, 'util', 2), ('computationalmodelling/nbval', 0.5108411312103271, 'jupyter', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5034378170967102, 'study', 0)] | 25 | 6 | null | 0.6 | 6 | 5 | 43 | 2 | 0 | 25 | 25 | 6 | 6 | 90 | 1 | 39 |
475 | pandas | https://github.com/holoviz/hvplot | [] | null | [] | [] | null | null | null | holoviz/hvplot | hvplot | 874 | 94 | 23 | Python | https://hvplot.holoviz.org | A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews | holoviz | 2024-01-12 | 2018-03-19 | 306 | 2.854876 | https://avatars.githubusercontent.com/u/51678735?v=4 | A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews | ['datashader', 'holoviews', 'holoviz', 'plotting'] | ['datashader', 'holoviews', 'holoviz', 'plotting'] | 2023-12-22 | [('matplotlib/matplotlib', 0.7096381187438965, 'viz', 1), ('cuemacro/chartpy', 0.6870236992835999, 'viz', 1), ('holoviz/holoviews', 0.682068407535553, 'viz', 3), ('man-group/dtale', 0.6696478724479675, 'viz', 0), ('holoviz/holoviz', 0.6662247776985168, 'viz', 3), ('holoviz/panel', 0.6510308980941772, 'viz', 2), ('plotly/plotly.py', 0.6457611918449402, 'viz', 0), ('mwaskom/seaborn', 0.636111855506897, 'viz', 0), ('kanaries/pygwalker', 0.6253153085708618, 'pandas', 0), ('residentmario/geoplot', 0.6143922805786133, 'gis', 0), ('bokeh/bokeh', 0.6104094982147217, 'viz', 1), ('graphistry/pygraphistry', 0.6067784428596497, 'data', 0), ('holoviz/geoviews', 0.6014821529388428, 'gis', 3), ('westhealth/pyvis', 0.5998131036758423, 'graph', 0), ('pyqtgraph/pyqtgraph', 0.5959815979003906, 'viz', 0), ('altair-viz/altair', 0.5933358669281006, 'viz', 0), ('holoviz/datashader', 0.5903522372245789, 'gis', 2), ('contextlab/hypertools', 0.5875470042228699, 'ml', 0), ('scitools/iris', 0.5860223770141602, 'gis', 0), ('has2k1/plotnine', 0.5800595879554749, 'viz', 1), ('pyvista/pyvista', 0.5786033868789673, 'viz', 1), ('enthought/mayavi', 0.5784933567047119, 'viz', 0), ('jakevdp/pythondatasciencehandbook', 0.5669666528701782, 'study', 0), ('maartenbreddels/ipyvolume', 0.5658844113349915, 'jupyter', 1), ('lux-org/lux', 0.5583831071853638, 'viz', 0), ('scitools/cartopy', 0.5497469305992126, 'gis', 0), ('matplotlib/mplfinance', 0.5378217101097107, 'finance', 0), ('pygraphviz/pygraphviz', 0.5362616181373596, 'viz', 0), ('makepath/xarray-spatial', 0.5334243178367615, 'gis', 1), ('pydata/xarray', 0.5328260064125061, 'util', 0), ('vizzuhq/ipyvizzu', 0.5226277112960815, 'jupyter', 1), ('artelys/geonetworkx', 0.5222033858299255, 'gis', 0), ('blaze/blaze', 0.5221161246299744, 'pandas', 0), ('facebookresearch/hiplot', 0.5185054540634155, 'viz', 0), ('dfki-ric/pytransform3d', 0.5157265663146973, 'math', 0), ('plotly/dash', 0.5148411393165588, 'viz', 0), ('marcomusy/vedo', 0.5138098001480103, 'viz', 0), ('rapidsai/cudf', 0.5121793746948242, 'pandas', 0), ('nomic-ai/deepscatter', 0.511212944984436, 'viz', 0), ('vaexio/vaex', 0.5080651640892029, 'perf', 0), ('adamerose/pandasgui', 0.5072020888328552, 'pandas', 0), ('federicoceratto/dashing', 0.5051881670951843, 'term', 0), ('nschloe/tikzplotlib', 0.5042620897293091, 'util', 0), ('jmcnamara/xlsxwriter', 0.5030190348625183, 'data', 0), ('holoviz/spatialpandas', 0.5009598135948181, 'pandas', 1), ('raphaelquast/eomaps', 0.5002750754356384, 'gis', 1)] | 45 | 3 | null | 1.81 | 95 | 37 | 71 | 1 | 3 | 21 | 3 | 95 | 193 | 90 | 2 | 39 |
481 | gis | https://github.com/sentinel-hub/sentinelhub-py | [] | null | [] | [] | null | null | null | sentinel-hub/sentinelhub-py | sentinelhub-py | 753 | 237 | 49 | Python | http://sentinelhub-py.readthedocs.io/en/latest/ | Download and process satellite imagery in Python using Sentinel Hub services. | sentinel-hub | 2024-01-12 | 2017-05-17 | 349 | 2.152307 | https://avatars.githubusercontent.com/u/31830596?v=4 | Download and process satellite imagery in Python using Sentinel Hub services. | ['aws', 'ogc-services', 'satellite-imagery', 'sentinel-hub'] | ['aws', 'ogc-services', 'satellite-imagery', 'sentinel-hub'] | 2024-01-10 | [('radiantearth/radiant-mlhub', 0.6164925694465637, 'gis', 1), ('pytroll/satpy', 0.6114635467529297, 'gis', 0), ('sentinelsat/sentinelsat', 0.5519406199455261, 'gis', 1), ('boto/boto3', 0.5275383591651917, 'util', 1), ('cuemacro/findatapy', 0.5211452841758728, 'finance', 0)] | 46 | 3 | null | 2.13 | 38 | 34 | 81 | 0 | 12 | 9 | 12 | 38 | 45 | 90 | 1.2 | 39 |
1,182 | nlp | https://github.com/pemistahl/lingua-py | [] | null | [] | [] | null | null | null | pemistahl/lingua-py | lingua-py | 747 | 37 | 11 | Python | null | The most accurate natural language detection library for Python, suitable for short text and mixed-language text | pemistahl | 2024-01-14 | 2021-07-13 | 133 | 5.616541 | null | The most accurate natural language detection library for Python, suitable for short text and mixed-language text | ['language-classification', 'language-detection', 'language-identification', 'language-recognition', 'natural-language-processing', 'nlp'] | ['language-classification', 'language-detection', 'language-identification', 'language-recognition', 'natural-language-processing', 'nlp'] | 2023-12-12 | [('uberi/speech_recognition', 0.6296498775482178, 'ml', 0), ('allenai/allennlp', 0.6268466711044312, 'nlp', 2), ('explosion/spacy', 0.5869116187095642, 'nlp', 2), ('sloria/textblob', 0.5679237246513367, 'nlp', 2), ('pndurette/gtts', 0.5668443441390991, 'util', 0), ('pypy/pypy', 0.5571848154067993, 'util', 0), ('flairnlp/flair', 0.5448145270347595, 'nlp', 2), ('rasbt/mlxtend', 0.5422750115394592, 'ml', 0), ('gunthercox/chatterbot-corpus', 0.5412878394126892, 'nlp', 0), ('pytoolz/toolz', 0.5412816405296326, 'util', 0), ('nipunsadvilkar/pysbd', 0.5244992971420288, 'nlp', 0), ('clips/pattern', 0.5218809247016907, 'nlp', 1), ('openeventdata/mordecai', 0.5192466974258423, 'gis', 1), ('pyston/pyston', 0.5171454548835754, 'util', 0), ('pandas-dev/pandas', 0.5153101682662964, 'pandas', 0), ('kagisearch/vectordb', 0.509565532207489, 'data', 0), ('explosion/spacy-models', 0.5069782137870789, 'nlp', 2), ('pycaret/pycaret', 0.5025511980056763, 'ml', 0), ('rasahq/rasa', 0.5019610524177551, 'llm', 2), ('dylanhogg/awesome-python', 0.5016226172447205, 'study', 2)] | 5 | 2 | null | 0.73 | 41 | 30 | 30 | 1 | 6 | 6 | 6 | 42 | 88 | 90 | 2.1 | 39 |
634 | data | https://github.com/dask/fastparquet | [] | null | [] | [] | null | null | null | dask/fastparquet | fastparquet | 707 | 173 | 20 | Python | null | python implementation of the parquet columnar file format. | dask | 2024-01-10 | 2015-11-06 | 429 | 1.645826 | https://avatars.githubusercontent.com/u/17131925?v=4 | python implementation of the parquet columnar file format. | [] | [] | 2023-12-22 | [('ktrueda/parquet-tools', 0.5958738327026367, 'data', 0), ('crunch-io/lazycsv', 0.5394817590713501, 'perf', 0), ('jupyter/nbformat', 0.5203571915626526, 'jupyter', 0), ('google/yapf', 0.5155162811279297, 'util', 0), ('wireservice/csvkit', 0.5032108426094055, 'util', 0)] | 93 | 5 | null | 0.85 | 30 | 25 | 100 | 1 | 0 | 6 | 6 | 30 | 69 | 90 | 2.3 | 39 |
1,584 | util | https://github.com/barracuda-fsh/pyobd | ['diagnostics'] | null | [] | [] | null | null | null | barracuda-fsh/pyobd | pyobd | 678 | 20 | 16 | Python | null | open source obd2 car diagnostics program - reuploaded | barracuda-fsh | 2024-01-13 | 2023-08-18 | 23 | 28.763636 | null | open source obd2 car diagnostics program - reuploaded | [] | ['diagnostics'] | 2023-09-17 | [] | 2 | 0 | null | 0.29 | 1 | 1 | 5 | 4 | 2 | 5 | 2 | 1 | 3 | 90 | 3 | 39 |
1,803 | ml | https://github.com/awslabs/python-deequ | ['aws', 'data-quality', 'spark'] | Python API for Deequ, a library built on Spark for defining "unit tests for data", which measure data quality in large datasets | [] | [] | null | null | null | awslabs/python-deequ | python-deequ | 618 | 169 | 19 | Python | null | Python API for Deequ | awslabs | 2024-01-12 | 2020-11-09 | 168 | 3.675446 | https://avatars.githubusercontent.com/u/3299148?v=4 | Python API for Deequ | [] | ['aws', 'data-quality', 'spark'] | 2024-01-08 | [('pynamodb/pynamodb', 0.6457101702690125, 'data', 1), ('boto/boto3', 0.5848604440689087, 'util', 1), ('geeogi/async-python-lambda-template', 0.5767794251441956, 'template', 0), ('aws/aws-sdk-pandas', 0.5529321432113647, 'pandas', 1), ('nficano/python-lambda', 0.542289137840271, 'util', 1), ('datastax/python-driver', 0.5413904190063477, 'data', 0), ('nasdaq/data-link-python', 0.5292037725448608, 'finance', 0), ('aws/chalice', 0.5238412618637085, 'web', 1), ('aws/aws-lambda-python-runtime-interface-client', 0.5195323824882507, 'util', 0), ('amzn/ion-python', 0.5171683430671692, 'data', 0)] | 18 | 5 | null | 0.35 | 37 | 7 | 39 | 0 | 4 | 2 | 4 | 37 | 61 | 90 | 1.6 | 39 |
1,444 | util | https://github.com/pypa/build | ['build'] | null | [] | [] | null | null | null | pypa/build | build | 605 | 116 | 25 | Python | https://build.pypa.io | A simple, correct Python build frontend | pypa | 2024-01-13 | 2020-05-10 | 194 | 3.113971 | https://avatars.githubusercontent.com/u/647025?v=4 | A simple, correct Python build frontend | [] | ['build'] | 2023-12-21 | [('pypa/hatch', 0.5941884517669678, 'util', 1), ('r0x0r/pywebview', 0.5934130549430847, 'gui', 0), ('tezromach/python-package-template', 0.5865764021873474, 'template', 0), ('pypa/pipenv', 0.5441533327102661, 'util', 0), ('pallets/flask', 0.5296503901481628, 'web', 0), ('ofek/pyapp', 0.5296021103858948, 'util', 1), ('eugeneyan/python-collab-template', 0.523838460445404, 'template', 0), ('amaargiru/pyroad', 0.5195523500442505, 'study', 0), ('willmcgugan/textual', 0.5193080306053162, 'term', 0), ('pyodide/micropip', 0.5155296325683594, 'util', 0), ('tedivm/robs_awesome_python_template', 0.5029564499855042, 'template', 0)] | 48 | 6 | null | 2.04 | 42 | 26 | 45 | 1 | 2 | 6 | 2 | 42 | 77 | 90 | 1.8 | 39 |
779 | util | https://github.com/gefyrahq/gefyra | [] | null | [] | [] | null | null | null | gefyrahq/gefyra | gefyra | 597 | 27 | 9 | Python | https://gefyra.dev | Blazingly-fast :rocket:, rock-solid, local application development :arrow_right: with Kubernetes. | gefyrahq | 2024-01-09 | 2021-11-18 | 114 | 5.204234 | https://avatars.githubusercontent.com/u/101178654?v=4 | Blazingly-fast 🚀, rock-solid, local application development :arrow_right: with Kubernetes. | ['coding', 'container', 'containers', 'developer-tool', 'development', 'docker', 'k8s', 'kubernetes', 'tunnel'] | ['coding', 'container', 'containers', 'developer-tool', 'development', 'docker', 'k8s', 'kubernetes', 'tunnel'] | 2024-01-02 | [('aquasecurity/trivy', 0.6041578054428101, 'security', 3), ('bodywork-ml/bodywork-core', 0.5484521389007568, 'ml-ops', 1), ('orchest/orchest', 0.5443967580795288, 'ml-ops', 2), ('astronomer/astronomer', 0.5323020815849304, 'ml-ops', 2), ('flyteorg/flyte', 0.5291821956634521, 'ml-ops', 1), ('backtick-se/cowait', 0.5228185653686523, 'util', 2), ('tiangolo/full-stack-fastapi-postgresql', 0.5177972912788391, 'template', 1), ('kubeflow/pipelines', 0.5056382417678833, 'ml-ops', 1), ('kubeflow-kale/kale', 0.5049176216125488, 'ml-ops', 0)] | 13 | 1 | null | 9.48 | 56 | 33 | 26 | 0 | 14 | 30 | 14 | 56 | 34 | 90 | 0.6 | 39 |
1,702 | util | https://github.com/platformdirs/platformdirs | [] | null | [] | [] | null | null | null | platformdirs/platformdirs | platformdirs | 425 | 42 | 9 | Python | https://platformdirs.readthedocs.io | A small Python module for determining appropriate platform-specific dirs, e.g. a "user data dir". | platformdirs | 2024-01-12 | 2021-05-13 | 141 | 2.998992 | https://avatars.githubusercontent.com/u/84131773?v=4 | A small Python module for determining appropriate platform-specific dirs, e.g. a "user data dir". | ['appdirs', 'configuration', 'cross-platform', 'xdg', 'xdg-user-dirs'] | ['appdirs', 'configuration', 'cross-platform', 'xdg', 'xdg-user-dirs'] | 2024-01-10 | [('fsspec/filesystem_spec', 0.5413647294044495, 'util', 0), ('erotemic/ubelt', 0.5185686945915222, 'util', 1)] | 66 | 5 | null | 1.67 | 23 | 21 | 33 | 0 | 21 | 17 | 21 | 23 | 20 | 90 | 0.9 | 39 |
1,784 | llm | https://github.com/tigerlab-ai/tiger | [] | null | [] | [] | null | null | null | tigerlab-ai/tiger | tiger | 356 | 24 | 10 | Jupyter Notebook | https://www.tigerlab.ai | Open Source LLM toolkit to build trustworthy LLM applications. TigerArmor (AI safety), TigerRAG (embedding, RAG), TigerTune (fine-tuning) | tigerlab-ai | 2024-01-12 | 2023-10-23 | 14 | 25.171717 | null | Open Source LLM toolkit to build trustworthy LLM applications. TigerArmor (AI safety), TigerRAG (embedding, RAG), TigerTune (fine-tuning) | ['ai-safety', 'aisafety', 'classification', 'data-augmentation', 'fine-tuning', 'large-language-models', 'llm', 'llm-training', 'rag'] | ['ai-safety', 'aisafety', 'classification', 'data-augmentation', 'fine-tuning', 'large-language-models', 'llm', 'llm-training', 'rag'] | 2023-12-02 | [('alpha-vllm/llama2-accessory', 0.7141748666763306, 'llm', 1), ('argilla-io/argilla', 0.6661051511764526, 'nlp', 1), ('hiyouga/llama-factory', 0.6649466753005981, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.6649465560913086, 'llm', 3), ('hegelai/prompttools', 0.6615456342697144, 'llm', 1), ('h2oai/h2o-llmstudio', 0.6549601554870605, 'llm', 3), ('bentoml/openllm', 0.6545884013175964, 'ml-ops', 2), ('microsoft/semantic-kernel', 0.6522761583328247, 'llm', 1), ('pathwaycom/llm-app', 0.6506632566452026, 'llm', 2), ('microsoft/promptflow', 0.6455790996551514, 'llm', 1), ('bobazooba/xllm', 0.6268063187599182, 'llm', 2), ('iryna-kondr/scikit-llm', 0.6261765956878662, 'llm', 1), ('nebuly-ai/nebullvm', 0.6134838461875916, 'perf', 2), ('ludwig-ai/ludwig', 0.6120554804801941, 'ml-ops', 3), ('bigscience-workshop/petals', 0.6084714531898499, 'data', 1), ('ray-project/llm-applications', 0.6013271808624268, 'llm', 2), ('young-geng/easylm', 0.6003850698471069, 'llm', 1), ('nomic-ai/gpt4all', 0.5997213125228882, 'llm', 0), ('alphasecio/langchain-examples', 0.5991637706756592, 'llm', 1), ('salesforce/xgen', 0.5921275615692139, 'llm', 2), ('mlc-ai/mlc-llm', 0.5859246850013733, 'llm', 1), ('embedchain/embedchain', 0.5847614407539368, 'llm', 1), ('paddlepaddle/paddlenlp', 0.5830023884773254, 'llm', 1), ('salesforce/codet5', 0.5818438529968262, 'nlp', 1), ('llmware-ai/llmware', 0.5777447819709778, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5748347640037537, 'perf', 0), ('eugeneyan/open-llms', 0.5710621476173401, 'study', 2), ('deepset-ai/haystack', 0.5681328773498535, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5661339163780212, 'study', 1), ('nat/openplayground', 0.5651535987854004, 'llm', 0), ('microsoft/torchscale', 0.5640652179718018, 'llm', 0), ('doccano/doccano', 0.5629643797874451, 'nlp', 0), ('agenta-ai/agenta', 0.5620597004890442, 'llm', 3), ('aiwaves-cn/agents', 0.5588130950927734, 'nlp', 1), ('guardrails-ai/guardrails', 0.5576193928718567, 'llm', 1), ('nvidia/tensorrt-llm', 0.5560727119445801, 'viz', 0), ('microsoft/nni', 0.5559183359146118, 'ml', 0), ('citadel-ai/langcheck', 0.5546644926071167, 'llm', 0), ('microsoft/jarvis', 0.552547812461853, 'llm', 0), ('microsoft/lmops', 0.5503789186477661, 'llm', 1), ('mlflow/mlflow', 0.5502049922943115, 'ml-ops', 0), ('vllm-project/vllm', 0.5497113466262817, 'llm', 1), ('arize-ai/phoenix', 0.5459373593330383, 'ml-interpretability', 0), ('lucidrains/toolformer-pytorch', 0.5445385575294495, 'llm', 0), ('night-chen/toolqa', 0.5423557758331299, 'llm', 1), ('infinitylogesh/mutate', 0.5381948947906494, 'nlp', 1), ('conceptofmind/toolformer', 0.5376387238502502, 'llm', 0), ('shishirpatil/gorilla', 0.5373891592025757, 'llm', 1), ('hwchase17/langchain', 0.5362697243690491, 'llm', 0), ('explosion/spacy-llm', 0.5356959104537964, 'llm', 2), ('determined-ai/determined', 0.5315389633178711, 'ml-ops', 0), ('lancedb/lancedb', 0.531322181224823, 'data', 0), ('cheshire-cat-ai/core', 0.5307193398475647, 'llm', 1), ('langchain-ai/langgraph', 0.5296244025230408, 'llm', 0), ('confident-ai/deepeval', 0.5287721157073975, 'testing', 1), ('nvidia/nemo-guardrails', 0.527998149394989, 'llm', 0), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5272374749183655, 'study', 0), ('lastmile-ai/aiconfig', 0.5260499715805054, 'util', 1), ('jerryjliu/llama_index', 0.5246336460113525, 'llm', 3), ('zilliztech/gptcache', 0.5229496955871582, 'llm', 1), ('lm-sys/fastchat', 0.5211068987846375, 'llm', 0), ('truera/trulens', 0.5201952457427979, 'llm', 1), ('microsoft/flaml', 0.5200607180595398, 'ml', 1), ('lightning-ai/lit-gpt', 0.5195765495300293, 'llm', 1), ('cg123/mergekit', 0.5194407105445862, 'llm', 1), ('microsoft/autogen', 0.5187461376190186, 'llm', 0), ('rasahq/rasa', 0.5164182186126709, 'llm', 0), ('giskard-ai/giskard', 0.5133479237556458, 'data', 1), ('nvidia/deeplearningexamples', 0.5106365084648132, 'ml-dl', 1), ('ibm/dromedary', 0.5087694525718689, 'llm', 0), ('lianjiatech/belle', 0.5057373642921448, 'llm', 0), ('openlm-research/open_llama', 0.5050448179244995, 'llm', 0), ('tensorflow/tensorflow', 0.5049441456794739, 'ml-dl', 0), ('huggingface/datasets', 0.5033867955207825, 'nlp', 0), ('titanml/takeoff', 0.5030698180198669, 'llm', 1), ('berriai/litellm', 0.5017346143722534, 'llm', 1), ('openbmb/toolbench', 0.5014435052871704, 'llm', 0), ('epfllm/meditron', 0.501189649105072, 'llm', 0), ('eleutherai/the-pile', 0.5005179643630981, 'data', 1)] | 8 | 1 | null | 2.25 | 19 | 12 | 3 | 1 | 0 | 0 | 0 | 19 | 8 | 90 | 0.4 | 39 |
1,539 | llm | https://github.com/tsinghuadatabasegroup/db-gpt | ['language-model', 'dba'] | LLM As Database Administrator | [] | [] | null | null | null | tsinghuadatabasegroup/db-gpt | DB-GPT | 327 | 45 | 8 | Python | http://dbgpt.dbmind.cn/ | An LLM Based Diagnosis System (https://arxiv.org/pdf/2312.01454.pdf) | tsinghuadatabasegroup | 2024-01-14 | 2023-04-02 | 43 | 7.554455 | null | An LLM Based Diagnosis System (https://arxiv.org/pdf/2312.01454.pdf) | ['database', 'dba', 'diagnosis', 'tuning'] | ['database', 'dba', 'diagnosis', 'language-model', 'tuning'] | 2024-01-13 | [('epfllm/meditron', 0.5455986261367798, 'llm', 1), ('hiyouga/llama-factory', 0.5159657001495361, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5159655809402466, 'llm', 1), ('microsoft/torchscale', 0.5131277441978455, 'llm', 0), ('young-geng/easylm', 0.5007253289222717, 'llm', 1)] | 6 | 3 | null | 7.5 | 53 | 45 | 10 | 0 | 0 | 0 | 0 | 53 | 72 | 90 | 1.4 | 39 |
1,657 | data | https://github.com/unstructured-io/unstructured-api | ['unstructured', 'api'] | API for Open-Source Pre-Processing Tools for Unstructured Data | [] | [] | null | null | null | unstructured-io/unstructured-api | unstructured-api | 231 | 50 | 17 | Python | null | null | unstructured-io | 2024-01-09 | 2022-12-09 | 59 | 3.877698 | https://avatars.githubusercontent.com/u/108372208?v=4 | API for Open-Source Pre-Processing Tools for Unstructured Data | [] | ['api', 'unstructured'] | 2024-01-12 | [('unstructured-io/pipeline-sec-filings', 0.5717188715934753, 'data', 1), ('simonw/datasette', 0.5543832778930664, 'data', 0), ('saulpw/visidata', 0.536859393119812, 'term', 0)] | 23 | 3 | null | 3.85 | 61 | 55 | 13 | 0 | 29 | 27 | 29 | 61 | 57 | 90 | 0.9 | 39 |
723 | ml | https://github.com/cleverhans-lab/cleverhans | [] | null | [] | [] | null | null | null | cleverhans-lab/cleverhans | cleverhans | 6,000 | 1,394 | 190 | Jupyter Notebook | null | An adversarial example library for constructing attacks, building defenses, and benchmarking both | cleverhans-lab | 2024-01-13 | 2016-09-15 | 384 | 15.59599 | https://avatars.githubusercontent.com/u/51966688?v=4 | An adversarial example library for constructing attacks, building defenses, and benchmarking both | ['benchmarking', 'machine-learning', 'security'] | ['benchmarking', 'machine-learning', 'security'] | 2023-01-31 | [('borealisai/advertorch', 0.7116900086402893, 'ml', 3), ('huggingface/evaluate', 0.5058858394622803, 'ml', 1), ('zorzi-s/projectregularization', 0.5036975741386414, 'gis', 0)] | 131 | 3 | null | 0.02 | 1 | 0 | 89 | 12 | 0 | 1 | 1 | 1 | 0 | 90 | 0 | 38 |
565 | ml | https://github.com/mdbloice/augmentor | [] | null | [] | [] | null | null | null | mdbloice/augmentor | Augmentor | 4,997 | 870 | 124 | Python | https://augmentor.readthedocs.io/en/stable | Image augmentation library in Python for machine learning. | mdbloice | 2024-01-13 | 2016-03-01 | 413 | 12.099274 | null | Image augmentation library in Python for machine learning. | ['augmentation', 'deep-learning', 'machine-learning', 'neural-networks'] | ['augmentation', 'deep-learning', 'machine-learning', 'neural-networks'] | 2023-03-29 | [('aleju/imgaug', 0.7141932845115662, 'ml', 3), ('lightly-ai/lightly', 0.7019970417022705, 'ml', 2), ('albumentations-team/albumentations', 0.6705105900764465, 'ml-dl', 3), ('facebookresearch/augly', 0.6478663086891174, 'data', 0), ('pytorch/ignite', 0.5899521708488464, 'ml-dl', 2), ('fepegar/torchio', 0.5896494388580322, 'ml-dl', 3), ('featurelabs/featuretools', 0.5716681480407715, 'ml', 1), ('rasbt/mlxtend', 0.5698684453964233, 'ml', 1), ('weecology/deepforest', 0.5662134885787964, 'gis', 0), ('google-research/deeplab2', 0.5629528760910034, 'ml', 0), ('luispedro/mahotas', 0.5612508654594421, 'viz', 0), ('deci-ai/super-gradients', 0.5568101406097412, 'ml-dl', 1), ('dmlc/dgl', 0.5562937259674072, 'ml-dl', 1), ('gradio-app/gradio', 0.5561718344688416, 'viz', 2), ('intel/intel-extension-for-pytorch', 0.5521341562271118, 'perf', 2), ('ageron/handson-ml2', 0.5503374338150024, 'ml', 0), ('skorch-dev/skorch', 0.5499297976493835, 'ml-dl', 1), ('python-pillow/pillow', 0.5397363305091858, 'util', 0), ('imageio/imageio', 0.5311002135276794, 'util', 0), ('pycaret/pycaret', 0.5300421118736267, 'ml', 1), ('rasbt/machine-learning-book', 0.5249707102775574, 'study', 3), ('tensorflow/addons', 0.5146579742431641, 'ml', 2), ('yzhao062/pyod', 0.5144423842430115, 'data', 3), ('nvlabs/gcvit', 0.5139862895011902, 'diffusion', 1), ('neuralmagic/sparseml', 0.5088579654693604, 'ml-dl', 0), ('scikit-learn/scikit-learn', 0.5044978260993958, 'ml', 1), ('facebookresearch/pytorch3d', 0.5032729506492615, 'ml-dl', 0), ('pyg-team/pytorch_geometric', 0.5032522678375244, 'ml-dl', 1), ('huggingface/huggingface_hub', 0.5017703175544739, 'ml', 2)] | 23 | 3 | null | 0.1 | 2 | 1 | 96 | 10 | 0 | 3 | 3 | 2 | 1 | 90 | 0.5 | 38 |
1,213 | ml-interpretability | https://github.com/tensorflow/lucid | [] | null | [] | [] | null | null | null | tensorflow/lucid | lucid | 4,592 | 659 | 159 | Jupyter Notebook | null | A collection of infrastructure and tools for research in neural network interpretability. | tensorflow | 2024-01-12 | 2018-01-25 | 313 | 14.637523 | https://avatars.githubusercontent.com/u/15658638?v=4 | A collection of infrastructure and tools for research in neural network interpretability. | ['colab', 'interpretability', 'jupyter-notebook', 'machine-learning', 'tensorflow', 'visualization'] | ['colab', 'interpretability', 'jupyter-notebook', 'machine-learning', 'tensorflow', 'visualization'] | 2021-03-19 | [('pytorch/captum', 0.6784272193908691, 'ml-interpretability', 1), ('pair-code/lit', 0.6758688688278198, 'ml-interpretability', 2), ('csinva/imodels', 0.6663603782653809, 'ml', 2), ('interpretml/interpret', 0.626980721950531, 'ml-interpretability', 2), ('marcotcr/lime', 0.61471027135849, 'ml-interpretability', 0), ('lutzroeder/netron', 0.5944969654083252, 'ml', 2), ('pytorch/ignite', 0.5938147902488708, 'ml-dl', 1), ('eleutherai/pythia', 0.5809341669082642, 'ml-interpretability', 1), ('seldonio/alibi', 0.5702253580093384, 'ml-interpretability', 2), ('rafiqhasan/auto-tensorflow', 0.5636606216430664, 'ml-dl', 2), ('teamhg-memex/eli5', 0.5620574355125427, 'ml', 1), ('maif/shapash', 0.5549944639205933, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5517100095748901, 'ml-interpretability', 0), ('oegedijk/explainerdashboard', 0.5506213903427124, 'ml-interpretability', 0), ('ageron/handson-ml2', 0.5488042235374451, 'ml', 0), ('nvidia/deeplearningexamples', 0.5472056269645691, 'ml-dl', 1), ('tensorflow/tensorflow', 0.5469701290130615, 'ml-dl', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5438190698623657, 'study', 1), ('onnx/onnx', 0.5405921936035156, 'ml', 2), ('carla-recourse/carla', 0.5387822389602661, 'ml', 2), ('ddbourgin/numpy-ml', 0.5334033370018005, 'ml', 1), ('wandb/client', 0.5249351263046265, 'ml', 2), ('huggingface/evaluate', 0.5247843861579895, 'ml', 1), ('skorch-dev/skorch', 0.5241331458091736, 'ml-dl', 1), ('explosion/thinc', 0.522412121295929, 'ml-dl', 2), ('huggingface/datasets', 0.5218112468719482, 'nlp', 2), ('tensorflow/data-validation', 0.5206327438354492, 'ml-ops', 0), ('tensorly/tensorly', 0.5121048092842102, 'ml-dl', 2), ('mlflow/mlflow', 0.5101231336593628, 'ml-ops', 1), ('rasbt/machine-learning-book', 0.5070700645446777, 'study', 1), ('arogozhnikov/einops', 0.5045328140258789, 'ml-dl', 1), ('xl0/lovely-tensors', 0.5038846731185913, 'ml-dl', 1), ('slundberg/shap', 0.5016194581985474, 'ml-interpretability', 2), ('districtdatalabs/yellowbrick', 0.5002766251564026, 'ml', 2)] | 40 | 3 | null | 0 | 2 | 1 | 73 | 34 | 0 | 4 | 4 | 2 | 1 | 90 | 0.5 | 38 |
292 | util | https://github.com/pytoolz/toolz | [] | null | [] | [] | null | null | null | pytoolz/toolz | toolz | 4,431 | 305 | 83 | Python | http://toolz.readthedocs.org/ | A functional standard library for Python. | pytoolz | 2024-01-13 | 2013-09-13 | 541 | 8.181746 | https://avatars.githubusercontent.com/u/5448828?v=4 | A functional standard library for Python. | [] | [] | 2022-11-03 | [('pyston/pyston', 0.719200074672699, 'util', 0), ('pypy/pypy', 0.7066237330436707, 'util', 0), ('pmorissette/ffn', 0.6924606561660767, 'finance', 0), ('google/latexify_py', 0.6760282516479492, 'util', 0), ('eleutherai/pyfra', 0.6730476021766663, 'ml', 0), ('python/cpython', 0.6690644025802612, 'util', 0), ('ta-lib/ta-lib-python', 0.653429388999939, 'finance', 0), ('pandas-dev/pandas', 0.6519975066184998, 'pandas', 0), ('python-rope/rope', 0.649603009223938, 'util', 0), ('evhub/coconut', 0.6476520895957947, 'util', 0), ('suor/funcy', 0.6413887143135071, 'util', 0), ('fastai/fastcore', 0.6410788297653198, 'util', 0), ('urwid/urwid', 0.6324057579040527, 'term', 0), ('erotemic/ubelt', 0.6275792717933655, 'util', 0), ('connorferster/handcalcs', 0.6247959733009338, 'jupyter', 0), ('artemyk/dynpy', 0.6178411841392517, 'sim', 0), ('gondolav/pyfuncol', 0.6170833706855774, 'util', 0), ('pyparsing/pyparsing', 0.6166950464248657, 'util', 0), ('agronholm/apscheduler', 0.6112861037254333, 'util', 0), ('dgilland/cacheout', 0.6084659695625305, 'perf', 0), ('rasbt/mlxtend', 0.6010292172431946, 'ml', 0), ('instagram/libcst', 0.6008638739585876, 'util', 0), ('wesm/pydata-book', 0.599173903465271, 'study', 0), ('dylanhogg/awesome-python', 0.5974959135055542, 'study', 0), ('goldmansachs/gs-quant', 0.5948769450187683, 'finance', 0), ('pyeve/cerberus', 0.5941500067710876, 'data', 0), ('pyscript/pyscript-cli', 0.5934836864471436, 'web', 0), ('pdm-project/pdm', 0.592634379863739, 'util', 0), ('sympy/sympy', 0.5918540358543396, 'math', 0), ('instagram/monkeytype', 0.5914798974990845, 'typing', 0), ('marshmallow-code/marshmallow', 0.5878369808197021, 'util', 0), ('landscapeio/prospector', 0.5871560573577881, 'util', 0), ('cython/cython', 0.5866791605949402, 'util', 0), ('imageio/imageio', 0.5862778425216675, 'util', 0), ('google/pytype', 0.5861064195632935, 'typing', 0), ('facebook/pyre-check', 0.5858352184295654, 'typing', 0), ('gbeced/pyalgotrade', 0.5849488377571106, 'finance', 0), ('astral-sh/ruff', 0.5842194557189941, 'util', 0), ('google/python-fire', 0.5839331150054932, 'term', 0), ('julienpalard/pipe', 0.5835241079330444, 'util', 0), ('1200wd/bitcoinlib', 0.5831727385520935, 'crypto', 0), ('legrandin/pycryptodome', 0.5827405452728271, 'util', 0), ('primal100/pybitcointools', 0.5817379951477051, 'crypto', 0), ('hoffstadt/dearpygui', 0.5808964371681213, 'gui', 0), ('fredrik-johansson/mpmath', 0.580827534198761, 'math', 0), ('ethtx/ethtx', 0.5787340402603149, 'crypto', 0), ('pypa/installer', 0.5778533220291138, 'util', 0), ('klen/py-frameworks-bench', 0.5774570107460022, 'perf', 0), ('xrudelis/pytrait', 0.5742577314376831, 'util', 0), ('timofurrer/awesome-asyncio', 0.5735023021697998, 'study', 0), ('featurelabs/featuretools', 0.5733933448791504, 'ml', 0), ('lk-geimfari/mimesis', 0.5705004334449768, 'data', 0), ('numpy/numpy', 0.5658218860626221, 'math', 0), ('requests/toolbelt', 0.5654045939445496, 'util', 0), ('pysal/pysal', 0.5646018385887146, 'gis', 0), ('has2k1/plotnine', 0.5640243887901306, 'viz', 0), ('python-odin/odin', 0.563791811466217, 'util', 0), ('tiangolo/typer', 0.5614187121391296, 'term', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5609208941459656, 'study', 0), ('pyscf/pyscf', 0.5605663657188416, 'sim', 0), ('mementum/backtrader', 0.5593503713607788, 'finance', 0), ('python/typeshed', 0.5580030083656311, 'typing', 0), ('nedbat/coveragepy', 0.5574312210083008, 'testing', 0), ('google/gin-config', 0.555968701839447, 'util', 0), ('python-cachier/cachier', 0.5554683208465576, 'perf', 0), ('stanfordnlp/dspy', 0.5550901889801025, 'llm', 0), ('pytorch/data', 0.5517788529396057, 'data', 0), ('pygamelib/pygamelib', 0.5512012839317322, 'gamedev', 0), ('amaargiru/pyroad', 0.5507724285125732, 'study', 0), ('google/pyglove', 0.550031304359436, 'util', 0), ('brandon-rhodes/python-patterns', 0.5499976277351379, 'util', 0), ('allrod5/injectable', 0.5491871237754822, 'util', 0), ('python-trio/trio', 0.5491801500320435, 'perf', 0), ('jquast/blessed', 0.5486643314361572, 'term', 0), ('openai/openai-python', 0.5484781861305237, 'util', 0), ('masoniteframework/masonite', 0.5471121668815613, 'web', 0), ('googleapis/google-api-python-client', 0.5453507304191589, 'util', 0), ('alkaline-ml/pmdarima', 0.5435473918914795, 'time-series', 0), ('hhatto/autopep8', 0.5430788397789001, 'util', 0), ('pympler/pympler', 0.5427612066268921, 'perf', 0), ('cuemacro/finmarketpy', 0.5427136421203613, 'finance', 0), ('pyglet/pyglet', 0.5421815514564514, 'gamedev', 0), ('domokane/financepy', 0.5421152114868164, 'finance', 0), ('pemistahl/lingua-py', 0.5412816405296326, 'nlp', 0), ('paramiko/paramiko', 0.5407304763793945, 'util', 0), ('pytables/pytables', 0.5390780568122864, 'data', 0), ('mynameisfiber/high_performance_python_2e', 0.5383166670799255, 'study', 0), ('libtcod/python-tcod', 0.5379080176353455, 'gamedev', 0), ('irmen/pyminiaudio', 0.5377234816551208, 'util', 0), ('viblo/pymunk', 0.5366160869598389, 'sim', 0), ('beeware/toga', 0.5362921953201294, 'gui', 0), ('willmcgugan/textual', 0.5360779166221619, 'term', 0), ('opengeos/leafmap', 0.5356908440589905, 'gis', 0), ('google/yapf', 0.5353810787200928, 'util', 0), ('strawberry-graphql/strawberry', 0.5352164506912231, 'web', 0), ('numba/llvmlite', 0.5343791842460632, 'util', 0), ('google/jax', 0.5340706706047058, 'ml', 0), ('stan-dev/pystan', 0.5338031053543091, 'ml', 0), ('wolever/parameterized', 0.5330343842506409, 'testing', 0), ('dagworks-inc/hamilton', 0.5323624014854431, 'ml-ops', 0), ('mkdocstrings/griffe', 0.5321711301803589, 'util', 0), ('spotify/pedalboard', 0.5321218371391296, 'util', 0), ('rustpython/rustpython', 0.5320417881011963, 'util', 0), ('firmai/atspy', 0.5319315791130066, 'time-series', 0), ('thoth-station/micropipenv', 0.5317614078521729, 'util', 0), ('tiangolo/sqlmodel', 0.5314618945121765, 'data', 0), ('taylorsmarks/playsound', 0.5312017798423767, 'util', 0), ('jamesturk/jellyfish', 0.5310186147689819, 'nlp', 0), ('sqlalchemy/mako', 0.530997097492218, 'template', 0), ('plotly/plotly.py', 0.5307526588439941, 'viz', 0), ('joblib/joblib', 0.5292420983314514, 'util', 0), ('pygame/pygame', 0.5287861824035645, 'gamedev', 0), ('qdrant/fastembed', 0.5285203456878662, 'ml', 0), ('nvidia/cuda-python', 0.5279120802879333, 'ml', 0), ('pypa/hatch', 0.5271018743515015, 'util', 0), ('sqlalchemy/sqlalchemy', 0.5267731547355652, 'data', 0), ('jmcarpenter2/swifter', 0.5265946388244629, 'pandas', 0), ('prompt-toolkit/ptpython', 0.5264323949813843, 'util', 0), ('ethereum/eth-utils', 0.525811493396759, 'crypto', 0), ('kubeflow/fairing', 0.525724470615387, 'ml-ops', 0), ('python/mypy', 0.5248755216598511, 'typing', 0), ('pyca/cryptography', 0.5245878100395203, 'util', 0), ('carla-recourse/carla', 0.5241925716400146, 'ml', 0), ('altair-viz/altair', 0.5240060687065125, 'viz', 0), ('geospatialpython/pyshp', 0.5238029360771179, 'gis', 0), ('dosisod/refurb', 0.5235017538070679, 'util', 0), ('pycqa/flake8', 0.5233083367347717, 'util', 0), ('eugeneyan/python-collab-template', 0.5230408906936646, 'template', 0), ('getsentry/responses', 0.52274489402771, 'testing', 0), ('man-c/pycoingecko', 0.5226123929023743, 'crypto', 0), ('microsoft/playwright-python', 0.5224789977073669, 'testing', 0), ('webpy/webpy', 0.522210419178009, 'web', 0), ('pycqa/mccabe', 0.521766722202301, 'util', 0), ('falconry/falcon', 0.5214901566505432, 'web', 0), ('pyomo/pyomo', 0.5213468670845032, 'math', 0), ('google/temporian', 0.5204028487205505, 'time-series', 0), ('micropython/micropython', 0.5203608870506287, 'util', 0), ('keon/algorithms', 0.520076334476471, 'util', 0), ('klen/muffin', 0.5191732048988342, 'web', 0), ('arogozhnikov/einops', 0.5189169645309448, 'ml-dl', 0), ('fsspec/filesystem_spec', 0.5183253288269043, 'util', 0), ('python-markdown/markdown', 0.5181722640991211, 'util', 0), ('uberi/speech_recognition', 0.517691969871521, 'ml', 0), ('quantopian/zipline', 0.5173577070236206, 'finance', 0), ('goldsmith/wikipedia', 0.5172760486602783, 'data', 0), ('oracle/graalpython', 0.5168983936309814, 'util', 0), ('omry/omegaconf', 0.5165718197822571, 'util', 0), ('scipy/scipy', 0.5162753462791443, 'math', 0), ('cqcl/lambeq', 0.5159991979598999, 'nlp', 0), ('probml/pyprobml', 0.5156102180480957, 'ml', 0), ('krzjoa/awesome-python-data-science', 0.5155652761459351, 'study', 0), ('pytest-dev/pytest-bdd', 0.5150437355041504, 'testing', 0), ('exaloop/codon', 0.514833390712738, 'perf', 0), ('tobymao/sqlglot', 0.5141063928604126, 'data', 0), ('nickreynke/python-gedcom', 0.5138238072395325, 'data', 0), ('pexpect/pexpect', 0.5134918093681335, 'util', 0), ('faif/python-patterns', 0.5127255320549011, 'util', 0), ('dit/dit', 0.5121693015098572, 'math', 0), ('ibis-project/ibis', 0.5118052363395691, 'data', 0), ('asweigart/pyperclip', 0.5117189288139343, 'util', 0), ('alexmojaki/snoop', 0.5116428732872009, 'debug', 0), ('pyutils/line_profiler', 0.5109219551086426, 'profiling', 0), ('mcfunley/pugsql', 0.5106123685836792, 'data', 0), ('instagram/fixit', 0.5103968977928162, 'util', 0), ('marella/ctransformers', 0.5103341341018677, 'nlp', 0), ('wtforms/wtforms', 0.5101136565208435, 'web', 0), ('nteract/papermill', 0.5096691250801086, 'jupyter', 0), ('selfexplainml/piml-toolbox', 0.5094278454780579, 'ml-interpretability', 0), ('dateutil/dateutil', 0.5082383155822754, 'util', 0), ('scrapy/scrapy', 0.5080231428146362, 'data', 0), ('pyproj4/pyproj', 0.5079793334007263, 'gis', 0), ('clips/pattern', 0.5079754590988159, 'nlp', 0), ('ethereum/web3.py', 0.5079506039619446, 'crypto', 0), ('explosion/thinc', 0.507887601852417, 'ml-dl', 0), ('grantjenks/blue', 0.5073704719543457, 'util', 0), ('gradio-app/gradio', 0.5073626041412354, 'viz', 0), ('fluentpython/example-code-2e', 0.5072869062423706, 'study', 0), ('pyo3/maturin', 0.5072370171546936, 'util', 0), ('pycaret/pycaret', 0.5071802735328674, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.5057084560394287, 'perf', 0), ('malloydata/malloy-py', 0.5053905844688416, 'data', 0), ('crunch-io/lazycsv', 0.5044757127761841, 'perf', 0), ('kellyjonbrazil/jc', 0.503423810005188, 'util', 0), ('samuelcolvin/python-devtools', 0.5032694935798645, 'debug', 0), ('psf/black', 0.5029543042182922, 'util', 0), ('quantecon/quantecon.py', 0.502926766872406, 'sim', 0), ('realpython/python-guide', 0.5026092529296875, 'study', 0), ('faster-cpython/tools', 0.5024548172950745, 'perf', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5019211769104004, 'template', 0), ('pylons/pyramid', 0.5017217993736267, 'web', 0), ('pygments/pygments', 0.5010949969291687, 'util', 0), ('lukaszahradnik/pyneuralogic', 0.5010553002357483, 'math', 0), ('cohere-ai/notebooks', 0.5008567571640015, 'llm', 0), ('scikit-mobility/scikit-mobility', 0.5007225871086121, 'gis', 0), ('delta-io/delta-rs', 0.5006144642829895, 'pandas', 0)] | 75 | 7 | null | 0 | 3 | 1 | 126 | 15 | 0 | 2 | 2 | 3 | 1 | 90 | 0.3 | 38 |
935 | ml | https://github.com/thudm/cogvideo | [] | null | [] | [] | null | null | null | thudm/cogvideo | CogVideo | 3,339 | 352 | 102 | Python | null | Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers" | thudm | 2024-01-13 | 2022-05-29 | 87 | 38.253682 | https://avatars.githubusercontent.com/u/48590610?v=4 | Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers" | [] | [] | 2023-06-09 | [('sharonzhou/long_stable_diffusion', 0.6085971593856812, 'diffusion', 0), ('chenyangqiqi/fatezero', 0.6052513718605042, 'diffusion', 0), ('lucidrains/deep-daze', 0.5634084939956665, 'ml', 0), ('openai/image-gpt', 0.558464765548706, 'llm', 0), ('williamyang1991/vtoonify', 0.5548344850540161, 'ml-dl', 0), ('openai/glide-text2im', 0.5404991507530212, 'diffusion', 0), ('saharmor/dalle-playground', 0.529645562171936, 'diffusion', 0), ('ofa-sys/ofa', 0.5225783586502075, 'llm', 0), ('open-mmlab/mmediting', 0.5184540748596191, 'ml', 0), ('borisdayma/dalle-mini', 0.5106388926506042, 'diffusion', 0), ('nateraw/stable-diffusion-videos', 0.5062693357467651, 'diffusion', 0), ('huggingface/text-generation-inference', 0.5058658719062805, 'llm', 0)] | 4 | 3 | null | 0.04 | 0 | 0 | 20 | 7 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 38 |
34 | nlp | https://github.com/jbesomi/texthero | [] | null | [] | [] | null | null | null | jbesomi/texthero | texthero | 2,841 | 240 | 43 | Python | https://texthero.org | Text preprocessing, representation and visualization from zero to hero. | jbesomi | 2024-01-14 | 2020-04-06 | 199 | 14.266141 | null | Text preprocessing, representation and visualization from zero to hero. | ['machine-learning', 'nlp', 'nlp-pipeline', 'text-clustering', 'text-mining', 'text-preprocessing', 'text-representation', 'text-visualization', 'texthero', 'word-embeddings'] | ['machine-learning', 'nlp', 'nlp-pipeline', 'text-clustering', 'text-mining', 'text-preprocessing', 'text-representation', 'text-visualization', 'texthero', 'word-embeddings'] | 2023-08-29 | [('alibaba/easynlp', 0.5708900690078735, 'nlp', 2), ('nltk/nltk', 0.5517333149909973, 'nlp', 2), ('sloria/textblob', 0.5416422486305237, 'nlp', 1), ('explosion/spacy-streamlit', 0.5377371907234192, 'nlp', 2), ('rasahq/rasa', 0.5357376337051392, 'llm', 2), ('jalammar/ecco', 0.5305410623550415, 'ml-interpretability', 1), ('makcedward/nlpaug', 0.5141093134880066, 'nlp', 2), ('infinitylogesh/mutate', 0.5125301480293274, 'nlp', 0), ('allenai/allennlp', 0.5118191242218018, 'nlp', 1), ('koaning/whatlies', 0.5086743831634521, 'nlp', 1), ('explosion/spacy-llm', 0.5079323053359985, 'llm', 2), ('microsoft/unilm', 0.5031306147575378, 'nlp', 1)] | 21 | 6 | null | 0.1 | 0 | 0 | 46 | 5 | 0 | 2 | 2 | 0 | 0 | 90 | 0 | 38 |
431 | pandas | https://github.com/pydata/pandas-datareader | [] | null | [] | [] | null | null | null | pydata/pandas-datareader | pandas-datareader | 2,761 | 675 | 141 | Python | https://pydata.github.io/pandas-datareader/stable/index.html | Extract data from a wide range of Internet sources into a pandas DataFrame. | pydata | 2024-01-12 | 2015-01-15 | 471 | 5.853119 | https://avatars.githubusercontent.com/u/1284191?v=4 | Extract data from a wide range of Internet sources into a pandas DataFrame. | ['data', 'data-analysis', 'dataset', 'econdb', 'economic-data', 'fama-french', 'finance', 'financial-data', 'fred', 'html', 'pandas', 'pydata', 'stock-data'] | ['data', 'data-analysis', 'dataset', 'econdb', 'economic-data', 'fama-french', 'finance', 'financial-data', 'fred', 'html', 'pandas', 'pydata', 'stock-data'] | 2023-10-24 | [('ranaroussi/yfinance', 0.6126816868782043, 'finance', 3), ('twopirllc/pandas-ta', 0.5820935368537903, 'finance', 2), ('cuemacro/findatapy', 0.5381442308425903, 'finance', 1), ('lux-org/lux', 0.5096178650856018, 'viz', 1)] | 91 | 1 | null | 0.38 | 27 | 16 | 110 | 3 | 0 | 3 | 3 | 27 | 30 | 90 | 1.1 | 38 |
1,280 | ml | https://github.com/scikit-optimize/scikit-optimize | [] | null | [] | [] | null | null | null | scikit-optimize/scikit-optimize | scikit-optimize | 2,700 | 535 | 64 | Python | https://scikit-optimize.github.io | Sequential model-based optimization with a `scipy.optimize` interface | scikit-optimize | 2024-01-12 | 2016-03-20 | 410 | 6.58078 | https://avatars.githubusercontent.com/u/18578550?v=4 | Sequential model-based optimization with a `scipy.optimize` interface | ['bayesian-optimization', 'bayesopt', 'binder', 'hyperparameter', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'machine-learning', 'optimization', 'scientific-computing', 'scientific-visualization', 'scikit-learn', 'sequential-recommendation', 'visualization'] | ['bayesian-optimization', 'bayesopt', 'binder', 'hyperparameter', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'machine-learning', 'optimization', 'scientific-computing', 'scientific-visualization', 'scikit-learn', 'sequential-recommendation', 'visualization'] | 2021-10-12 | [('google/vizier', 0.6410875916481018, 'ml', 5), ('automl/auto-sklearn', 0.6117300391197205, 'ml', 5), ('pymc-devs/pymc3', 0.5821582674980164, 'ml', 0), ('ray-project/tune-sklearn', 0.550593912601471, 'ml', 3), ('hyperopt/hyperopt', 0.5412236452102661, 'ml', 0), ('pytorch/botorch', 0.5391286611557007, 'ml-dl', 0), ('scipy/scipy', 0.5384607911109924, 'math', 1), ('districtdatalabs/yellowbrick', 0.5361714959144592, 'ml', 3), ('microsoft/flaml', 0.5336490869522095, 'ml', 3), ('pyomo/pyomo', 0.5328642129898071, 'math', 1), ('kubeflow/katib', 0.5325116515159607, 'ml', 0), ('cma-es/pycma', 0.5281330943107605, 'math', 0), ('epistasislab/tpot', 0.5264012217521667, 'ml', 3), ('bayesianmodelingandcomputationinpython/bookcode_edition1', 0.5192668437957764, 'study', 0), ('pyro-ppl/pyro', 0.5141356587409973, 'ml-dl', 1), ('uber/orbit', 0.5112178325653076, 'time-series', 1), ('optuna/optuna', 0.5056672096252441, 'ml', 2)] | 76 | 5 | null | 0 | 23 | 4 | 95 | 27 | 0 | 3 | 3 | 23 | 33 | 90 | 1.4 | 38 |
173 | viz | https://github.com/facebookresearch/hiplot | [] | null | [] | [] | null | null | null | facebookresearch/hiplot | hiplot | 2,641 | 135 | 29 | TypeScript | https://facebookresearch.github.io/hiplot/ | HiPlot makes understanding high dimensional data easy | facebookresearch | 2024-01-13 | 2019-11-08 | 220 | 11.973446 | https://avatars.githubusercontent.com/u/16943930?v=4 | HiPlot makes understanding high dimensional data easy | [] | [] | 2023-07-19 | [('contextlab/hypertools', 0.5843124985694885, 'ml', 0), ('holoviz/holoviews', 0.5553148984909058, 'viz', 0), ('holoviz/hvplot', 0.5185054540634155, 'pandas', 0), ('holoviz/datashader', 0.5003904104232788, 'gis', 0)] | 9 | 1 | null | 0.17 | 9 | 1 | 51 | 6 | 0 | 10 | 10 | 9 | 7 | 90 | 0.8 | 38 |
1,028 | finance | https://github.com/goldmansachs/gs-quant | [] | null | [] | [] | null | null | null | goldmansachs/gs-quant | gs-quant | 2,255 | 477 | 91 | Jupyter Notebook | https://developer.gs.com/discover/products/gs-quant/ | Python toolkit for quantitative finance | goldmansachs | 2024-01-14 | 2018-12-14 | 267 | 8.427656 | https://avatars.githubusercontent.com/u/1268489?v=4 | Python toolkit for quantitative finance | ['derivatives', 'goldman-sachs', 'gs-quant', 'risk-management', 'trading-strategies'] | ['derivatives', 'goldman-sachs', 'gs-quant', 'risk-management', 'trading-strategies'] | 2024-01-09 | [('ranaroussi/quantstats', 0.7339354157447815, 'finance', 0), ('cuemacro/finmarketpy', 0.6932242512702942, 'finance', 1), ('ta-lib/ta-lib-python', 0.6905857920646667, 'finance', 0), ('domokane/financepy', 0.6860893964767456, 'finance', 2), ('gbeced/pyalgotrade', 0.6751449108123779, 'finance', 0), ('quantconnect/lean', 0.6400971412658691, 'finance', 1), ('google/tf-quant-finance', 0.6332827806472778, 'finance', 0), ('pmorissette/ffn', 0.6325653195381165, 'finance', 0), ('quantecon/quantecon.py', 0.6292877197265625, 'sim', 0), ('eleutherai/pyfra', 0.6204242706298828, 'ml', 0), ('robcarver17/pysystemtrade', 0.6150317788124084, 'finance', 0), ('quantopian/pyfolio', 0.6110407114028931, 'finance', 0), ('firmai/atspy', 0.6063892841339111, 'time-series', 0), ('zvtvz/zvt', 0.6025742888450623, 'finance', 1), ('plotly/dash', 0.5997943878173828, 'viz', 0), ('pytoolz/toolz', 0.5948769450187683, 'util', 0), ('mementum/backtrader', 0.5926412343978882, 'finance', 0), ('krzjoa/awesome-python-data-science', 0.5910742282867432, 'study', 0), ('quantopian/zipline', 0.5875362753868103, 'finance', 0), ('scikit-mobility/scikit-mobility', 0.5793623328208923, 'gis', 0), ('pandas-dev/pandas', 0.5788717865943909, 'pandas', 0), ('wesm/pydata-book', 0.5769721269607544, 'study', 0), ('dylanhogg/awesome-python', 0.5735217928886414, 'study', 0), ('statsmodels/statsmodels', 0.5688977241516113, 'ml', 0), ('gradio-app/gradio', 0.5611568689346313, 'viz', 0), ('scikit-learn/scikit-learn', 0.5592624545097351, 'ml', 0), ('kernc/backtesting.py', 0.5561110377311707, 'finance', 1), ('bashtage/arch', 0.5530153512954712, 'time-series', 0), ('holoviz/panel', 0.5493612289428711, 'viz', 0), ('microsoft/qlib', 0.5478851199150085, 'finance', 0), ('polyaxon/datatile', 0.5469740033149719, 'pandas', 0), ('malloydata/malloy-py', 0.5456441044807434, 'data', 0), ('numerai/example-scripts', 0.5451831221580505, 'finance', 0), ('willmcgugan/textual', 0.5451081991195679, 'term', 0), ('hydrosquall/tiingo-python', 0.5450910329818726, 'finance', 0), ('pypy/pypy', 0.5446727275848389, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5427274107933044, 'study', 0), ('1200wd/bitcoinlib', 0.5417495965957642, 'crypto', 0), ('qdrant/qdrant-client', 0.5404823422431946, 'util', 0), ('twopirllc/pandas-ta', 0.5390924215316772, 'finance', 0), ('dagworks-inc/hamilton', 0.5357715487480164, 'ml-ops', 0), ('pallets/flask', 0.5355310440063477, 'web', 0), ('mementum/bta-lib', 0.5344659090042114, 'finance', 0), ('amaargiru/pyroad', 0.5344632863998413, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.533323347568512, 'study', 0), ('scikit-learn-contrib/metric-learn', 0.5309397578239441, 'ml', 0), ('geopandas/geopandas', 0.5308281183242798, 'gis', 0), ('google/pyglove', 0.5296308994293213, 'util', 0), ('ageron/handson-ml2', 0.5294873118400574, 'ml', 0), ('selfexplainml/piml-toolbox', 0.5287847518920898, 'ml-interpretability', 0), ('pycaret/pycaret', 0.5278028845787048, 'ml', 0), ('featurelabs/featuretools', 0.5276992321014404, 'ml', 0), ('alkaline-ml/pmdarima', 0.5274640917778015, 'time-series', 0), ('rasbt/mlxtend', 0.5270822644233704, 'ml', 0), ('python/cpython', 0.5255565643310547, 'util', 0), ('gbeced/basana', 0.5250836610794067, 'finance', 0), ('sqlalchemy/sqlalchemy', 0.5246463418006897, 'data', 0), ('beeware/toga', 0.5231086611747742, 'gui', 0), ('cuemacro/findatapy', 0.5208711624145508, 'finance', 0), ('clips/pattern', 0.5158860087394714, 'nlp', 0), ('probml/pyprobml', 0.5155179500579834, 'ml', 0), ('bottlepy/bottle', 0.5141693949699402, 'web', 0), ('federicoceratto/dashing', 0.5140957832336426, 'term', 0), ('pymc-devs/pymc3', 0.5136345028877258, 'ml', 0), ('pyscf/pyscf', 0.5135458707809448, 'sim', 0), ('fredrik-johansson/mpmath', 0.5134932398796082, 'math', 0), ('kubeflow/fairing', 0.5122407078742981, 'ml-ops', 0), ('hoffstadt/dearpygui', 0.5079163908958435, 'gui', 0), ('numpy/numpy', 0.5077769160270691, 'math', 0), ('r0x0r/pywebview', 0.5072776079177856, 'gui', 0), ('lballabio/quantlib-swig', 0.5069200396537781, 'finance', 0), ('fastai/fastcore', 0.5064576268196106, 'util', 0), ('samuelcolvin/python-devtools', 0.5059173107147217, 'debug', 0), ('ai4finance-foundation/fingpt', 0.5048463344573975, 'finance', 0), ('google/gin-config', 0.5047725439071655, 'util', 0), ('cython/cython', 0.5038447380065918, 'util', 0), ('masoniteframework/masonite', 0.5026025176048279, 'web', 0), ('polakowo/vectorbt', 0.5025342106819153, 'finance', 1), ('tensorly/tensorly', 0.5013471841812134, 'ml-dl', 0), ('crflynn/stochastic', 0.5013076663017273, 'sim', 0)] | 27 | 2 | null | 1 | 1 | 0 | 62 | 0 | 51 | 37 | 51 | 1 | 0 | 90 | 0 | 38 |
1,315 | study | https://github.com/krzjoa/awesome-python-data-science | ['awesome'] | null | [] | [] | null | null | null | krzjoa/awesome-python-data-science | awesome-python-data-science | 2,179 | 353 | 56 | null | https://krzjoa.github.io/awesome-python-data-science | Probably the best curated list of data science software in Python. | krzjoa | 2024-01-10 | 2017-12-21 | 318 | 6.836844 | null | Probably the best curated list of data science software in Python. | ['awesome', 'awesome-list', 'awesome-python', 'data-analysis', 'data-science', 'data-visualization', 'deep-learning', 'machine-learning', 'scikit-learn', 'statistics'] | ['awesome', 'awesome-list', 'awesome-python', 'data-analysis', 'data-science', 'data-visualization', 'deep-learning', 'machine-learning', 'scikit-learn', 'statistics'] | 2023-10-30 | [('dylanhogg/awesome-python', 0.7601116299629211, 'study', 6), ('plotly/dash', 0.6923890113830566, 'viz', 2), ('pandas-dev/pandas', 0.6641040444374084, 'pandas', 2), ('polyaxon/datatile', 0.6403499245643616, 'pandas', 3), ('firmai/industry-machine-learning', 0.6359909772872925, 'study', 2), ('gradio-app/gradio', 0.620049238204956, 'viz', 5), ('rasbt/mlxtend', 0.610371470451355, 'ml', 2), ('thealgorithms/python', 0.5975322127342224, 'study', 0), ('dagworks-inc/hamilton', 0.5971183776855469, 'ml-ops', 3), ('holoviz/panel', 0.5961334705352783, 'viz', 0), ('airbnb/knowledge-repo', 0.5916482210159302, 'data', 2), ('goldmansachs/gs-quant', 0.5910742282867432, 'finance', 0), ('timofurrer/awesome-asyncio', 0.5890659093856812, 'study', 2), ('featurelabs/featuretools', 0.580768883228302, 'ml', 3), ('scikit-learn/scikit-learn', 0.578446090221405, 'ml', 4), ('ranaroussi/quantstats', 0.5782219767570496, 'finance', 0), ('wesm/pydata-book', 0.5766783952713013, 'study', 0), ('ibis-project/ibis', 0.5760530233383179, 'data', 0), ('man-group/dtale', 0.5704981088638306, 'viz', 3), ('jovianml/opendatasets', 0.5699965357780457, 'data', 2), ('malloydata/malloy-py', 0.5664848685264587, 'data', 0), ('tiangolo/sqlmodel', 0.5662049651145935, 'data', 0), ('merantix-momentum/squirrel-core', 0.5624656081199646, 'ml', 3), ('fatiando/verde', 0.559866726398468, 'gis', 1), ('scitools/iris', 0.5579238533973694, 'gis', 1), ('pycaret/pycaret', 0.554579496383667, 'ml', 2), ('cython/cython', 0.5530298352241516, 'util', 0), ('keon/algorithms', 0.5512800812721252, 'util', 0), ('ta-lib/ta-lib-python', 0.5507447123527527, 'finance', 0), ('joowani/binarytree', 0.5454331636428833, 'util', 0), ('eleutherai/pyfra', 0.5438522100448608, 'ml', 0), ('eventual-inc/daft', 0.5433785915374756, 'pandas', 3), ('1200wd/bitcoinlib', 0.5427032113075256, 'crypto', 0), ('unionai-oss/pandera', 0.5424999594688416, 'pandas', 0), ('fastai/fastcore', 0.5385904908180237, 'util', 0), ('python-odin/odin', 0.5375770330429077, 'util', 0), ('scikit-learn-contrib/imbalanced-learn', 0.535544753074646, 'ml', 4), ('saulpw/visidata', 0.5329089760780334, 'term', 0), ('scikit-mobility/scikit-mobility', 0.5322821736335754, 'gis', 3), ('zenodo/zenodo', 0.5312089323997498, 'util', 0), ('ydataai/ydata-profiling', 0.5310283303260803, 'pandas', 5), ('statsmodels/statsmodels', 0.5274232625961304, 'ml', 3), ('imageio/imageio', 0.5262821316719055, 'util', 0), ('earthlab/earthpy', 0.5236297249794006, 'gis', 0), ('pypy/pypy', 0.5223199725151062, 'util', 0), ('geopandas/geopandas', 0.5221031308174133, 'gis', 0), ('clips/pattern', 0.5186637043952942, 'nlp', 1), ('pytoolz/toolz', 0.5155652761459351, 'util', 0), ('jakevdp/pythondatasciencehandbook', 0.5150753259658813, 'study', 1), ('residentmario/geoplot', 0.5134770274162292, 'gis', 0), ('mito-ds/monorepo', 0.5128975510597229, 'jupyter', 3), ('great-expectations/great_expectations', 0.5083687901496887, 'ml-ops', 1), ('google/pyglove', 0.5056788325309753, 'util', 1), ('ploomber/ploomber', 0.5054386258125305, 'ml-ops', 2), ('feast-dev/feast', 0.5033879280090332, 'ml-ops', 2), ('scipy/scipy', 0.5031641721725464, 'math', 0), ('domokane/financepy', 0.5010226368904114, 'finance', 0), ('wandb/client', 0.5009933114051819, 'ml', 3)] | 31 | 9 | null | 1.04 | 1 | 1 | 74 | 3 | 0 | 0 | 0 | 1 | 1 | 90 | 1 | 38 |
294 | util | https://github.com/pyfilesystem/pyfilesystem2 | [] | null | [] | [] | null | null | null | pyfilesystem/pyfilesystem2 | pyfilesystem2 | 1,921 | 180 | 43 | Python | https://www.pyfilesystem.org | Python's Filesystem abstraction layer | pyfilesystem | 2024-01-13 | 2016-10-14 | 380 | 5.047673 | https://avatars.githubusercontent.com/u/11898830?v=4 | Python's Filesystem abstraction layer | ['filesystem', 'filesystem-library', 'ftp', 'pyfilesystem', 'pyfilesystem2', 'tar', 'zip'] | ['filesystem', 'filesystem-library', 'ftp', 'pyfilesystem', 'pyfilesystem2', 'tar', 'zip'] | 2022-10-18 | [('fsspec/filesystem_spec', 0.7090234160423279, 'util', 0), ('drivendataorg/cloudpathlib', 0.5201523900032043, 'data', 0)] | 47 | 5 | null | 0 | 9 | 2 | 88 | 15 | 0 | 7 | 7 | 9 | 18 | 90 | 2 | 38 |
46 | jupyter | https://github.com/maartenbreddels/ipyvolume | [] | null | [] | [] | null | null | null | maartenbreddels/ipyvolume | ipyvolume | 1,896 | 239 | 52 | TypeScript | null | 3d plotting for Python in the Jupyter notebook based on IPython widgets using WebGL | maartenbreddels | 2024-01-09 | 2016-12-21 | 370 | 5.112481 | https://avatars.githubusercontent.com/u/99180851?v=4 | 3d plotting for Python in the Jupyter notebook based on IPython widgets using WebGL | ['dataviz', 'ipython-widget', 'jupyter', 'jupyter-notebook', 'plotting', 'quiver', 'rendering-3d-volumes', 'scientific-visualization', 'threejs', 'virtual-reality', 'visualisation', 'volume-rendering', 'webgl'] | ['dataviz', 'ipython-widget', 'jupyter', 'jupyter-notebook', 'plotting', 'quiver', 'rendering-3d-volumes', 'scientific-visualization', 'threejs', 'virtual-reality', 'visualisation', 'volume-rendering', 'webgl'] | 2023-07-07 | [('vizzuhq/ipyvizzu', 0.7133920788764954, 'jupyter', 4), ('plotly/plotly.py', 0.6658064723014832, 'viz', 2), ('bokeh/bokeh', 0.6592708230018616, 'viz', 3), ('jupyter-widgets/ipywidgets', 0.6541346311569214, 'jupyter', 0), ('giswqs/mapwidget', 0.6517302989959717, 'gis', 1), ('voila-dashboards/voila', 0.6421133279800415, 'jupyter', 2), ('ipython/ipyparallel', 0.6384920477867126, 'perf', 1), ('jupyterlab/jupyterlab-desktop', 0.6347945928573608, 'jupyter', 2), ('matplotlib/matplotlib', 0.6306770443916321, 'viz', 1), ('jupyter/notebook', 0.6165135502815247, 'jupyter', 2), ('holoviz/holoviz', 0.6008582711219788, 'viz', 0), ('holoviz/panel', 0.597214937210083, 'viz', 2), ('vispy/vispy', 0.5861509442329407, 'viz', 0), ('ipython/ipykernel', 0.5854012966156006, 'util', 2), ('pyglet/pyglet', 0.580999493598938, 'gamedev', 1), ('opengeos/leafmap', 0.5771999359130859, 'gis', 3), ('man-group/dtale', 0.5735721588134766, 'viz', 1), ('marcomusy/vedo', 0.5702053308486938, 'viz', 1), ('jakevdp/pythondatasciencehandbook', 0.5677738189697266, 'study', 1), ('holoviz/hvplot', 0.5658844113349915, 'pandas', 1), ('jupyter/nbformat', 0.5637709498405457, 'jupyter', 0), ('jupyterlab/jupyterlab', 0.5636622309684753, 'jupyter', 1), ('cuemacro/chartpy', 0.5550907254219055, 'viz', 1), ('dfki-ric/pytransform3d', 0.5542986392974854, 'math', 0), ('koaning/drawdata', 0.5521408915519714, 'jupyter', 1), ('jupyterlite/jupyterlite', 0.5511241555213928, 'jupyter', 1), ('giswqs/geemap', 0.5499334931373596, 'gis', 3), ('enthought/mayavi', 0.5471249222755432, 'viz', 1), ('plotly/dash', 0.5407821536064148, 'viz', 1), ('jupyter-widgets/ipyleaflet', 0.540547251701355, 'gis', 1), ('aws/graph-notebook', 0.539257287979126, 'jupyter', 2), ('holoviz/geoviews', 0.5372338891029358, 'gis', 1), ('kanaries/pygwalker', 0.5359721779823303, 'pandas', 0), ('wesm/pydata-book', 0.5356112122535706, 'study', 0), ('residentmario/geoplot', 0.5270797610282898, 'gis', 0), ('brandtbucher/specialist', 0.5239526033401489, 'perf', 0), ('altair-viz/altair', 0.5231117010116577, 'viz', 0), ('connorferster/handcalcs', 0.5224195122718811, 'jupyter', 0), ('cohere-ai/notebooks', 0.5213759541511536, 'llm', 0), ('mwouts/jupytext', 0.520946741104126, 'jupyter', 1), ('r0x0r/pywebview', 0.5197725296020508, 'gui', 0), ('fchollet/deep-learning-with-python-notebooks', 0.516755223274231, 'study', 0), ('computationalmodelling/nbval', 0.5154886841773987, 'jupyter', 1), ('quantopian/qgrid', 0.5143440961837769, 'jupyter', 0), ('wxwidgets/phoenix', 0.5121052861213684, 'gui', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5118504762649536, 'jupyter', 0), ('pysimplegui/pysimplegui', 0.5105063319206238, 'gui', 0), ('webpy/webpy', 0.5092483162879944, 'web', 0), ('ipython/ipython', 0.5083285570144653, 'util', 1), ('jupyter/nbconvert', 0.5078595280647278, 'jupyter', 0), ('klen/muffin', 0.50477135181427, 'web', 0), ('pyvista/pyvista', 0.5043342709541321, 'viz', 2), ('masoniteframework/masonite', 0.5016263127326965, 'web', 0), ('python/cpython', 0.5007892847061157, 'util', 0), ('bloomberg/ipydatagrid', 0.5007188320159912, 'jupyter', 0)] | 45 | 7 | null | 0.44 | 2 | 0 | 86 | 6 | 0 | 7 | 7 | 2 | 2 | 90 | 1 | 38 |
1,211 | util | https://github.com/astanin/python-tabulate | [] | null | [] | [] | null | null | null | astanin/python-tabulate | python-tabulate | 1,881 | 194 | 21 | Python | https://pypi.org/project/tabulate/ | Pretty-print tabular data in Python, a library and a command-line utility. Repository migrated from bitbucket.org/astanin/python-tabulate. | astanin | 2024-01-12 | 2019-09-02 | 230 | 8.173184 | null | Pretty-print tabular data in Python, a library and a command-line utility. Repository migrated from bitbucket.org/astanin/python-tabulate. | [] | [] | 2023-04-30 | [('jazzband/prettytable', 0.6471048593521118, 'term', 0), ('jazzband/tablib', 0.6442596316337585, 'data', 0), ('camelot-dev/camelot', 0.6331050395965576, 'util', 0), ('wireservice/csvkit', 0.5541922450065613, 'util', 0), ('vaexio/vaex', 0.5106703042984009, 'perf', 0), ('saulpw/visidata', 0.5104148387908936, 'term', 0), ('mljar/mljar-supervised', 0.5009972453117371, 'ml', 0)] | 84 | 3 | null | 0 | 19 | 2 | 53 | 9 | 0 | 6 | 6 | 19 | 9 | 90 | 0.5 | 38 |
262 | sim | https://github.com/quantecon/quantecon.py | [] | null | [] | [] | null | null | null | quantecon/quantecon.py | QuantEcon.py | 1,802 | 2,287 | 150 | Python | https://quantecon.org/quantecon-py/ | A community based Python library for quantitative economics | quantecon | 2024-01-12 | 2013-03-22 | 566 | 3.180535 | https://avatars.githubusercontent.com/u/8703060?v=4 | A community based Python library for quantitative economics | [] | [] | 2023-08-09 | [('gbeced/pyalgotrade', 0.6401932835578918, 'finance', 0), ('goldmansachs/gs-quant', 0.6292877197265625, 'finance', 0), ('domokane/financepy', 0.5794845819473267, 'finance', 0), ('eleutherai/pyfra', 0.5649722218513489, 'ml', 0), ('cuemacro/finmarketpy', 0.5637820959091187, 'finance', 0), ('pmorissette/ffn', 0.559691309928894, 'finance', 0), ('robcarver17/pysystemtrade', 0.5519441962242126, 'finance', 0), ('statsmodels/statsmodels', 0.5498467087745667, 'ml', 0), ('wesm/pydata-book', 0.5465633273124695, 'study', 0), ('quantopian/zipline', 0.5450539588928223, 'finance', 0), ('ta-lib/ta-lib-python', 0.54204261302948, 'finance', 0), ('rasbt/mlxtend', 0.5213393568992615, 'ml', 0), ('ranaroussi/quantstats', 0.513916015625, 'finance', 0), ('py-why/dowhy', 0.513481080532074, 'ml', 0), ('quantopian/pyfolio', 0.5116593837738037, 'finance', 0), ('alkaline-ml/pmdarima', 0.5083404779434204, 'time-series', 0), ('dit/dit', 0.5037375688552856, 'math', 0), ('pytoolz/toolz', 0.502926766872406, 'util', 0), ('microsoft/qlib', 0.5021764636039734, 'finance', 0), ('scikit-mobility/scikit-mobility', 0.5013092756271362, 'gis', 0)] | 43 | 7 | null | 0.42 | 5 | 0 | 132 | 5 | 4 | 4 | 4 | 5 | 12 | 90 | 2.4 | 38 |
1,616 | data | https://github.com/samuelcolvin/arq | [] | null | [] | [] | null | null | null | samuelcolvin/arq | arq | 1,766 | 147 | 32 | Python | https://arq-docs.helpmanual.io/ | Fast job queuing and RPC in python with asyncio and redis. | samuelcolvin | 2024-01-13 | 2016-07-21 | 392 | 4.496908 | null | Fast job queuing and RPC in python with asyncio and redis. | ['async', 'asyncio', 'concurrency', 'concurrent', 'distributed', 'msgpack', 'queue', 'redis', 'tasks', 'worker'] | ['async', 'asyncio', 'concurrency', 'concurrent', 'distributed', 'msgpack', 'queue', 'redis', 'tasks', 'worker'] | 2023-10-30 | [('python-trio/trio', 0.6487094759941101, 'perf', 1), ('agronholm/anyio', 0.6350996494293213, 'perf', 1), ('magicstack/uvloop', 0.6330302953720093, 'util', 2), ('airtai/faststream', 0.6273122429847717, 'perf', 2), ('aio-libs/aiohttp', 0.6253662705421448, 'web', 2), ('geeogi/async-python-lambda-template', 0.6250224113464355, 'template', 0), ('noxdafox/pebble', 0.5885294675827026, 'perf', 1), ('sumerc/yappi', 0.5881884098052979, 'profiling', 1), ('bogdanp/dramatiq', 0.5857503414154053, 'util', 1), ('pallets/quart', 0.5751336216926575, 'web', 1), ('alirn76/panther', 0.5734840035438538, 'web', 0), ('joblib/loky', 0.5648357272148132, 'perf', 0), ('hyperopt/hyperopt', 0.5642699599266052, 'ml', 0), ('aio-libs/aiocache', 0.554317057132721, 'data', 2), ('eventlet/eventlet', 0.5532472729682922, 'perf', 1), ('joblib/joblib', 0.5469869375228882, 'util', 0), ('dask/dask', 0.5444415211677551, 'perf', 0), ('samuelcolvin/aioaws', 0.5388724207878113, 'data', 1), ('celery/celery', 0.5360067486763, 'perf', 1), ('neoteroi/blacksheep', 0.5355557799339294, 'web', 1), ('encode/httpx', 0.525906503200531, 'web', 1), ('timofurrer/awesome-asyncio', 0.5215858817100525, 'study', 1), ('alex-sherman/unsync', 0.5158486366271973, 'util', 0), ('fastai/fastcore', 0.5146878957748413, 'util', 0), ('mher/flower', 0.5143932104110718, 'perf', 1), ('pytest-dev/pytest-asyncio', 0.5120292901992798, 'testing', 1), ('agronholm/apscheduler', 0.5115315914154053, 'util', 0), ('grantjenks/python-diskcache', 0.5104993581771851, 'util', 0), ('aio-libs/aiobotocore', 0.5054838061332703, 'util', 1), ('tiangolo/asyncer', 0.5030202865600586, 'perf', 2), ('samuelcolvin/watchfiles', 0.5021094679832458, 'util', 1)] | 55 | 3 | null | 0.06 | 19 | 8 | 91 | 2 | 0 | 8 | 8 | 19 | 17 | 90 | 0.9 | 38 |