Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
1,062
sim
https://github.com/netket/netket
[]
null
[]
[]
null
null
null
netket/netket
netket
473
164
24
Python
https://www.netket.org
Machine learning algorithms for many-body quantum systems
netket
2024-01-13
2018-04-23
301
1.570683
https://avatars.githubusercontent.com/u/38641916?v=4
Machine learning algorithms for many-body quantum systems
['complex-neural-network', 'deep-learning', 'exact-diagonalization', 'hamiltonian', 'jax', 'machine-learning', 'machine-learning-algorithms', 'markov-chain-monte-carlo', 'monte-carlo-methods', 'neural-networks', 'physics-simulation', 'quantum', 'quantum-state-tomography', 'unitaryhack', 'variational-method', 'variational-monte-carlo']
['complex-neural-network', 'deep-learning', 'exact-diagonalization', 'hamiltonian', 'jax', 'machine-learning', 'machine-learning-algorithms', 'markov-chain-monte-carlo', 'monte-carlo-methods', 'neural-networks', 'physics-simulation', 'quantum', 'quantum-state-tomography', 'unitaryhack', 'variational-method', 'variational-monte-carlo']
2024-01-12
[('jackhidary/quantumcomputingbook', 0.626657247543335, 'study', 1), ('quantumlib/cirq', 0.5286350250244141, 'sim', 0), ('qiskit/qiskit', 0.5100851058959961, 'sim', 1)]
63
5
null
3.75
121
80
70
0
8
10
8
121
226
90
1.9
41
1,753
ml
https://github.com/deepgraphlearning/ultra
['reasoning', 'knowledge-graph']
null
[]
[]
null
null
null
deepgraphlearning/ultra
ULTRA
238
31
5
Python
null
A foundation model for knowledge graph reasoning
deepgraphlearning
2024-01-12
2023-10-23
14
16.828283
https://avatars.githubusercontent.com/u/38018154?v=4
A foundation model for knowledge graph reasoning
[]
['knowledge-graph', 'reasoning']
2024-01-13
[('awslabs/dgl-ke', 0.5505498647689819, 'ml', 1), ('dylanhogg/llmgraph', 0.5485401749610901, 'ml', 1), ('accenture/ampligraph', 0.5169753432273865, 'data', 1), ('zjunlp/deepke', 0.5096688270568848, 'ml', 1)]
4
3
null
0.21
11
10
3
0
0
0
0
11
25
90
2.3
41
1,655
llm
https://github.com/langchain-ai/langsmith-sdk
[]
null
[]
[]
null
null
null
langchain-ai/langsmith-sdk
langsmith-sdk
224
25
5
Python
https://smith.langchain.com/
LangSmith Client SDK Implementations
langchain-ai
2024-01-11
2023-05-30
35
6.4
https://avatars.githubusercontent.com/u/126733545?v=4
LangSmith Client SDK Implementations
['evaluation', 'language-model', 'observability']
['evaluation', 'language-model', 'observability']
2024-01-13
[('langchain-ai/langsmith-cookbook', 0.6326169371604919, 'llm', 2), ('anthropics/anthropic-sdk-python', 0.5629613995552063, 'util', 1), ('gkamradt/langchain-tutorials', 0.5348765254020691, 'study', 0), ('langchain-ai/langgraph', 0.5179738998413086, 'llm', 0), ('alphasecio/langchain-examples', 0.5165998935699463, 'llm', 0), ('hwchase17/langchain', 0.5111579298973083, 'llm', 1), ('openai/tiktoken', 0.5109971761703491, 'nlp', 0), ('prefecthq/langchain-prefect', 0.5083007216453552, 'llm', 0)]
15
2
null
5.94
116
108
8
0
70
126
70
116
92
90
0.8
41
1,059
study
https://github.com/shangtongzhang/reinforcement-learning-an-introduction
[]
null
[]
[]
null
null
null
shangtongzhang/reinforcement-learning-an-introduction
reinforcement-learning-an-introduction
12,960
4,791
565
Python
null
Python Implementation of Reinforcement Learning: An Introduction
shangtongzhang
2024-01-13
2016-09-13
385
33.662338
null
Python Implementation of Reinforcement Learning: An Introduction
['artificial-intelligence', 'reinforcement-learning']
['artificial-intelligence', 'reinforcement-learning']
2022-05-10
[('deepmind/acme', 0.6519054770469666, 'ml-rl', 1), ('pytorch/rl', 0.6356885433197021, 'ml-rl', 1), ('openai/gym', 0.6223573088645935, 'ml-rl', 1), ('artemyk/dynpy', 0.583624005317688, 'sim', 0), ('thu-ml/tianshou', 0.5635957717895508, 'ml-rl', 0), ('scikit-learn/scikit-learn', 0.5567522644996643, 'ml', 0), ('humancompatibleai/imitation', 0.5537171363830566, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5474168062210083, 'ml-rl', 1), ('pymc-devs/pymc3', 0.5400987863540649, 'ml', 0), ('infer-actively/pymdp', 0.5399729013442993, 'ml', 0), ('pettingzoo-team/pettingzoo', 0.5307071805000305, 'ml-rl', 1), ('nvidia-omniverse/omniisaacgymenvs', 0.5251854062080383, 'sim', 0), ('arise-initiative/robosuite', 0.5221055746078491, 'ml-rl', 1), ('facebookresearch/reagent', 0.5210154056549072, 'ml-rl', 0), ('google/dopamine', 0.5188839435577393, 'ml-rl', 0), ('denys88/rl_games', 0.5131837725639343, 'ml-rl', 1), ('probml/pyprobml', 0.5084415078163147, 'ml', 0), ('gbeced/pyalgotrade', 0.5082697868347168, 'finance', 0), ('sympy/sympy', 0.5073643326759338, 'math', 0)]
33
3
null
0
0
0
89
20
0
0
0
0
0
90
0
40
246
util
https://github.com/jorgebastida/awslogs
[]
null
[]
[]
null
null
null
jorgebastida/awslogs
awslogs
4,714
336
57
Python
null
AWS CloudWatch logs for Humans™
jorgebastida
2024-01-12
2015-01-21
470
10.011529
null
AWS CloudWatch logs for Humans™
[]
[]
2020-07-10
[('rpgreen/apilogs', 0.5721848607063293, 'util', 0), ('nccgroup/scoutsuite', 0.5164755582809448, 'security', 0)]
39
5
null
0
2
1
109
43
0
1
1
2
6
90
3
40
847
profiling
https://github.com/pythonprofilers/memory_profiler
[]
null
[]
[]
null
null
null
pythonprofilers/memory_profiler
memory_profiler
4,110
403
80
Python
http://pypi.python.org/pypi/memory_profiler
Monitor Memory usage of Python code
pythonprofilers
2024-01-14
2011-10-14
641
6.406146
https://avatars.githubusercontent.com/u/32906038?v=4
Monitor Memory usage of Python code
[]
[]
2023-10-23
[('pympler/pympler', 0.8423640131950378, 'perf', 0), ('pythonspeed/filprofiler', 0.664732813835144, 'profiling', 0), ('pyutils/line_profiler', 0.577487051486969, 'profiling', 0), ('nedbat/coveragepy', 0.5676537156105042, 'testing', 0), ('gaogaotiantian/viztracer', 0.5663729906082153, 'profiling', 0), ('rubik/radon', 0.5579990148544312, 'util', 0), ('dgilland/cacheout', 0.555606484413147, 'perf', 0), ('joblib/joblib', 0.5550679564476013, 'util', 0), ('bloomberg/memray', 0.5463239550590515, 'profiling', 0), ('alexmojaki/heartrate', 0.5310880541801453, 'debug', 0), ('landscapeio/prospector', 0.5307861566543579, 'util', 0), ('benfred/py-spy', 0.5219977498054504, 'profiling', 0), ('jendrikseipp/vulture', 0.5172761678695679, 'util', 0), ('pytables/pytables', 0.5096424221992493, 'data', 0), ('cython/cython', 0.5089790225028992, 'util', 0), ('erotemic/ubelt', 0.5078474879264832, 'util', 0)]
103
7
null
0.06
3
1
149
3
0
4
4
3
1
90
0.3
40
1,179
diffusion
https://github.com/salesforce/blip
[]
null
[]
[]
null
null
null
salesforce/blip
BLIP
3,885
530
33
Jupyter Notebook
null
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
salesforce
2024-01-13
2022-01-25
105
37
https://avatars.githubusercontent.com/u/453694?v=4
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
['image-captioning', 'image-text-retrieval', 'vision-and-language-pre-training', 'vision-language', 'vision-language-transformer', 'visual-question-answering', 'visual-reasoning']
['image-captioning', 'image-text-retrieval', 'vision-and-language-pre-training', 'vision-language', 'vision-language-transformer', 'visual-question-answering', 'visual-reasoning']
2022-09-20
[('nvlabs/prismer', 0.6734409928321838, 'diffusion', 1), ('ofa-sys/ofa', 0.6362955570220947, 'llm', 3), ('nvlabs/gcvit', 0.5959486365318298, 'diffusion', 0), ('pytorch/ignite', 0.5812243223190308, 'ml-dl', 0), ('lucidrains/imagen-pytorch', 0.579346776008606, 'ml-dl', 0), ('jerryyli/valhalla-nmt', 0.5753607749938965, 'ml-dl', 0), ('graykode/nlp-tutorial', 0.5725541710853577, 'study', 0), ('allenai/allennlp', 0.5719388127326965, 'nlp', 0), ('openai/finetune-transformer-lm', 0.5705159902572632, 'llm', 0), ('huggingface/transformers', 0.5568798184394836, 'nlp', 0), ('deci-ai/super-gradients', 0.5560441613197327, 'ml-dl', 0), ('alibaba/easynlp', 0.553688108921051, 'nlp', 0), ('openai/clip', 0.5517219305038452, 'ml-dl', 0), ('next-gpt/next-gpt', 0.5469942092895508, 'llm', 0), ('lightly-ai/lightly', 0.5466323494911194, 'ml', 0), ('srush/minichain', 0.5436856746673584, 'llm', 0), ('hysts/pytorch_image_classification', 0.5436573624610901, 'ml-dl', 0), ('lucidrains/dalle2-pytorch', 0.5417680740356445, 'diffusion', 0), ('intel/intel-extension-for-pytorch', 0.5368949770927429, 'perf', 0), ('mrdbourke/pytorch-deep-learning', 0.5360457897186279, 'study', 0), ('thudm/glm-130b', 0.5314812064170837, 'llm', 0), ('openai/image-gpt', 0.5261111855506897, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.5254507064819336, 'llm', 0), ('microsoft/lora', 0.52529376745224, 'llm', 0), ('skorch-dev/skorch', 0.5246773362159729, 'ml-dl', 0), ('roboflow/notebooks', 0.523171603679657, 'study', 0), ('google-research/electra', 0.5222206115722656, 'ml-dl', 0), ('nvidia/apex', 0.5196071267127991, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5187211036682129, 'study', 0), ('microsoft/unilm', 0.5181792378425598, 'nlp', 0), ('databrickslabs/dolly', 0.516700029373169, 'llm', 0), ('pytorch-labs/gpt-fast', 0.5148594379425049, 'llm', 0), ('ibm/transition-amr-parser', 0.5134626626968384, 'nlp', 0), ('reasoning-machines/pal', 0.512751042842865, 'llm', 0), ('pytorch/captum', 0.5107000470161438, 'ml-interpretability', 0), ('bigscience-workshop/megatron-deepspeed', 0.5101778507232666, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5101778507232666, 'llm', 0), ('deepset-ai/farm', 0.5072547197341919, 'nlp', 0), ('timdettmers/bitsandbytes', 0.5067077875137329, 'util', 0), ('optimalscale/lmflow', 0.5060290694236755, 'llm', 0), ('lm-sys/fastchat', 0.5055869817733765, 'llm', 0), ('microsoft/semi-supervised-learning', 0.5032647848129272, 'ml', 0), ('huggingface/autotrain-advanced', 0.5011047124862671, 'ml', 0), ('nvidia/deeplearningexamples', 0.5009772181510925, 'ml-dl', 0), ('bytedance/lightseq', 0.5009039044380188, 'nlp', 0), ('lucidrains/vit-pytorch', 0.500484049320221, 'ml-dl', 0), ('rwightman/pytorch-image-models', 0.5003149509429932, 'ml-dl', 0), ('facebookresearch/mmf', 0.5001189112663269, 'ml-dl', 0)]
4
1
null
0
19
3
24
16
0
0
0
19
17
90
0.9
40
1,026
finance
https://github.com/polakowo/vectorbt
[]
null
[]
[]
null
null
null
polakowo/vectorbt
vectorbt
3,466
537
116
Python
https://vectorbt.dev
Find your trading edge, using the fastest engine for backtesting, algorithmic trading, and research.
polakowo
2024-01-14
2017-11-14
324
10.697531
null
Find your trading edge, using the fastest engine for backtesting, algorithmic trading, and research.
['algorithmic-trading', 'algorithmic-traiding', 'backtesting', 'cryptocurrency', 'data-science', 'data-visualization', 'finance', 'machine-learning', 'portfolio-optimization', 'quantitative-analysis', 'quantitative-finance', 'time-series', 'trading', 'trading-strategies']
['algorithmic-trading', 'algorithmic-traiding', 'backtesting', 'cryptocurrency', 'data-science', 'data-visualization', 'finance', 'machine-learning', 'portfolio-optimization', 'quantitative-analysis', 'quantitative-finance', 'time-series', 'trading', 'trading-strategies']
2023-09-30
[('idanya/algo-trader', 0.6762666702270508, 'finance', 3), ('openbb-finance/openbbterminal', 0.6711627244949341, 'finance', 4), ('quantconnect/lean', 0.6572080254554749, 'finance', 3), ('kernc/backtesting.py', 0.6390688419342041, 'finance', 5), ('ranaroussi/quantstats', 0.6319853663444519, 'finance', 4), ('zvtvz/zvt', 0.6255056858062744, 'finance', 6), ('ai4finance-foundation/finrl', 0.6179881691932678, 'finance', 2), ('freqtrade/freqtrade', 0.606457531452179, 'crypto', 2), ('numerai/example-scripts', 0.5881688594818115, 'finance', 2), ('gbeced/basana', 0.5863175392150879, 'finance', 3), ('cuemacro/finmarketpy', 0.5674868822097778, 'finance', 1), ('polyaxon/datatile', 0.5571960806846619, 'pandas', 2), ('stefmolin/stock-analysis', 0.5499805212020874, 'finance', 0), ('xplainable/xplainable', 0.532191812992096, 'ml-interpretability', 2), ('gbeced/pyalgotrade', 0.5312750935554504, 'finance', 0), ('quantopian/zipline', 0.519047737121582, 'finance', 1), ('google/tf-quant-finance', 0.5182610154151917, 'finance', 2), ('ccxt/ccxt', 0.5177646279335022, 'crypto', 2), ('mementum/backtrader', 0.5124863982200623, 'finance', 2), ('goldmansachs/gs-quant', 0.5025342106819153, 'finance', 1)]
11
4
null
0.17
22
5
75
4
0
0
0
22
35
90
1.6
40
1,235
llm
https://github.com/yizhongw/self-instruct
[]
null
[]
[]
null
null
null
yizhongw/self-instruct
self-instruct
3,459
400
52
Python
null
Aligning pretrained language models with instruction data generated by themselves.
yizhongw
2024-01-14
2022-12-20
58
59.637931
null
Aligning pretrained language models with instruction data generated by themselves.
['general-purpose-model', 'instruction-tuning', 'language-model']
['general-purpose-model', 'instruction-tuning', 'language-model']
2023-03-27
[('cg123/mergekit', 0.6453080177307129, 'llm', 0), ('huawei-noah/pretrained-language-model', 0.6405363082885742, 'nlp', 0), ('tatsu-lab/stanford_alpaca', 0.5977901816368103, 'llm', 1), ('tiger-ai-lab/mammoth', 0.5941129922866821, 'llm', 1), ('openai/finetune-transformer-lm', 0.5861937999725342, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5800374150276184, 'llm', 1), ('neulab/prompt2model', 0.5685259699821472, 'llm', 1), ('keirp/automatic_prompt_engineer', 0.5658340454101562, 'llm', 1), ('guidance-ai/guidance', 0.5607982873916626, 'llm', 1), ('juncongmoo/pyllama', 0.5553812384605408, 'llm', 0), ('hannibal046/awesome-llm', 0.5532945394515991, 'study', 1), ('declare-lab/instruct-eval', 0.550851047039032, 'llm', 0), ('freedomintelligence/llmzoo', 0.5435721278190613, 'llm', 1), ('openbmb/toolbench', 0.542241096496582, 'llm', 1), ('thudm/glm-130b', 0.5371110439300537, 'llm', 0), ('hazyresearch/h3', 0.534803569316864, 'llm', 0), ('ai21labs/lm-evaluation', 0.5341971516609192, 'llm', 1), ('srush/minichain', 0.5332199931144714, 'llm', 0), ('hiyouga/llama-factory', 0.5308533310890198, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.530853271484375, 'llm', 2), ('jonasgeiping/cramming', 0.5202336311340332, 'nlp', 1), ('optimalscale/lmflow', 0.5196613073348999, 'llm', 1), ('lianjiatech/belle', 0.5185281038284302, 'llm', 0), ('eleutherai/lm-evaluation-harness', 0.513164758682251, 'llm', 1), ('infinitylogesh/mutate', 0.5120193362236023, 'nlp', 1), ('luohongyin/sail', 0.5114395022392273, 'llm', 1), ('bigscience-workshop/biomedical', 0.5062916278839111, 'data', 0), ('thudm/codegeex', 0.5008969902992249, 'llm', 0)]
2
1
null
0.08
2
0
13
10
0
0
0
2
1
90
0.5
40
957
ml-dl
https://github.com/facebookresearch/pytorch-biggraph
[]
null
[]
[]
null
null
null
facebookresearch/pytorch-biggraph
PyTorch-BigGraph
3,329
449
91
Python
https://torchbiggraph.readthedocs.io/
Generate embeddings from large-scale graph-structured data.
facebookresearch
2024-01-11
2018-10-01
278
11.96867
https://avatars.githubusercontent.com/u/16943930?v=4
Generate embeddings from large-scale graph-structured data.
[]
[]
2024-01-06
[('h4kor/graph-force', 0.6328504085540771, 'graph', 0), ('awslabs/dgl-ke', 0.6120842099189758, 'ml', 0), ('koaning/embetter', 0.5848337411880493, 'data', 0), ('vhranger/nodevectors', 0.5276350975036621, 'viz', 0), ('huggingface/text-embeddings-inference', 0.5272315144538879, 'llm', 0)]
31
5
null
0.12
0
0
64
0
0
1
1
0
0
90
0
40
42
nlp
https://github.com/life4/textdistance
[]
null
[]
[]
null
null
null
life4/textdistance
textdistance
3,248
247
65
Python
null
📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.
life4
2024-01-12
2017-05-05
351
9.238521
https://avatars.githubusercontent.com/u/48201596?v=4
📐 Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.
['algorithm', 'algorithms', 'damerau-levenshtein', 'damerau-levenshtein-distance', 'diff', 'distance', 'distance-calculation', 'hamming-distance', 'jellyfish', 'levenshtein', 'levenshtein-distance', 'textdistance']
['algorithm', 'algorithms', 'damerau-levenshtein', 'damerau-levenshtein-distance', 'diff', 'distance', 'distance-calculation', 'hamming-distance', 'jellyfish', 'levenshtein', 'levenshtein-distance', 'textdistance']
2023-12-29
[('jamesturk/jellyfish', 0.6177361011505127, 'nlp', 1), ('scipy/scipy', 0.5068709850311279, 'math', 1), ('spotify/annoy', 0.5062219500541687, 'ml', 0)]
14
5
null
0.31
2
2
82
1
2
2
2
2
1
90
0.5
40
780
study
https://github.com/cosmicpython/book
[]
null
[]
[]
null
null
null
cosmicpython/book
book
3,162
520
95
Python
https://www.cosmicpython.com
A Book about Pythonic Application Architecture Patterns for Managing Complexity. Cosmos is the Opposite of Chaos you see. O'R. wouldn't actually let us call it "Cosmic Python" tho.
cosmicpython
2024-01-13
2019-02-05
260
12.161538
https://avatars.githubusercontent.com/u/47350834?v=4
A Book about Pythonic Application Architecture Patterns for Managing Complexity. Cosmos is the Opposite of Chaos you see. O'R. wouldn't actually let us call it "Cosmic Python" tho.
[]
[]
2023-09-11
[('roban/cosmolopy', 0.5579319000244141, 'sim', 0), ('faif/python-patterns', 0.532017707824707, 'util', 0), ('google/gin-config', 0.5146122574806213, 'util', 0), ('timofurrer/awesome-asyncio', 0.5105115175247192, 'study', 0), ('eleutherai/pyfra', 0.5096278190612793, 'ml', 0), ('python/cpython', 0.5018055438995361, 'util', 0)]
46
2
null
0.1
1
1
60
4
0
0
0
1
3
90
3
40
155
pandas
https://github.com/adamerose/pandasgui
[]
null
[]
[]
null
null
null
adamerose/pandasgui
PandasGUI
3,079
223
54
Python
null
A GUI for Pandas DataFrames
adamerose
2024-01-11
2019-06-12
241
12.730656
null
A GUI for Pandas DataFrames
['dataframe', 'gui', 'pandas', 'viewer']
['dataframe', 'gui', 'pandas', 'viewer']
2023-12-07
[('tkrabel/bamboolib', 0.8184458017349243, 'pandas', 1), ('lux-org/lux', 0.6828799843788147, 'viz', 1), ('kanaries/pygwalker', 0.6812300682067871, 'pandas', 2), ('holoviz/panel', 0.6248031854629517, 'viz', 1), ('man-group/dtale', 0.6185036897659302, 'viz', 1), ('twopirllc/pandas-ta', 0.5920196771621704, 'finance', 2), ('beeware/toga', 0.590601921081543, 'gui', 1), ('mwaskom/seaborn', 0.5795894861221313, 'viz', 1), ('quantopian/qgrid', 0.5642687678337097, 'jupyter', 0), ('rsheftel/pandas_market_calendars', 0.5483811497688293, 'finance', 1), ('jmcarpenter2/swifter', 0.5478309988975525, 'pandas', 1), ('parthjadhav/tkinter-designer', 0.5451450943946838, 'gui', 1), ('pola-rs/polars', 0.5391742587089539, 'pandas', 1), ('blaze/blaze', 0.5380495190620422, 'pandas', 0), ('nalepae/pandarallel', 0.5294705629348755, 'pandas', 1), ('eleutherai/pyfra', 0.5291572213172913, 'ml', 0), ('zsailer/pandas_flavor', 0.5256001949310303, 'pandas', 1), ('federicoceratto/dashing', 0.5236207246780396, 'term', 0), ('scikit-learn-contrib/sklearn-pandas', 0.5230746865272522, 'pandas', 0), ('modin-project/modin', 0.5174034237861633, 'perf', 2), ('geopandas/geopandas', 0.51722252368927, 'gis', 1), ('hazyresearch/meerkat', 0.5161508321762085, 'viz', 1), ('cmudig/autoprofiler', 0.5127207040786743, 'jupyter', 1), ('pandas-dev/pandas', 0.5116315484046936, 'pandas', 2), ('rapidsai/cudf', 0.5097667574882507, 'pandas', 2), ('holoviz/hvplot', 0.5072020888328552, 'pandas', 0), ('bokeh/bokeh', 0.5031503438949585, 'viz', 0), ('holoviz/spatialpandas', 0.5028727054595947, 'pandas', 1), ('mementum/bta-lib', 0.5000632405281067, 'finance', 0)]
15
1
null
0.06
9
3
56
1
0
9
9
9
4
90
0.4
40
698
data
https://github.com/pyeve/cerberus
[]
null
[]
[]
null
null
null
pyeve/cerberus
cerberus
3,071
238
50
Python
http://python-cerberus.org
Lightweight, extensible data validation library for Python
pyeve
2024-01-12
2012-10-10
589
5.206345
https://avatars.githubusercontent.com/u/26229868?v=4
Lightweight, extensible data validation library for Python
['data-validation']
['data-validation']
2023-10-23
[('pydantic/pydantic', 0.7001333832740784, 'util', 0), ('wtforms/wtforms', 0.657631516456604, 'web', 0), ('marshmallow-code/marshmallow', 0.6555448174476624, 'util', 0), ('tensorflow/data-validation', 0.6110429167747498, 'ml-ops', 0), ('unionai-oss/pandera', 0.6107540726661682, 'pandas', 1), ('python-odin/odin', 0.6078689098358154, 'util', 0), ('pytoolz/toolz', 0.5941500067710876, 'util', 0), ('pandas-dev/pandas', 0.5807719230651855, 'pandas', 0), ('rasbt/mlxtend', 0.5806938409805298, 'ml', 0), ('pylons/colander', 0.5786774754524231, 'util', 0), ('legrandin/pycryptodome', 0.5516589283943176, 'util', 0), ('andialbrecht/sqlparse', 0.5441608428955078, 'data', 0), ('wolever/parameterized', 0.5334105491638184, 'testing', 0), ('collerek/ormar', 0.5298268795013428, 'data', 0), ('snyk/faker-security', 0.5294828414916992, 'security', 0), ('pycaret/pycaret', 0.5282540321350098, 'ml', 0), ('lk-geimfari/mimesis', 0.5154099464416504, 'data', 0), ('pypy/pypy', 0.5118589997291565, 'util', 0), ('imageio/imageio', 0.5100802183151245, 'util', 0), ('facebook/pyre-check', 0.5100794434547424, 'typing', 0), ('pyston/pyston', 0.5083901882171631, 'util', 0), ('pmorissette/bt', 0.507025420665741, 'finance', 0), ('pytables/pytables', 0.5037830471992493, 'data', 0), ('featurelabs/featuretools', 0.503200888633728, 'ml', 0)]
66
4
null
0.88
8
6
137
3
0
2
2
8
11
90
1.4
40
1,841
finance
https://github.com/zvtvz/zvt
[]
null
[]
[]
null
null
null
zvtvz/zvt
zvt
2,790
811
131
Python
https://zvt.readthedocs.io/en/latest/
modular quant framework.
zvtvz
2024-01-12
2019-04-04
251
11.083995
https://avatars.githubusercontent.com/u/49115722?v=4
modular quant framework.
['algorithmic-trading', 'backtesting', 'cryptocurrency', 'fintech', 'fundamental-analysis', 'machine-learning', 'ml', 'quant', 'quantitative-finance', 'quantitative-trading', 'stock', 'stock-market', 'technical-analysis', 'trading-bot', 'trading-platform', 'trading-strategies', 'zvt']
['algorithmic-trading', 'backtesting', 'cryptocurrency', 'fintech', 'fundamental-analysis', 'machine-learning', 'ml', 'quant', 'quantitative-finance', 'quantitative-trading', 'stock', 'stock-market', 'technical-analysis', 'trading-bot', 'trading-platform', 'trading-strategies', 'zvt']
2023-11-09
[('ranaroussi/quantstats', 0.6442165970802307, 'finance', 4), ('quantconnect/lean', 0.6376045942306519, 'finance', 3), ('polakowo/vectorbt', 0.6255056858062744, 'finance', 6), ('goldmansachs/gs-quant', 0.6025742888450623, 'finance', 1), ('numerai/example-scripts', 0.5974596738815308, 'finance', 2), ('microsoft/qlib', 0.5502883791923523, 'finance', 6), ('google/tf-quant-finance', 0.5456732511520386, 'finance', 1), ('kernc/backtesting.py', 0.5392759442329407, 'finance', 3), ('idanya/algo-trader', 0.5369071364402771, 'finance', 5), ('ai4finance-foundation/finrl', 0.5343793034553528, 'finance', 2), ('openbb-finance/openbbterminal', 0.5273526310920715, 'finance', 3), ('quantopian/zipline', 0.5200475454330444, 'finance', 2), ('stefmolin/stock-analysis', 0.5058038830757141, 'finance', 2), ('gbeced/basana', 0.5045093297958374, 'finance', 4)]
64
4
null
0.25
3
0
58
2
1
15
1
3
2
90
0.7
40
1,438
testing
https://github.com/cobrateam/splinter
[]
null
[]
[]
null
null
null
cobrateam/splinter
splinter
2,672
532
95
Python
http://splinter.readthedocs.org/en/stable/index.html
splinter - python test framework for web applications
cobrateam
2024-01-14
2010-09-18
697
3.831217
https://avatars.githubusercontent.com/u/403905?v=4
splinter - python test framework for web applications
['automation', 'selenium', 'webdriver']
['automation', 'selenium', 'webdriver']
2024-01-09
[('seleniumbase/seleniumbase', 0.7703961730003357, 'testing', 2), ('microsoft/playwright-python', 0.6916419267654419, 'testing', 1), ('roniemartinez/dude', 0.5549781918525696, 'util', 1), ('masoniteframework/masonite', 0.5544414520263672, 'web', 0), ('wolever/parameterized', 0.5428141355514526, 'testing', 0), ('buildbot/buildbot', 0.5403817296028137, 'util', 0), ('scrapy/scrapy', 0.5401042699813843, 'data', 0), ('alirezamika/autoscraper', 0.5292969346046448, 'data', 1), ('webpy/webpy', 0.5233193635940552, 'web', 0), ('pallets/flask', 0.5134128332138062, 'web', 0), ('nedbat/coveragepy', 0.512545645236969, 'testing', 0), ('r0x0r/pywebview', 0.5121274590492249, 'gui', 0), ('eleutherai/pyfra', 0.5119724273681641, 'ml', 0), ('reflex-dev/reflex', 0.5109301805496216, 'web', 0)]
179
3
null
1.35
30
26
162
0
1
4
1
30
23
90
0.8
40
1,127
ml
https://github.com/scikit-learn-contrib/hdbscan
[]
null
[]
[]
null
null
null
scikit-learn-contrib/hdbscan
hdbscan
2,600
479
57
Jupyter Notebook
http://hdbscan.readthedocs.io/en/latest/
A high performance implementation of HDBSCAN clustering.
scikit-learn-contrib
2024-01-12
2015-04-22
457
5.678627
https://avatars.githubusercontent.com/u/17349883?v=4
A high performance implementation of HDBSCAN clustering.
['cluster-analysis', 'clustering', 'clustering-algorithm', 'clustering-evaluation', 'machine-learning', 'machine-learning-algorithms']
['cluster-analysis', 'clustering', 'clustering-algorithm', 'clustering-evaluation', 'machine-learning', 'machine-learning-algorithms']
2023-11-20
[]
86
4
null
0.48
12
3
106
2
5
5
5
12
8
90
0.7
40
337
perf
https://github.com/tlkh/asitop
[]
null
[]
[]
null
null
null
tlkh/asitop
asitop
2,346
125
27
Python
https://tlkh.github.io/asitop/
Perf monitoring CLI tool for Apple Silicon
tlkh
2024-01-14
2021-10-27
117
19.905455
null
Perf monitoring CLI tool for Apple Silicon
['apple-silicon', 'cli', 'cpu', 'gpu', 'm1', 'macos']
['apple-silicon', 'cli', 'cpu', 'gpu', 'm1', 'macos']
2023-01-24
[('ml-explore/mlx', 0.5542373061180115, 'ml', 1), ('tlkh/tf-metal-experiments', 0.540374219417572, 'perf', 2), ('mrdbourke/m1-machine-learning-test', 0.5042293071746826, 'ml', 0)]
8
2
null
0.02
14
0
27
12
0
0
0
14
36
90
2.6
40
352
ml-interpretability
https://github.com/seldonio/alibi
[]
null
[]
[]
null
null
null
seldonio/alibi
alibi
2,246
279
47
Python
https://docs.seldon.io/projects/alibi/en/stable/
Algorithms for explaining machine learning models
seldonio
2024-01-13
2019-02-26
257
8.7393
https://avatars.githubusercontent.com/u/10297834?v=4
Algorithms for explaining machine learning models
['counterfactual', 'explanations', 'interpretability', 'machine-learning', 'xai']
['counterfactual', 'explanations', 'interpretability', 'machine-learning', 'xai']
2023-11-13
[('marcotcr/lime', 0.7131057977676392, 'ml-interpretability', 0), ('maif/shapash', 0.6979689002037048, 'ml', 2), ('carla-recourse/carla', 0.6956292986869812, 'ml', 2), ('slundberg/shap', 0.6683449745178223, 'ml-interpretability', 2), ('interpretml/interpret', 0.6674531102180481, 'ml-interpretability', 3), ('pair-code/lit', 0.6469577550888062, 'ml-interpretability', 1), ('teamhg-memex/eli5', 0.6379401683807373, 'ml', 1), ('xplainable/xplainable', 0.6222488880157471, 'ml-interpretability', 2), ('oegedijk/explainerdashboard', 0.6191368699073792, 'ml-interpretability', 1), ('csinva/imodels', 0.6186242699623108, 'ml', 2), ('tensorflow/lucid', 0.5702253580093384, 'ml-interpretability', 2), ('tensorflow/data-validation', 0.5581661462783813, 'ml-ops', 0), ('rafiqhasan/auto-tensorflow', 0.5504202842712402, 'ml-dl', 1), ('huggingface/evaluate', 0.5494807958602905, 'ml', 1), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.545021116733551, 'study', 1), ('patchy631/machine-learning', 0.5448355078697205, 'ml', 0), ('eleutherai/pythia', 0.5343512296676636, 'ml-interpretability', 1), ('eugeneyan/testing-ml', 0.5242266654968262, 'testing', 1), ('selfexplainml/piml-toolbox', 0.5072975158691406, 'ml-interpretability', 0), ('pytorch/captum', 0.5067712664604187, 'ml-interpretability', 1), ('microsoft/robustlearn', 0.5054094791412354, 'time-series', 0), ('google-research/google-research', 0.5054081678390503, 'ml', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5047518014907837, 'study', 1), ('linkedin/fasttreeshap', 0.5031470060348511, 'ml', 2)]
19
2
null
1.77
18
7
59
2
4
6
4
18
16
90
0.9
40
1,224
util
https://github.com/dateutil/dateutil
[]
null
[]
[]
null
null
null
dateutil/dateutil
dateutil
2,193
470
45
Python
null
Useful extensions to the standard Python datetime features
dateutil
2024-01-13
2014-11-19
479
4.57011
https://avatars.githubusercontent.com/u/9849410?v=4
Useful extensions to the standard Python datetime features
['datetime', 'parsing', 'time', 'timezones']
['datetime', 'parsing', 'time', 'timezones']
2023-11-13
[('sdispater/pendulum', 0.7966391444206238, 'util', 3), ('scrapinghub/dateparser', 0.7123557329177856, 'util', 2), ('arrow-py/arrow', 0.7106708884239197, 'util', 3), ('stub42/pytz', 0.621961236000061, 'util', 0), ('rjt1990/pyflux', 0.5882995128631592, 'time-series', 0), ('google/temporian', 0.5748814344406128, 'time-series', 0), ('alkaline-ml/pmdarima', 0.536246657371521, 'time-series', 0), ('tdameritrade/stumpy', 0.530729353427887, 'time-series', 0), ('rasbt/watermark', 0.5191126465797424, 'util', 0), ('firmai/atspy', 0.5173526406288147, 'time-series', 0), ('pytoolz/toolz', 0.5082383155822754, 'util', 0), ('pastas/pastas', 0.502344012260437, 'time-series', 0)]
131
5
null
0.1
41
11
111
2
0
2
2
41
39
90
1
40
1,480
web
https://github.com/masoniteframework/masonite
[]
null
[]
[]
null
null
null
masoniteframework/masonite
masonite
2,109
130
63
Python
http://docs.masoniteproject.com
The Modern And Developer Centric Python Web Framework. Be sure to read the documentation and join the Discord channel for questions: https://discord.gg/TwKeFahmPZ
masoniteframework
2024-01-13
2017-12-06
320
6.573019
https://avatars.githubusercontent.com/u/35498523?v=4
The Modern And Developer Centric Python Web Framework. Be sure to read the documentation and join the Discord channel for questions: https://discord.gg/TwKeFahmPZ
['framework', 'masonite', 'web', 'webframework']
['framework', 'masonite', 'web', 'webframework']
2024-01-01
[('pallets/flask', 0.7340575456619263, 'web', 0), ('klen/muffin', 0.7306077480316162, 'web', 1), ('webpy/webpy', 0.7172554731369019, 'web', 0), ('bottlepy/bottle', 0.6854233741760254, 'web', 0), ('pylons/pyramid', 0.6714824438095093, 'web', 0), ('eleutherai/pyfra', 0.6563796401023865, 'ml', 0), ('pyscript/pyscript', 0.6563617587089539, 'web', 0), ('willmcgugan/textual', 0.6535159349441528, 'term', 1), ('falconry/falcon', 0.6416914463043213, 'web', 2), ('pallets/werkzeug', 0.6412118673324585, 'web', 0), ('r0x0r/pywebview', 0.6317577362060547, 'gui', 0), ('cherrypy/cherrypy', 0.6259151697158813, 'web', 0), ('reflex-dev/reflex', 0.6244274973869324, 'web', 1), ('clips/pattern', 0.6094305515289307, 'nlp', 0), ('pallets/quart', 0.607140302658081, 'web', 0), ('timofurrer/awesome-asyncio', 0.6026535034179688, 'study', 0), ('scrapy/scrapy', 0.6013022065162659, 'data', 1), ('neoteroi/blacksheep', 0.5978954434394836, 'web', 2), ('encode/httpx', 0.5954501628875732, 'web', 0), ('pypy/pypy', 0.5918770432472229, 'util', 0), ('python/cpython', 0.5917008519172668, 'util', 0), ('holoviz/panel', 0.5894260406494141, 'viz', 0), ('requests/toolbelt', 0.5709607005119324, 'util', 0), ('dylanhogg/awesome-python', 0.5680248141288757, 'study', 0), ('ethereum/web3.py', 0.5657337307929993, 'crypto', 0), ('indico/indico', 0.5639700293540955, 'web', 0), ('encode/uvicorn', 0.5623204708099365, 'web', 0), ('roniemartinez/dude', 0.560670018196106, 'util', 1), ('bokeh/bokeh', 0.5602609515190125, 'viz', 0), ('hugapi/hug', 0.5562730431556702, 'util', 0), ('emmett-framework/emmett', 0.5554807186126709, 'web', 0), ('cobrateam/splinter', 0.5544414520263672, 'testing', 0), ('pyodide/pyodide', 0.5539262294769287, 'util', 0), ('seleniumbase/seleniumbase', 0.5500764846801758, 'testing', 0), ('buildbot/buildbot', 0.549967885017395, 'util', 0), ('microsoft/playwright-python', 0.549170970916748, 'testing', 0), ('pytoolz/toolz', 0.5471121668815613, 'util', 0), ('plotly/dash', 0.5463806390762329, 'viz', 0), ('1200wd/bitcoinlib', 0.5462782979011536, 'crypto', 0), ('alirn76/panther', 0.5462374091148376, 'web', 1), ('hoffstadt/dearpygui', 0.5427703261375427, 'gui', 0), ('urwid/urwid', 0.5398597121238708, 'term', 0), ('plotly/plotly.py', 0.5396803021430969, 'viz', 0), ('backtick-se/cowait', 0.5356951951980591, 'util', 0), ('amaargiru/pyroad', 0.5333690643310547, 'study', 0), ('pywebio/pywebio', 0.5325572490692139, 'web', 0), ('flet-dev/flet', 0.5303350687026978, 'web', 1), ('adafruit/circuitpython', 0.5271365642547607, 'util', 0), ('minimaxir/simpleaichat', 0.5257116556167603, 'llm', 0), ('simple-salesforce/simple-salesforce', 0.5242258310317993, 'data', 0), ('primal100/pybitcointools', 0.5237247347831726, 'crypto', 0), ('pyston/pyston', 0.523208498954773, 'util', 0), ('cohere-ai/notebooks', 0.5226303935050964, 'llm', 0), ('tornadoweb/tornado', 0.5226184725761414, 'web', 0), ('voila-dashboards/voila', 0.5220005512237549, 'jupyter', 0), ('man-c/pycoingecko', 0.5191899538040161, 'crypto', 0), ('pyinfra-dev/pyinfra', 0.5186633467674255, 'util', 0), ('python-restx/flask-restx', 0.5184113383293152, 'web', 0), ('eventual-inc/daft', 0.5179644227027893, 'pandas', 0), ('psf/requests', 0.5165953040122986, 'web', 0), ('replicate/replicate-python', 0.5155618190765381, 'ml', 0), ('pysimplegui/pysimplegui', 0.5136278867721558, 'gui', 0), ('ta-lib/ta-lib-python', 0.512328028678894, 'finance', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5106345415115356, 'study', 0), ('websocket-client/websocket-client', 0.5101653933525085, 'web', 0), ('sqlalchemy/mako', 0.5073601603507996, 'template', 0), ('alirezamika/autoscraper', 0.5066377520561218, 'data', 0), ('nficano/python-lambda', 0.5054439306259155, 'util', 0), ('pylons/waitress', 0.5041007399559021, 'web', 0), ('goldmansachs/gs-quant', 0.5026025176048279, 'finance', 0), ('kivy/kivy', 0.5023773312568665, 'util', 0), ('maartenbreddels/ipyvolume', 0.5016263127326965, 'jupyter', 0), ('tkrabel/bamboolib', 0.5014203190803528, 'pandas', 0)]
87
3
null
0.48
25
11
74
0
3
19
3
25
3
90
0.1
40
1,578
data
https://github.com/accenture/ampligraph
['knowledge-graph']
null
[]
[]
null
null
null
accenture/ampligraph
AmpliGraph
2,045
247
67
Python
null
Python library for Representation Learning on Knowledge Graphs https://docs.ampligraph.org
accenture
2024-01-13
2019-01-09
263
7.750406
https://avatars.githubusercontent.com/u/10454368?v=4
Python library for Representation Learning on Knowledge Graphs https://docs.ampligraph.org
['graph-embeddings', 'graph-representation-learning', 'knowledge-graph', 'knowledge-graph-embeddings', 'machine-learning', 'relational-learning', 'representation-learning']
['graph-embeddings', 'graph-representation-learning', 'knowledge-graph', 'knowledge-graph-embeddings', 'machine-learning', 'relational-learning', 'representation-learning']
2023-07-12
[('awslabs/dgl-ke', 0.7346105575561523, 'ml', 2), ('dmlc/dgl', 0.6121450066566467, 'ml-dl', 0), ('zjunlp/deepke', 0.593433678150177, 'ml', 1), ('dylanhogg/llmgraph', 0.5810795426368713, 'ml', 1), ('pyg-team/pytorch_geometric', 0.58009934425354, 'ml-dl', 0), ('a-r-j/graphein', 0.5756738185882568, 'sim', 0), ('strawberry-graphql/strawberry', 0.5520169734954834, 'web', 0), ('stellargraph/stellargraph', 0.5474543571472168, 'graph', 1), ('chandlerbang/awesome-self-supervised-gnn', 0.5335105061531067, 'study', 1), ('graphistry/pygraphistry', 0.532095193862915, 'data', 0), ('benedekrozemberczki/tigerlily', 0.5214887857437134, 'ml-dl', 2), ('deepgraphlearning/ultra', 0.5169753432273865, 'ml', 1), ('jina-ai/vectordb', 0.5142897367477417, 'data', 0), ('qdrant/fastembed', 0.5070711970329285, 'ml', 0), ('danielegrattarola/spektral', 0.5038337707519531, 'ml-dl', 0)]
20
4
null
6.08
1
1
61
6
2
3
2
1
2
90
2
40
376
ml-interpretability
https://github.com/jalammar/ecco
[]
null
[]
[]
null
null
null
jalammar/ecco
ecco
1,849
153
24
Jupyter Notebook
https://ecco.readthedocs.io
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
jalammar
2024-01-12
2020-11-07
168
10.977947
null
Explain, analyze, and visualize NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BERT, RoBERTA, T5, and T0).
['explorables', 'language-models', 'natural-language-processing', 'nlp', 'pytorch', 'visualization']
['explorables', 'language-models', 'natural-language-processing', 'nlp', 'pytorch', 'visualization']
2023-08-10
[('allenai/allennlp', 0.5496200323104858, 'nlp', 3), ('alibaba/easynlp', 0.549338698387146, 'nlp', 2), ('koaning/whatlies', 0.5461040735244751, 'nlp', 1), ('brandtbucher/specialist', 0.5420230031013489, 'perf', 0), ('hannibal046/awesome-llm', 0.5404885411262512, 'study', 0), ('lianjiatech/belle', 0.5401182174682617, 'llm', 0), ('guidance-ai/guidance', 0.5360292196273804, 'llm', 0), ('vizzuhq/ipyvizzu', 0.5353596806526184, 'jupyter', 0), ('freedomintelligence/llmzoo', 0.5306503772735596, 'llm', 0), ('jbesomi/texthero', 0.5305410623550415, 'nlp', 1), ('ai21labs/lm-evaluation', 0.5280724167823792, 'llm', 0), ('opengeos/leafmap', 0.5254456996917725, 'gis', 0), ('bigscience-workshop/megatron-deepspeed', 0.5253652930259705, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5253652930259705, 'llm', 0), ('lm-sys/fastchat', 0.5213225483894348, 'llm', 0), ('bokeh/bokeh', 0.5211085081100464, 'viz', 1), ('maartengr/bertopic', 0.5192667841911316, 'nlp', 1), ('explosion/spacy', 0.5182880163192749, 'nlp', 2), ('flairnlp/flair', 0.517105758190155, 'nlp', 3), ('ctlllll/llm-toolmaker', 0.5147423148155212, 'llm', 0), ('explosion/spacy-models', 0.513950765132904, 'nlp', 2), ('conceptofmind/toolformer', 0.5121808648109436, 'llm', 0), ('openlmlab/moss', 0.5079621076583862, 'llm', 1), ('graykode/nlp-tutorial', 0.5071130990982056, 'study', 3), ('killianlucas/open-interpreter', 0.5064843893051147, 'llm', 0), ('holoviz/holoviz', 0.5038740634918213, 'viz', 0), ('plotly/plotly.py', 0.5030951499938965, 'viz', 1)]
11
7
null
0.06
5
0
39
5
0
4
4
5
4
90
0.8
40
656
util
https://github.com/numba/llvmlite
[]
null
[]
[]
null
null
null
numba/llvmlite
llvmlite
1,760
317
56
Python
http://llvmlite.pydata.org/
A lightweight LLVM python binding for writing JIT compilers
numba
2024-01-13
2014-08-07
494
3.557609
https://avatars.githubusercontent.com/u/1628082?v=4
A lightweight LLVM python binding for writing JIT compilers
[]
[]
2023-12-13
[('exaloop/codon', 0.6857039332389832, 'perf', 0), ('rustpython/rustpython', 0.638462483882904, 'util', 0), ('numba/numba', 0.5931792855262756, 'perf', 0), ('oracle/graalpython', 0.586859405040741, 'util', 0), ('cqcl/tket', 0.5800346732139587, 'util', 0), ('pyston/pyston', 0.5717125535011292, 'util', 0), ('citadel-ai/langcheck', 0.5582582950592041, 'llm', 0), ('pypy/pypy', 0.5528749227523804, 'util', 0), ('alpha-vllm/llama2-accessory', 0.539250910282135, 'llm', 0), ('psf/black', 0.5366169810295105, 'util', 0), ('google/jax', 0.534612774848938, 'ml', 0), ('pytoolz/toolz', 0.5343791842460632, 'util', 0), ('nomic-ai/pygpt4all', 0.5271598100662231, 'llm', 0), ('google/gin-config', 0.5255877375602722, 'util', 0), ('cython/cython', 0.5224786996841431, 'util', 0), ('astral-sh/ruff', 0.5217279195785522, 'util', 0), ('lcompilers/lpython', 0.5191760063171387, 'util', 0), ('instagram/monkeytype', 0.5182361602783203, 'typing', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5170167088508606, 'study', 0), ('py4j/py4j', 0.5133116245269775, 'util', 0), ('salesforce/codet5', 0.5081905126571655, 'nlp', 0), ('google/latexify_py', 0.5081674456596375, 'util', 0), ('python/cpython', 0.5075445175170898, 'util', 0), ('nvidia/cuda-python', 0.5029944181442261, 'ml', 0), ('micropython/micropython', 0.5028732419013977, 'util', 0)]
88
3
null
2.87
37
22
115
1
2
12
2
37
61
90
1.6
40
1,027
finance
https://github.com/domokane/financepy
[]
null
[]
[]
null
null
null
domokane/financepy
FinancePy
1,743
271
60
Jupyter Notebook
https://financepy.com/
A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives.
domokane
2024-01-13
2019-10-27
222
7.84126
null
A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives.
['asset-allocation', 'bonds', 'credit', 'currency', 'derivatives', 'derivatives-pricing', 'finance', 'fixed-income', 'investment', 'numba', 'pricing', 'risk', 'risk-management', 'students', 'valuation']
['asset-allocation', 'bonds', 'credit', 'currency', 'derivatives', 'derivatives-pricing', 'finance', 'fixed-income', 'investment', 'numba', 'pricing', 'risk', 'risk-management', 'students', 'valuation']
2023-12-10
[('pmorissette/ffn', 0.6907992959022522, 'finance', 0), ('goldmansachs/gs-quant', 0.6860893964767456, 'finance', 2), ('cuemacro/finmarketpy', 0.6049692630767822, 'finance', 0), ('quantopian/pyfolio', 0.6018176078796387, 'finance', 0), ('ta-lib/ta-lib-python', 0.5799912810325623, 'finance', 1), ('quantecon/quantecon.py', 0.5794845819473267, 'sim', 0), ('gbeced/pyalgotrade', 0.5683234333992004, 'finance', 0), ('mementum/backtrader', 0.5463677048683167, 'finance', 0), ('1200wd/bitcoinlib', 0.5450164675712585, 'crypto', 0), ('pytoolz/toolz', 0.5421152114868164, 'util', 0), ('ranaroussi/quantstats', 0.526004433631897, 'finance', 1), ('pandas-dev/pandas', 0.5133991837501526, 'pandas', 0), ('cuemacro/findatapy', 0.5130403637886047, 'finance', 0), ('bashtage/arch', 0.5076860785484314, 'time-series', 2), ('eleutherai/pyfra', 0.5048255920410156, 'ml', 0), ('robcarver17/pysystemtrade', 0.5038099884986877, 'finance', 0), ('krzjoa/awesome-python-data-science', 0.5010226368904114, 'study', 0)]
29
3
null
4.52
12
5
51
1
0
0
0
12
17
90
1.4
40
606
testing
https://github.com/pytest-dev/pytest-mock
[]
null
[]
[]
null
null
null
pytest-dev/pytest-mock
pytest-mock
1,705
135
36
Python
https://pytest-mock.readthedocs.io/en/latest/
Thin-wrapper around the mock package for easier use with pytest
pytest-dev
2024-01-12
2014-07-17
497
3.42566
https://avatars.githubusercontent.com/u/8897583?v=4
Thin-wrapper around the mock package for easier use with pytest
['mock', 'pytest']
['mock', 'pytest']
2023-12-20
[('pytest-dev/pytest', 0.6347528100013733, 'testing', 0), ('pytest-dev/pytest-cov', 0.6337581872940063, 'testing', 1), ('ionelmc/pytest-benchmark', 0.6237248182296753, 'testing', 1), ('pytest-dev/pytest-asyncio', 0.6129404306411743, 'testing', 0), ('samuelcolvin/dirty-equals', 0.6112805008888245, 'util', 1), ('pytest-dev/pytest-xdist', 0.6102861762046814, 'testing', 1), ('lundberg/respx', 0.5953378081321716, 'testing', 2), ('getsentry/responses', 0.5724997520446777, 'testing', 0), ('samuelcolvin/pytest-pretty', 0.5683526992797852, 'testing', 1), ('computationalmodelling/nbval', 0.5595971345901489, 'jupyter', 1), ('teemu/pytest-sugar', 0.5402851700782776, 'testing', 1), ('nteract/testbook', 0.5319708585739136, 'jupyter', 1), ('wolever/parameterized', 0.5089722275733948, 'testing', 0), ('taverntesting/tavern', 0.5072631239891052, 'testing', 1)]
68
7
null
0.92
17
16
116
1
2
7
2
17
18
90
1.1
40
1,040
llm
https://github.com/openai/gpt-discord-bot
[]
null
[]
[]
null
null
null
openai/gpt-discord-bot
gpt-discord-bot
1,636
633
35
Python
null
Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages.
openai
2024-01-12
2022-12-21
57
28.276543
https://avatars.githubusercontent.com/u/14957082?v=4
Example Discord bot written in Python that uses the completions API to have conversations with the `text-davinci-003` model, and the moderations API to filter the messages.
[]
[]
2024-01-09
[('nomic-ai/gpt4all', 0.5539908409118652, 'llm', 0), ('minimaxir/simpleaichat', 0.552017331123352, 'llm', 0), ('rasahq/rasa', 0.5486682057380676, 'llm', 0), ('togethercomputer/openchatkit', 0.5345660448074341, 'nlp', 0), ('eternnoir/pytelegrambotapi', 0.5340373516082764, 'util', 0), ('gunthercox/chatterbot', 0.5279523730278015, 'nlp', 0), ('microsoft/autogen', 0.5150191783905029, 'llm', 0), ('embedchain/embedchain', 0.5135484933853149, 'llm', 0), ('run-llama/rags', 0.5125691890716553, 'llm', 0), ('rcgai/simplyretrieve', 0.5008484125137329, 'llm', 0)]
3
0
null
0.19
24
22
13
0
0
0
0
24
21
90
0.9
40
448
gis
https://github.com/jupyter-widgets/ipyleaflet
[]
null
[]
[]
null
null
null
jupyter-widgets/ipyleaflet
ipyleaflet
1,435
363
66
TypeScript
https://ipyleaflet.readthedocs.io
A Jupyter - Leaflet.js bridge
jupyter-widgets
2024-01-12
2014-05-07
507
2.825598
https://avatars.githubusercontent.com/u/25869250?v=4
A Jupyter - Leaflet.js bridge
['jupyter', 'jupyterlab-extension', 'leaflet', 'visualization']
['jupyter', 'jupyterlab-extension', 'leaflet', 'visualization']
2024-01-12
[('giswqs/mapwidget', 0.6565911769866943, 'gis', 2), ('jupyter-widgets/ipywidgets', 0.6435815095901489, 'jupyter', 1), ('python-visualization/folium', 0.6334434151649475, 'gis', 0), ('vizzuhq/ipyvizzu', 0.6106564402580261, 'jupyter', 1), ('voila-dashboards/voila', 0.5810590386390686, 'jupyter', 2), ('jupyterlab/jupyterlab-desktop', 0.5790235996246338, 'jupyter', 1), ('jupyter/notebook', 0.5543774366378784, 'jupyter', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5437476634979248, 'jupyter', 2), ('maartenbreddels/ipyvolume', 0.540547251701355, 'jupyter', 1), ('aws/graph-notebook', 0.5392546653747559, 'jupyter', 1), ('jupyterlite/jupyterlite', 0.539129376411438, 'jupyter', 2), ('opengeos/leafmap', 0.5388780832290649, 'gis', 1), ('jupyterlab/jupyterlab', 0.523621678352356, 'jupyter', 1), ('quantopian/qgrid', 0.5120397806167603, 'jupyter', 0), ('bloomberg/ipydatagrid', 0.5112629532814026, 'jupyter', 1), ('ipython/ipykernel', 0.504456102848053, 'util', 1), ('jakevdp/pythondatasciencehandbook', 0.5016043186187744, 'study', 0), ('jupyter/nbviewer', 0.5015178918838501, 'jupyter', 1)]
87
4
null
0.46
41
26
118
0
3
8
3
41
68
90
1.7
40
1,859
sim
https://github.com/nvidia-omniverse/isaacgymenvs
['gym']
null
[]
[]
null
null
null
nvidia-omniverse/isaacgymenvs
IsaacGymEnvs
1,357
309
36
Python
null
Isaac Gym Reinforcement Learning Environments
nvidia-omniverse
2024-01-14
2021-08-27
126
10.721219
https://avatars.githubusercontent.com/u/57824658?v=4
Isaac Gym Reinforcement Learning Environments
[]
['gym']
2023-10-18
[('nvidia-omniverse/omniisaacgymenvs', 0.8064512610435486, 'sim', 0), ('farama-foundation/gymnasium', 0.6873985528945923, 'ml-rl', 1), ('pettingzoo-team/pettingzoo', 0.6462188959121704, 'ml-rl', 1), ('humancompatibleai/imitation', 0.617064356803894, 'ml-rl', 0), ('kzl/decision-transformer', 0.5959394574165344, 'ml-rl', 1), ('inspirai/timechamber', 0.56003338098526, 'sim', 0), ('thu-ml/tianshou', 0.5374286770820618, 'ml-rl', 0), ('huggingface/deep-rl-class', 0.534843921661377, 'study', 0), ('openai/baselines', 0.5117769837379456, 'ml-rl', 0), ('google/dopamine', 0.5014722943305969, 'ml-rl', 0)]
13
3
null
0.29
46
14
29
3
0
2
2
46
56
90
1.2
40
946
diffusion
https://github.com/coyote-a/ultimate-upscale-for-automatic1111
[]
null
[]
[]
null
null
null
coyote-a/ultimate-upscale-for-automatic1111
ultimate-upscale-for-automatic1111
1,331
136
15
Python
null
null
coyote-a
2024-01-14
2023-01-02
56
23.707379
null
coyote-a/ultimate-upscale-for-automatic1111
[]
[]
2023-09-09
[]
8
1
null
0.29
6
2
13
4
0
0
0
6
12
90
2
40
487
gis
https://github.com/scitools/cartopy
[]
null
[]
[]
null
null
null
scitools/cartopy
cartopy
1,318
354
55
Python
https://scitools.org.uk/cartopy/docs/latest
Cartopy - a cartographic python library with matplotlib support
scitools
2024-01-12
2012-08-03
599
2.198237
https://avatars.githubusercontent.com/u/1391487?v=4
Cartopy - a cartographic python library with matplotlib support
['cartopy', 'geometry', 'maps', 'matplotlib', 'projections', 'spatial']
['cartopy', 'geometry', 'maps', 'matplotlib', 'projections', 'spatial']
2024-01-10
[('pyproj4/pyproj', 0.7539182305335999, 'gis', 0), ('holoviz/geoviews', 0.7182220220565796, 'gis', 1), ('raphaelquast/eomaps', 0.6839972138404846, 'gis', 2), ('residentmario/geoplot', 0.6602010726928711, 'gis', 1), ('dfki-ric/pytransform3d', 0.6194444298744202, 'math', 1), ('matplotlib/basemap', 0.6154806613922119, 'gis', 1), ('altair-viz/altair', 0.6086525917053223, 'viz', 0), ('earthlab/earthpy', 0.6048831343650818, 'gis', 0), ('marceloprates/prettymaps', 0.5919488072395325, 'viz', 2), ('mwaskom/seaborn', 0.5874788761138916, 'viz', 1), ('pysal/pysal', 0.5811754465103149, 'gis', 0), ('has2k1/plotnine', 0.5810568332672119, 'viz', 0), ('cuemacro/chartpy', 0.5699009299278259, 'viz', 1), ('matplotlib/matplotlib', 0.566702663898468, 'viz', 1), ('plotly/plotly.py', 0.5586792826652527, 'viz', 0), ('imageio/imageio', 0.5579615831375122, 'util', 0), ('opengeos/leafmap', 0.5553449988365173, 'gis', 0), ('albahnsen/pycircular', 0.5550414323806763, 'math', 0), ('holoviz/hvplot', 0.5497469305992126, 'pandas', 0), ('csurfer/pyheat', 0.542796790599823, 'profiling', 1), ('artelys/geonetworkx', 0.5421754121780396, 'gis', 0), ('holoviz/holoviz', 0.5334916114807129, 'viz', 0), ('jakevdp/pythondatasciencehandbook', 0.5279793739318848, 'study', 1), ('gregorhd/mapcompare', 0.5211345553398132, 'gis', 0), ('kanaries/pygwalker', 0.5204256772994995, 'pandas', 1), ('man-group/dtale', 0.519442617893219, 'viz', 0), ('python-pillow/pillow', 0.5182700157165527, 'util', 0), ('enthought/mayavi', 0.5173063278198242, 'viz', 0), ('pypa/installer', 0.5148464441299438, 'util', 0), ('pyglet/pyglet', 0.5082891583442688, 'gamedev', 0), ('graphistry/pygraphistry', 0.5080820918083191, 'data', 0), ('geopandas/geopandas', 0.5073442459106445, 'gis', 1), ('vispy/vispy', 0.5065507888793945, 'viz', 0), ('bokeh/bokeh', 0.5045799612998962, 'viz', 0)]
124
4
null
2.65
72
47
139
0
1
4
1
72
137
90
1.9
40
1,871
ml
https://github.com/eric-mitchell/direct-preference-optimization
['dpo']
null
[]
[]
null
null
null
eric-mitchell/direct-preference-optimization
direct-preference-optimization
1,147
82
13
Python
null
Reference implementation for DPO (Direct Preference Optimization)
eric-mitchell
2024-01-13
2023-06-22
31
36.166667
null
Reference implementation for DPO (Direct Preference Optimization)
[]
['dpo']
2023-12-14
[]
2
0
null
0.25
27
13
7
1
0
0
0
27
32
90
1.2
40
1,068
llm
https://github.com/bigscience-workshop/megatron-deepspeed
[]
null
[]
[]
null
null
null
bigscience-workshop/megatron-deepspeed
Megatron-DeepSpeed
1,144
199
24
Python
null
Ongoing research training transformer language models at scale, including: BERT & GPT-2
bigscience-workshop
2024-01-13
2021-07-02
134
8.501062
https://avatars.githubusercontent.com/u/82455566?v=4
Ongoing research training transformer language models at scale, including: BERT & GPT-2
[]
[]
2023-12-08
[('microsoft/megatron-deepspeed', 1.0000001192092896, 'llm', 0), ('nvidia/megatron-lm', 0.6671424508094788, 'llm', 0), ('lvwerra/trl', 0.6662755608558655, 'llm', 0), ('jonasgeiping/cramming', 0.6582860946655273, 'nlp', 0), ('huggingface/transformers', 0.6457441449165344, 'nlp', 0), ('explosion/spacy-transformers', 0.6363678574562073, 'llm', 0), ('hannibal046/awesome-llm', 0.6277967095375061, 'study', 0), ('extreme-bert/extreme-bert', 0.6164913773536682, 'llm', 0), ('graykode/nlp-tutorial', 0.6075314879417419, 'study', 0), ('karpathy/mingpt', 0.6039530634880066, 'llm', 0), ('lianjiatech/belle', 0.5846147537231445, 'llm', 0), ('huggingface/text-generation-inference', 0.5798518061637878, 'llm', 0), ('nielsrogge/transformers-tutorials', 0.5679675936698914, 'study', 0), ('next-gpt/next-gpt', 0.5671409964561462, 'llm', 0), ('whu-zqh/chatgpt-vs.-bert', 0.5593957901000977, 'llm', 0), ('eleutherai/gpt-neo', 0.5555706024169922, 'llm', 0), ('eleutherai/knowledge-neurons', 0.548306405544281, 'ml-interpretability', 0), ('ai21labs/lm-evaluation', 0.5460460186004639, 'llm', 0), ('microsoft/lora', 0.5398515462875366, 'llm', 0), ('minimaxir/gpt-2-simple', 0.5385422110557556, 'llm', 0), ('deepset-ai/farm', 0.5374853014945984, 'nlp', 0), ('jalammar/ecco', 0.5253652930259705, 'ml-interpretability', 0), ('promptslab/awesome-prompt-engineering', 0.5253517031669617, 'study', 0), ('bigscience-workshop/biomedical', 0.5243796706199646, 'data', 0), ('xtekky/gpt4free', 0.5237749814987183, 'llm', 0), ('paddlepaddle/paddlenlp', 0.5230602622032166, 'llm', 0), ('ist-daslab/gptq', 0.5179560780525208, 'llm', 0), ('jina-ai/finetuner', 0.5171146988868713, 'ml', 0), ('bytedance/lightseq', 0.515959620475769, 'nlp', 0), ('lm-sys/fastchat', 0.51581871509552, 'llm', 0), ('alignmentresearch/tuned-lens', 0.515650749206543, 'ml-interpretability', 0), ('freedomintelligence/llmzoo', 0.5145018100738525, 'llm', 0), ('cdpierse/transformers-interpret', 0.5142018795013428, 'ml-interpretability', 0), ('bobazooba/xllm', 0.5139332413673401, 'llm', 0), ('lucidrains/toolformer-pytorch', 0.5127219557762146, 'llm', 0), ('llmware-ai/llmware', 0.5115044116973877, 'llm', 0), ('microsoft/autogen', 0.5109838843345642, 'llm', 0), ('salesforce/blip', 0.5101778507232666, 'diffusion', 0), ('thilinarajapakse/simpletransformers', 0.5100935697555542, 'nlp', 0), ('openai/finetune-transformer-lm', 0.5082074999809265, 'llm', 0), ('ctlllll/llm-toolmaker', 0.5077611804008484, 'llm', 0), ('openai/gpt-2', 0.5042035579681396, 'llm', 0), ('alibaba/easynlp', 0.5024697184562683, 'nlp', 0), ('muennighoff/sgpt', 0.5024375915527344, 'llm', 0)]
49
4
null
0.04
4
2
31
1
0
4
4
4
3
90
0.8
40
622
data
https://github.com/intake/intake
[]
null
[]
[]
null
null
null
intake/intake
intake
954
136
42
Python
https://intake.readthedocs.io/
Intake is a lightweight package for finding, investigating, loading and disseminating data.
intake
2024-01-11
2017-08-14
337
2.829661
https://avatars.githubusercontent.com/u/1469464?v=4
Intake is a lightweight package for finding, investigating, loading and disseminating data.
['data-access', 'data-catalog']
['data-access', 'data-catalog']
2023-10-10
[('hyperqueryhq/whale', 0.5861302614212036, 'data', 1), ('airbnb/omniduct', 0.567048192024231, 'data', 0), ('lean-dojo/leandojo', 0.5443071722984314, 'math', 0), ('simonw/datasette', 0.5237489938735962, 'data', 0), ('linealabs/lineapy', 0.5228672623634338, 'jupyter', 0), ('saulpw/visidata', 0.5221759080886841, 'term', 0), ('airbytehq/airbyte', 0.5141798853874207, 'data', 0), ('google/ml-metadata', 0.506055474281311, 'ml-ops', 0), ('dlt-hub/dlt', 0.5047716498374939, 'data', 0), ('kubeflow-kale/kale', 0.5041489005088806, 'ml-ops', 0), ('jovianml/opendatasets', 0.5019022226333618, 'data', 0)]
86
5
null
2.1
7
1
78
3
0
7
7
7
26
90
3.7
40
443
gis
https://github.com/pyproj4/pyproj
[]
null
[]
[]
null
null
null
pyproj4/pyproj
pyproj
951
211
33
Python
https://pyproj4.github.io/pyproj
Python interface to PROJ (cartographic projections and coordinate transformations library)
pyproj4
2024-01-10
2014-12-29
474
2.005725
https://avatars.githubusercontent.com/u/48302803?v=4
Python interface to PROJ (cartographic projections and coordinate transformations library)
['cartographic-projection', 'coordinate-systems', 'coordinate-transformation', 'geodesic', 'geospatial']
['cartographic-projection', 'coordinate-systems', 'coordinate-transformation', 'geodesic', 'geospatial']
2023-11-08
[('scitools/cartopy', 0.7539182305335999, 'gis', 0), ('holoviz/geoviews', 0.6277405023574829, 'gis', 0), ('residentmario/geoplot', 0.5774697065353394, 'gis', 0), ('artelys/geonetworkx', 0.5713775753974915, 'gis', 0), ('raphaelquast/eomaps', 0.5670640468597412, 'gis', 1), ('dfki-ric/pytransform3d', 0.5527838468551636, 'math', 0), ('geopandas/geopandas', 0.5460281372070312, 'gis', 1), ('opengeos/leafmap', 0.5364670157432556, 'gis', 1), ('pysal/pysal', 0.5152866244316101, 'gis', 0), ('has2k1/plotnine', 0.5081332921981812, 'viz', 0), ('pytoolz/toolz', 0.5079793334007263, 'util', 0)]
65
5
null
1.37
21
15
110
2
6
7
6
20
62
90
3.1
40
1,845
ml-dl
https://github.com/jeshraghian/snntorch
[]
null
[]
[]
null
null
null
jeshraghian/snntorch
snntorch
924
166
25
Python
https://snntorch.readthedocs.io/en/latest/
Deep and online learning with spiking neural networks in Python
jeshraghian
2024-01-12
2020-09-28
174
5.305989
null
Deep and online learning with spiking neural networks in Python
['machine-learning', 'neural-networks', 'neuron-models', 'neuroscience', 'pytorch', 'snn', 'spike', 'spiking', 'spiking-neural-networks']
['machine-learning', 'neural-networks', 'neuron-models', 'neuroscience', 'pytorch', 'snn', 'spike', 'spiking', 'spiking-neural-networks']
2023-12-14
[('online-ml/river', 0.615203320980072, 'ml', 1), ('ageron/handson-ml2', 0.5824640989303589, 'ml', 0), ('pytorch/pytorch', 0.5666177272796631, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.5650865435600281, 'ml', 2), ('scikit-learn/scikit-learn', 0.5448082089424133, 'ml', 1), ('gradio-app/gradio', 0.5395351648330688, 'viz', 1), ('adafruit/circuitpython', 0.5297858119010925, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5287100076675415, 'study', 0), ('rasbt/machine-learning-book', 0.5273086428642273, 'study', 3), ('skorch-dev/skorch', 0.5167255401611328, 'ml-dl', 2), ('awslabs/gluonts', 0.5149070620536804, 'time-series', 3), ('intel/intel-extension-for-pytorch', 0.5118179321289062, 'perf', 2), ('pycaret/pycaret', 0.5082858800888062, 'ml', 1), ('lightly-ai/lightly', 0.5078932046890259, 'ml', 2), ('yzhao062/pyod', 0.5056750178337097, 'data', 2), ('pytorch/ignite', 0.5029792189598083, 'ml-dl', 2), ('joblib/joblib', 0.5017874836921692, 'util', 0)]
28
5
null
3.54
31
12
40
1
2
10
2
31
38
90
1.2
40
1,207
ml
https://github.com/hazyresearch/safari
[]
null
[]
[]
null
null
null
hazyresearch/safari
safari
802
73
36
Assembly
null
Convolutions for Sequence Modeling
hazyresearch
2024-01-12
2023-02-14
50
16.04
https://avatars.githubusercontent.com/u/2165246?v=4
Convolutions for Sequence Modeling
[]
[]
2023-09-29
[('amazon-science/dq-bart', 0.5790391564369202, 'nlp', 0), ('bytedance/lightseq', 0.5279725790023804, 'nlp', 0)]
6
3
null
0.48
6
4
11
4
0
0
0
6
20
90
3.3
40
1,618
util
https://github.com/samuelcolvin/dirty-equals
[]
null
[]
[]
null
null
null
samuelcolvin/dirty-equals
dirty-equals
744
35
12
Python
https://dirty-equals.helpmanual.io
Doing dirty (but extremely useful) things with equals.
samuelcolvin
2024-01-07
2022-01-26
104
7.095368
null
Doing dirty (but extremely useful) things with equals.
['pytest', 'testing-tools', 'unit-testing']
['pytest', 'testing-tools', 'unit-testing']
2023-11-15
[('pytest-dev/pytest', 0.6580618023872375, 'testing', 1), ('ionelmc/pytest-benchmark', 0.6507035493850708, 'testing', 1), ('pytest-dev/pytest-mock', 0.6112805008888245, 'testing', 1), ('pytest-dev/pytest-cov', 0.5618858933448792, 'testing', 1), ('nteract/testbook', 0.5593006014823914, 'jupyter', 2), ('pytest-dev/pytest-xdist', 0.546781599521637, 'testing', 1), ('nedbat/coveragepy', 0.5362508296966553, 'testing', 0), ('teemu/pytest-sugar', 0.5335487723350525, 'testing', 1), ('computationalmodelling/nbval', 0.5271663665771484, 'jupyter', 1), ('wolever/parameterized', 0.524022102355957, 'testing', 0), ('samuelcolvin/pytest-pretty', 0.5239970088005066, 'testing', 1), ('pmorissette/bt', 0.5151998996734619, 'finance', 0), ('eugeneyan/python-collab-template', 0.514961302280426, 'template', 1)]
16
4
null
0.62
16
13
24
2
4
8
4
16
24
90
1.5
40
1,543
util
https://github.com/yukinarit/pyserde
['serialization', 'dataclasses']
null
[]
[]
null
null
null
yukinarit/pyserde
pyserde
611
32
8
Python
https://yukinarit.github.io/pyserde/guide/en
Yet another serialization library on top of dataclasses, inspired by serde-rs.
yukinarit
2024-01-13
2018-12-05
268
2.272582
null
Yet another serialization library on top of dataclasses, inspired by serde-rs.
['dataclasses', 'json', 'msgpack', 'serde', 'serialization', 'toml', 'typing', 'yaml']
['dataclasses', 'json', 'msgpack', 'serde', 'serialization', 'toml', 'typing', 'yaml']
2024-01-13
[('lidatong/dataclasses-json', 0.686412513256073, 'util', 2), ('pylons/colander', 0.6523554921150208, 'util', 1), ('marshmallow-code/marshmallow', 0.6370522379875183, 'util', 2), ('google/flatbuffers', 0.6145598292350769, 'perf', 1), ('python-odin/odin', 0.5727947354316711, 'util', 3), ('jsonpickle/jsonpickle', 0.5483598113059998, 'data', 2), ('samuelcolvin/rtoml', 0.5448687076568604, 'data', 1), ('fabiocaccamo/python-benedict', 0.5148563981056213, 'util', 3)]
27
7
null
2.04
36
28
62
0
20
9
20
35
42
90
1.2
40
866
util
https://github.com/ipython/ipykernel
[]
null
[]
[]
null
null
null
ipython/ipykernel
ipykernel
596
361
37
Python
https://ipykernel.readthedocs.io/en/stable/
IPython Kernel for Jupyter
ipython
2024-01-12
2015-04-09
459
1.296457
https://avatars.githubusercontent.com/u/230453?v=4
IPython Kernel for Jupyter
['ipython', 'ipython-kernel', 'jupyter', 'jupyter-notebook', 'kernel']
['ipython', 'ipython-kernel', 'jupyter', 'jupyter-notebook', 'kernel']
2024-01-13
[('jupyter/notebook', 0.6881211400032043, 'jupyter', 2), ('ipython/ipyparallel', 0.6646348237991333, 'perf', 1), ('jupyterlab/jupyterlab', 0.662561297416687, 'jupyter', 1), ('jupyter/nbformat', 0.6578472852706909, 'jupyter', 0), ('ipython/ipython', 0.6446179747581482, 'util', 2), ('computationalmodelling/nbval', 0.6354666948318481, 'jupyter', 1), ('jupyterlab/jupyterlab-desktop', 0.6094779968261719, 'jupyter', 2), ('jupyter-widgets/ipywidgets', 0.6043174862861633, 'jupyter', 0), ('maartenbreddels/ipyvolume', 0.5854012966156006, 'jupyter', 2), ('jupyter/nbconvert', 0.5823147892951965, 'jupyter', 0), ('jakevdp/pythondatasciencehandbook', 0.5796281099319458, 'study', 1), ('chaoleili/jupyterlab_tensorboard', 0.5732330679893494, 'jupyter', 0), ('aws/graph-notebook', 0.568101167678833, 'jupyter', 2), ('mwouts/jupytext', 0.5664380788803101, 'jupyter', 1), ('ageron/handson-ml2', 0.55137699842453, 'ml', 0), ('cohere-ai/notebooks', 0.5502215623855591, 'llm', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5428215265274048, 'study', 0), ('rasbt/watermark', 0.541002631187439, 'util', 2), ('nteract/testbook', 0.5405094623565674, 'jupyter', 1), ('gotcha/ipdb', 0.5379695892333984, 'debug', 1), ('voila-dashboards/voila', 0.5356465578079224, 'jupyter', 2), ('jupyterlite/jupyterlite', 0.5333779454231262, 'jupyter', 1), ('jupyter-lsp/jupyterlab-lsp', 0.5254985690116882, 'jupyter', 3), ('wesm/pydata-book', 0.5184985995292664, 'study', 0), ('koaning/drawdata', 0.5152633190155029, 'jupyter', 1), ('quantopian/qgrid', 0.514000654220581, 'jupyter', 0), ('faster-cpython/tools', 0.5114536285400391, 'perf', 0), ('mamba-org/gator', 0.5081201791763306, 'jupyter', 1), ('vizzuhq/ipyvizzu', 0.5079095363616943, 'jupyter', 3), ('tkrabel/bamboolib', 0.5052734017372131, 'pandas', 1), ('jupyterlab/jupyter-ai', 0.5044593811035156, 'jupyter', 1), ('jupyter-widgets/ipyleaflet', 0.504456102848053, 'gis', 1), ('python/cpython', 0.5019452571868896, 'util', 0)]
176
7
null
1.52
45
28
107
0
18
15
18
45
43
90
1
40
1,086
ml
https://github.com/opentensor/bittensor
[]
null
[]
[]
null
null
null
opentensor/bittensor
bittensor
575
177
28
Python
https://www.bittensor.com/
Internet-scale Neural Networks
opentensor
2024-01-14
2020-07-28
183
3.142077
https://avatars.githubusercontent.com/u/61063461?v=4
Internet-scale Neural Networks
['ai', 'blockchain', 'cryptocurrency', 'deep-learning', 'machine-learning', 'neural-networks', 'p2p', 'p2p-network', 'polkadot', 'pytorch', 'substrate', 'torch']
['ai', 'blockchain', 'cryptocurrency', 'deep-learning', 'machine-learning', 'neural-networks', 'p2p', 'p2p-network', 'polkadot', 'pytorch', 'substrate', 'torch']
2024-01-09
[('alpa-projects/alpa', 0.556601345539093, 'ml-dl', 2), ('hpcaitech/colossalai', 0.552403450012207, 'llm', 2), ('ai4finance-foundation/finrl', 0.5417373776435852, 'finance', 0), ('explosion/thinc', 0.5385252833366394, 'ml-dl', 4), ('ddbourgin/numpy-ml', 0.5296874642372131, 'ml', 2), ('mosaicml/composer', 0.5280351042747498, 'ml-dl', 4), ('microsoft/onnxruntime', 0.5280240774154663, 'ml', 4), ('lutzroeder/netron', 0.5261327028274536, 'ml', 5), ('onnx/onnx', 0.5157052874565125, 'ml', 3), ('keras-team/keras', 0.5132687091827393, 'ml-dl', 4), ('adap/flower', 0.5103121399879456, 'ml-ops', 4), ('numerai/example-scripts', 0.5083948969841003, 'finance', 2), ('tensorflow/tensorflow', 0.5074020028114319, 'ml-dl', 2), ('keras-rl/keras-rl', 0.5059829950332642, 'ml-rl', 2), ('automatic1111/stable-diffusion-webui', 0.5035480856895447, 'diffusion', 4), ('freqtrade/freqtrade', 0.5012444853782654, 'crypto', 1)]
48
2
null
13.79
172
162
42
0
24
12
24
172
49
90
0.3
40
1,808
data
https://github.com/jina-ai/vectordb
['vectordb']
null
[]
[]
null
null
null
jina-ai/vectordb
vectordb
415
29
8
Python
null
A Python vector database you just need - no more, no less.
jina-ai
2024-01-12
2023-05-02
39
10.641026
https://avatars.githubusercontent.com/u/60539444?v=4
A Python vector database you just need - no more, no less.
['embedding-similarity', 'neural-search', 'sentence-embeddings', 'vector-database', 'vector-database-embedding', 'vector-search']
['embedding-similarity', 'neural-search', 'sentence-embeddings', 'vector-database', 'vector-database-embedding', 'vector-search', 'vectordb']
2023-10-23
[('qdrant/fastembed', 0.7195001244544983, 'ml', 2), ('kagisearch/vectordb', 0.6794906258583069, 'data', 1), ('neuml/txtai', 0.6555339097976685, 'nlp', 4), ('chroma-core/chroma', 0.6463486552238464, 'data', 1), ('activeloopai/deeplake', 0.639483630657196, 'ml-ops', 2), ('milvus-io/bootcamp', 0.6278480887413025, 'data', 1), ('lancedb/lancedb', 0.612372100353241, 'data', 2), ('koaning/embetter', 0.5935912728309631, 'data', 0), ('qdrant/qdrant', 0.5856242775917053, 'data', 3), ('plasticityai/magnitude', 0.5780693888664246, 'nlp', 0), ('dgarnitz/vectorflow', 0.5692445039749146, 'data', 0), ('nomic-ai/nomic', 0.5595861077308655, 'nlp', 0), ('featureform/embeddinghub', 0.549279510974884, 'nlp', 1), ('qdrant/qdrant-client', 0.5459500551223755, 'util', 2), ('ddangelov/top2vec', 0.5428557395935059, 'nlp', 0), ('llmware-ai/llmware', 0.5389397740364075, 'llm', 0), ('jina-ai/clip-as-service', 0.5312561988830566, 'nlp', 1), ('ibis-project/ibis', 0.5219907760620117, 'data', 0), ('qdrant/vector-db-benchmark', 0.5212831497192383, 'perf', 2), ('tiangolo/sqlmodel', 0.52092444896698, 'data', 0), ('accenture/ampligraph', 0.5142897367477417, 'data', 0), ('amansrivastava17/embedding-as-service', 0.5125251412391663, 'nlp', 0), ('qdrant/qdrant-haystack', 0.5077526569366455, 'data', 0), ('docarray/docarray', 0.5065739154815674, 'data', 1), ('koaning/whatlies', 0.5039339661598206, 'nlp', 0), ('mcfunley/pugsql', 0.5005654096603394, 'data', 0)]
6
2
null
1.79
4
2
9
3
10
24
10
4
9
90
2.2
40
730
ml-ops
https://github.com/skops-dev/skops
[]
null
[]
[]
null
null
null
skops-dev/skops
skops
385
49
10
Python
https://skops.readthedocs.io/en/stable/
skops is a Python library helping you share your scikit-learn based models and put them in production
skops-dev
2024-01-05
2022-05-04
90
4.237421
https://avatars.githubusercontent.com/u/104910083?v=4
skops is a Python library helping you share your scikit-learn based models and put them in production
['huggingface', 'machine-learning', 'mlops', 'scikit-learn']
['huggingface', 'machine-learning', 'mlops', 'scikit-learn']
2024-01-05
[('fmind/mlops-python-package', 0.6394261121749878, 'template', 1), ('kubeflow/fairing', 0.6278438568115234, 'ml-ops', 0), ('koaning/scikit-lego', 0.6168782711029053, 'ml', 2), ('automl/auto-sklearn', 0.5991626381874084, 'ml', 1), ('intel/scikit-learn-intelex', 0.5795713067054749, 'perf', 2), ('polyaxon/polyaxon', 0.5779671669006348, 'ml-ops', 2), ('iryna-kondr/scikit-llm', 0.5726227760314941, 'llm', 2), ('featurelabs/featuretools', 0.5711256265640259, 'ml', 2), ('huggingface/huggingface_hub', 0.5664080381393433, 'ml', 1), ('gradio-app/gradio', 0.5616341233253479, 'viz', 1), ('rasbt/machine-learning-book', 0.5548707246780396, 'study', 2), ('csinva/imodels', 0.5491555333137512, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5375784635543823, 'ml', 2), ('kubeflow-kale/kale', 0.5353480577468872, 'ml-ops', 1), ('wandb/client', 0.5322269201278687, 'ml', 2), ('scikit-learn-contrib/sklearn-pandas', 0.5230203866958618, 'pandas', 0), ('ageron/handson-ml2', 0.5202804207801819, 'ml', 0), ('jovianml/opendatasets', 0.5186297297477722, 'data', 1), ('dylanhogg/awesome-python', 0.5161980986595154, 'study', 1), ('fatiando/verde', 0.513488233089447, 'gis', 1), ('selfexplainml/piml-toolbox', 0.5126495957374573, 'ml-interpretability', 0), ('firmai/atspy', 0.5083118081092834, 'time-series', 0), ('pycaret/pycaret', 0.5067681074142456, 'ml', 1), ('scikit-learn-contrib/metric-learn', 0.504301130771637, 'ml', 2), ('microsoft/nni', 0.5024822950363159, 'ml', 2), ('scikit-learn/scikit-learn', 0.5013717412948608, 'ml', 1)]
16
5
null
1.77
15
13
21
0
5
6
5
15
32
90
2.1
40
1,902
data
https://github.com/meilisearch/meilisearch-python
['search-engine', 'sdk', 'rust', 'api']
Meilisearch is an open-source search engine
[]
[]
null
null
null
meilisearch/meilisearch-python
meilisearch-python
372
119
7
Python
https://www.meilisearch.com/
Python wrapper for the Meilisearch API
meilisearch
2024-01-16
2019-12-04
216
1.715415
https://avatars.githubusercontent.com/u/43250847?v=4
Python wrapper for the Meilisearch API
['client', 'meilisearch', 'sdk']
['api', 'client', 'meilisearch', 'rust', 'sdk', 'search-engine']
2024-01-16
[('typesense/typesense-python', 0.5989935994148254, 'data', 3), ('dmarx/psaw', 0.5636150240898132, 'data', 0), ('googleapis/google-api-python-client', 0.5505169034004211, 'util', 0), ('qdrant/qdrant-client', 0.538914680480957, 'util', 0), ('man-c/pycoingecko', 0.5315601229667664, 'crypto', 1), ('nv7-github/googlesearch', 0.5313740968704224, 'util', 0), ('goldsmith/wikipedia', 0.5276321768760681, 'data', 0), ('snyk-labs/pysnyk', 0.5068243741989136, 'security', 1)]
55
3
null
5.19
60
57
50
0
10
11
10
60
160
90
2.7
40
1,897
llm
https://github.com/langchain-ai/langgraph
['langchain', 'multi-actor', 'agents']
LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.
[]
[]
null
null
null
langchain-ai/langgraph
langgraph
367
22
11
Python
null
null
langchain-ai
2024-01-14
2023-08-09
24
14.764368
https://avatars.githubusercontent.com/u/126733545?v=4
LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.
[]
['agents', 'langchain', 'multi-actor']
2024-01-09
[('alphasecio/langchain-examples', 0.6478251814842224, 'llm', 1), ('gkamradt/langchain-tutorials', 0.6401094794273376, 'study', 0), ('hwchase17/langchain', 0.6307724118232727, 'llm', 1), ('prefecthq/langchain-prefect', 0.6234740018844604, 'llm', 1), ('logspace-ai/langflow', 0.6137604713439941, 'llm', 1), ('microsoft/autogen', 0.6005686521530151, 'llm', 0), ('dylanhogg/llmgraph', 0.5856835842132568, 'ml', 0), ('nat/openplayground', 0.5708506107330322, 'llm', 0), ('zilliztech/gptcache', 0.5597312450408936, 'llm', 1), ('chatarena/chatarena', 0.5562337636947632, 'llm', 0), ('aiwaves-cn/agents', 0.5516238808631897, 'nlp', 0), ('young-geng/easylm', 0.5411015748977661, 'llm', 0), ('jina-ai/thinkgpt', 0.5343421697616577, 'llm', 0), ('nomic-ai/gpt4all', 0.533517599105835, 'llm', 0), ('tigerlab-ai/tiger', 0.5296244025230408, 'llm', 0), ('spcl/graph-of-thoughts', 0.5278857350349426, 'llm', 0), ('langchain-ai/langsmith-cookbook', 0.5267937183380127, 'llm', 0), ('mlc-ai/web-llm', 0.5244644284248352, 'llm', 0), ('lm-sys/fastchat', 0.5237873792648315, 'llm', 0), ('thudm/chatglm2-6b', 0.5230793356895447, 'llm', 0), ('deepset-ai/haystack', 0.5211980938911438, 'llm', 0), ('deep-diver/pingpong', 0.5210304260253906, 'llm', 0), ('langchain-ai/langsmith-sdk', 0.5179738998413086, 'llm', 0), ('hannibal046/awesome-llm', 0.5179132223129272, 'study', 0), ('hiyouga/llama-factory', 0.5161830186843872, 'llm', 0), ('hiyouga/llama-efficient-tuning', 0.5161828994750977, 'llm', 0), ('operand/agency', 0.5159871578216553, 'llm', 1), ('geekan/metagpt', 0.5153509974479675, 'llm', 0), ('embedchain/embedchain', 0.5151159763336182, 'llm', 0), ('run-llama/rags', 0.5150389671325684, 'llm', 0), ('agenta-ai/agenta', 0.5138852000236511, 'llm', 1), ('pathwaycom/llm-app', 0.5122884511947632, 'llm', 0), ('next-gpt/next-gpt', 0.5100759863853455, 'llm', 0), ('oobabooga/text-generation-webui', 0.5098942518234253, 'llm', 0), ('guardrails-ai/guardrails', 0.5052242875099182, 'llm', 0), ('eugeneyan/open-llms', 0.5050806403160095, 'study', 0), ('lianjiatech/belle', 0.5042188763618469, 'llm', 0), ('lupantech/chameleon-llm', 0.5040978193283081, 'llm', 0), ('mnotgod96/appagent', 0.5023365020751953, 'llm', 0), ('eth-sri/lmql', 0.5018105506896973, 'llm', 0), ('bobazooba/xllm', 0.5015073418617249, 'llm', 0), ('ctlllll/llm-toolmaker', 0.501153290271759, 'llm', 0), ('salesforce/xgen', 0.5001147389411926, 'llm', 0)]
3
1
null
3.21
30
24
5
0
0
15
15
30
6
90
0.2
40
1,698
util
https://github.com/mkdocstrings/griffe
[]
null
[]
[]
null
null
null
mkdocstrings/griffe
griffe
232
35
6
Python
https://mkdocstrings.github.io/griffe
Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API.
mkdocstrings
2024-01-13
2021-09-09
124
1.860252
https://avatars.githubusercontent.com/u/75664361?v=4
Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API.
['api', 'breaking-changes', 'docs', 'mkdocstrings-collector', 'parser', 'signature']
['api', 'breaking-changes', 'docs', 'mkdocstrings-collector', 'parser', 'signature']
2023-12-06
[('mitmproxy/pdoc', 0.6451767683029175, 'util', 2), ('landscapeio/prospector', 0.5961143970489502, 'util', 0), ('omry/omegaconf', 0.5919175744056702, 'util', 0), ('pdoc3/pdoc', 0.5867151618003845, 'util', 1), ('python-odin/odin', 0.5799145102500916, 'util', 0), ('eugeneyan/python-collab-template', 0.5616798400878906, 'template', 0), ('amaargiru/pyroad', 0.5457209944725037, 'study', 0), ('mkdocstrings/python', 0.5423215627670288, 'util', 0), ('mgedmin/check-manifest', 0.537682056427002, 'util', 0), ('pypi/warehouse', 0.5345215797424316, 'util', 0), ('pytoolz/toolz', 0.5321711301803589, 'util', 0), ('erotemic/ubelt', 0.5309567451477051, 'util', 0), ('jazzband/pip-tools', 0.5269049406051636, 'util', 0), ('pypa/hatch', 0.5250239968299866, 'util', 0), ('pydantic/pydantic', 0.5223087072372437, 'util', 0), ('pympler/pympler', 0.5151218771934509, 'perf', 0), ('legrandin/pycryptodome', 0.5096718668937683, 'util', 0), ('dosisod/refurb', 0.5076294541358948, 'util', 0), ('python-rope/rope', 0.5066107511520386, 'util', 0), ('uqfoundation/dill', 0.506209135055542, 'data', 0), ('pypy/pypy', 0.5051857829093933, 'util', 0), ('samuelcolvin/python-devtools', 0.5050040483474731, 'debug', 0), ('pyca/cryptography', 0.5040481090545654, 'util', 0), ('getsentry/responses', 0.5013567209243774, 'testing', 0), ('instagram/libcst', 0.5002207159996033, 'util', 0)]
26
6
null
5.1
15
10
29
0
22
38
22
16
43
90
2.7
40
277
data
https://github.com/airbnb/knowledge-repo
[]
null
[]
[]
null
null
null
airbnb/knowledge-repo
knowledge-repo
5,406
709
175
Python
null
A next-generation curated knowledge sharing platform for data scientists and other technical professions.
airbnb
2024-01-12
2016-08-17
388
13.902278
https://avatars.githubusercontent.com/u/698437?v=4
A next-generation curated knowledge sharing platform for data scientists and other technical professions.
['data', 'data-analysis', 'data-science', 'knowledge']
['data', 'data-analysis', 'data-science', 'knowledge']
2023-04-17
[('krzjoa/awesome-python-data-science', 0.5916482210159302, 'study', 2), ('drivendata/cookiecutter-data-science', 0.5590470433235168, 'template', 1), ('zenodo/zenodo', 0.5470719933509827, 'util', 0), ('saulpw/visidata', 0.5398018956184387, 'term', 0), ('airbytehq/airbyte', 0.5395446419715881, 'data', 2), ('merantix-momentum/squirrel-core', 0.537761390209198, 'ml', 1), ('firmai/industry-machine-learning', 0.5338939428329468, 'study', 1), ('google/ml-metadata', 0.5292649865150452, 'ml-ops', 0), ('hyperqueryhq/whale', 0.520332932472229, 'data', 0), ('netflix/metaflow', 0.5116251707077026, 'ml-ops', 1), ('simonw/datasette', 0.5094085335731506, 'data', 0), ('brettkromkamp/contextualise', 0.5030013918876648, 'data', 0)]
73
4
null
1.48
0
0
90
9
1
4
1
0
0
90
0
39
992
finance
https://github.com/quantopian/pyfolio
[]
null
[]
[]
null
null
null
quantopian/pyfolio
pyfolio
5,308
1,719
304
Jupyter Notebook
https://quantopian.github.io/pyfolio
Portfolio and risk analytics in Python
quantopian
2024-01-13
2015-06-01
452
11.739652
https://avatars.githubusercontent.com/u/1393215?v=4
Portfolio and risk analytics in Python
[]
[]
2020-07-15
[('ranaroussi/quantstats', 0.6542462706565857, 'finance', 0), ('goldmansachs/gs-quant', 0.6110407114028931, 'finance', 0), ('quantopian/empyrical', 0.6045350432395935, 'finance', 0), ('domokane/financepy', 0.6018176078796387, 'finance', 0), ('eleutherai/pyfra', 0.5698432922363281, 'ml', 0), ('gbeced/pyalgotrade', 0.5584282875061035, 'finance', 0), ('scikit-learn/scikit-learn', 0.5517749786376953, 'ml', 0), ('robcarver17/pysystemtrade', 0.5509036779403687, 'finance', 0), ('cuemacro/finmarketpy', 0.5475354194641113, 'finance', 0), ('pymc-devs/pymc3', 0.5452370047569275, 'ml', 0), ('pmorissette/ffn', 0.5423455834388733, 'finance', 0), ('quantecon/quantecon.py', 0.5116593837738037, 'sim', 0), ('firmai/atspy', 0.5053930282592773, 'time-series', 0)]
59
4
null
0
13
5
105
47
0
2
2
13
10
90
0.8
39
387
nlp
https://github.com/makcedward/nlpaug
[]
null
[]
[]
null
null
null
makcedward/nlpaug
nlpaug
4,222
454
42
Jupyter Notebook
https://makcedward.github.io/
Data augmentation for NLP
makcedward
2024-01-13
2019-03-21
253
16.640766
null
Data augmentation for NLP
['adversarial-attacks', 'adversarial-example', 'ai', 'artificial-intelligence', 'augmentation', 'data-science', 'machine-learning', 'ml', 'natural-language-processing', 'nlp']
['adversarial-attacks', 'adversarial-example', 'ai', 'artificial-intelligence', 'augmentation', 'data-science', 'machine-learning', 'ml', 'natural-language-processing', 'nlp']
2022-07-07
[('explosion/spacy', 0.5835755467414856, 'nlp', 6), ('nltk/nltk', 0.5745749473571777, 'nlp', 3), ('aleju/imgaug', 0.5599479079246521, 'ml', 2), ('infinitylogesh/mutate', 0.5548282265663147, 'nlp', 0), ('explosion/spacy-llm', 0.5450884103775024, 'llm', 3), ('alibaba/easynlp', 0.5402962565422058, 'nlp', 2), ('explosion/thinc', 0.5350939631462097, 'ml-dl', 5), ('thilinarajapakse/simpletransformers', 0.5320999026298523, 'nlp', 0), ('explosion/spacy-models', 0.5314129590988159, 'nlp', 3), ('huggingface/autotrain-advanced', 0.5261876583099365, 'ml', 2), ('rasahq/rasa', 0.5259739756584167, 'llm', 3), ('allenai/allennlp', 0.5257618427276611, 'nlp', 3), ('keras-team/keras-nlp', 0.5205011367797852, 'nlp', 3), ('norskregnesentral/skweak', 0.5184004902839661, 'nlp', 2), ('sdv-dev/sdv', 0.517977237701416, 'data', 1), ('jbesomi/texthero', 0.5141093134880066, 'nlp', 2), ('huggingface/datasets', 0.5126201510429382, 'nlp', 3), ('intellabs/fastrag', 0.5120058655738831, 'nlp', 1), ('interpretml/interpret', 0.5114248394966125, 'ml-interpretability', 3), ('bentoml/bentoml', 0.5093832612037659, 'ml-ops', 2), ('cleanlab/cleanlab', 0.505994439125061, 'ml', 1), ('llmware-ai/llmware', 0.5014007091522217, 'llm', 3)]
33
6
null
0
0
0
59
19
0
5
5
0
0
90
0
39
13
ml
https://github.com/districtdatalabs/yellowbrick
[]
null
[]
[]
null
null
null
districtdatalabs/yellowbrick
yellowbrick
4,142
554
103
Python
http://www.scikit-yb.org/
Visual analysis and diagnostic tools to facilitate machine learning model selection.
districtdatalabs
2024-01-12
2016-05-18
401
10.307145
https://avatars.githubusercontent.com/u/7107115?v=4
Visual analysis and diagnostic tools to facilitate machine learning model selection.
['anaconda', 'estimator', 'machine-learning', 'matplotlib', 'model-selection', 'scikit-learn', 'visual-analysis', 'visualization', 'visualizer']
['anaconda', 'estimator', 'machine-learning', 'matplotlib', 'model-selection', 'scikit-learn', 'visual-analysis', 'visualization', 'visualizer']
2023-07-05
[('automl/auto-sklearn', 0.6410435438156128, 'ml', 1), ('huggingface/evaluate', 0.6335552334785461, 'ml', 1), ('teamhg-memex/eli5', 0.6274762749671936, 'ml', 2), ('tensorflow/data-validation', 0.6272578239440918, 'ml-ops', 0), ('huggingface/datasets', 0.621246874332428, 'nlp', 1), ('wandb/client', 0.6167464256286621, 'ml', 1), ('nccr-itmo/fedot', 0.6075289249420166, 'ml-ops', 1), ('selfexplainml/piml-toolbox', 0.6020028591156006, 'ml-interpretability', 0), ('scikit-learn/scikit-learn', 0.5833300948143005, 'ml', 1), ('microsoft/nni', 0.5821363925933838, 'ml', 1), ('pyvista/pyvista', 0.578895092010498, 'viz', 1), ('polyaxon/datatile', 0.5754048228263855, 'pandas', 1), ('featurelabs/featuretools', 0.5721520185470581, 'ml', 2), ('lutzroeder/netron', 0.570451557636261, 'ml', 2), ('gradio-app/gradio', 0.5597376227378845, 'viz', 1), ('rasbt/mlxtend', 0.5595728754997253, 'ml', 1), ('epistasislab/tpot', 0.5539801120758057, 'ml', 3), ('apple/coremltools', 0.5530053377151489, 'ml', 1), ('pair-code/lit', 0.5486710071563721, 'ml-interpretability', 2), ('firmai/industry-machine-learning', 0.5426095128059387, 'study', 1), ('csinva/imodels', 0.5383384227752686, 'ml', 2), ('skops-dev/skops', 0.5375784635543823, 'ml-ops', 2), ('scikit-optimize/scikit-optimize', 0.5361714959144592, 'ml', 3), ('evidentlyai/evidently', 0.531039834022522, 'ml-ops', 1), ('hazyresearch/meerkat', 0.5290077924728394, 'viz', 1), ('ddbourgin/numpy-ml', 0.5262637138366699, 'ml', 1), ('polyaxon/polyaxon', 0.5260629653930664, 'ml-ops', 1), ('oegedijk/explainerdashboard', 0.5237336158752441, 'ml-interpretability', 0), ('patchy631/machine-learning', 0.5236752033233643, 'ml', 0), ('pyqtgraph/pyqtgraph', 0.5196901559829712, 'viz', 1), ('eugeneyan/testing-ml', 0.5194308757781982, 'testing', 1), ('man-group/dtale', 0.5179511308670044, 'viz', 1), ('microsoft/flaml', 0.5168565511703491, 'ml', 2), ('scikit-learn-contrib/metric-learn', 0.516703188419342, 'ml', 2), ('mlflow/mlflow', 0.5155874490737915, 'ml-ops', 1), ('lux-org/lux', 0.5121427178382874, 'viz', 1), ('doccano/doccano', 0.5116096138954163, 'nlp', 1), ('sktime/sktime', 0.5111024975776672, 'time-series', 2), ('determined-ai/determined', 0.5109866857528687, 'ml-ops', 1), ('mosaicml/composer', 0.5096165537834167, 'ml-dl', 1), ('intel/scikit-learn-intelex', 0.5062663555145264, 'perf', 2), ('koaning/scikit-lego', 0.5034389495849609, 'ml', 2), ('firmai/atspy', 0.5014930367469788, 'time-series', 0), ('roboflow/supervision', 0.5006172060966492, 'ml', 1), ('tensorflow/lucid', 0.5002766251564026, 'ml-interpretability', 2)]
113
2
null
0.08
1
0
93
6
0
3
3
1
1
90
1
39
0
data
https://github.com/andialbrecht/sqlparse
[]
null
[]
[]
null
null
null
andialbrecht/sqlparse
sqlparse
3,494
663
96
Python
null
A non-validating SQL parser module for Python
andialbrecht
2024-01-14
2012-04-18
614
5.682621
null
A non-validating SQL parser module for Python
[]
[]
2023-10-12
[('tiangolo/sqlmodel', 0.6739121079444885, 'data', 0), ('sqlalchemy/sqlalchemy', 0.6582309007644653, 'data', 0), ('tobymao/sqlglot', 0.6332684755325317, 'data', 0), ('ibis-project/ibis', 0.6058615446090698, 'data', 0), ('macbre/sql-metadata', 0.5947306156158447, 'data', 0), ('collerek/ormar', 0.5768142938613892, 'data', 0), ('mcfunley/pugsql', 0.5752284526824951, 'data', 0), ('kayak/pypika', 0.5649843811988831, 'data', 0), ('machow/siuba', 0.5550650358200073, 'pandas', 0), ('pyparsing/pyparsing', 0.5442314147949219, 'util', 0), ('pyeve/cerberus', 0.5441608428955078, 'data', 0), ('pydantic/pydantic', 0.534013569355011, 'util', 0), ('instagram/libcst', 0.5294908285140991, 'util', 0), ('simonw/sqlite-utils', 0.5041010975837708, 'data', 0)]
103
3
null
0.71
22
4
143
3
0
3
3
22
13
90
0.6
39
383
llm
https://github.com/minimaxir/gpt-2-simple
[]
null
[]
[]
null
null
null
minimaxir/gpt-2-simple
gpt-2-simple
3,358
681
77
Python
null
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
minimaxir
2024-01-13
2019-04-13
250
13.409013
null
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts
['openai', 'tensorflow', 'text-generation', 'textgenrnn']
['openai', 'tensorflow', 'text-generation', 'textgenrnn']
2022-05-22
[('minimaxir/aitextgen', 0.7194006443023682, 'llm', 0), ('huggingface/text-generation-inference', 0.6420865058898926, 'llm', 0), ('microsoft/pycodegpt', 0.629753589630127, 'llm', 0), ('karpathy/mingpt', 0.6132301688194275, 'llm', 0), ('xtekky/gpt4free', 0.604681670665741, 'llm', 1), ('infinitylogesh/mutate', 0.5839410424232483, 'nlp', 1), ('minimaxir/textgenrnn', 0.5805365443229675, 'nlp', 2), ('langchain-ai/opengpts', 0.5654781460762024, 'llm', 0), ('google-research/electra', 0.5602125525474548, 'ml-dl', 1), ('sharonzhou/long_stable_diffusion', 0.5567746758460999, 'diffusion', 0), ('weaviate/demo-text2vec-openai', 0.555767834186554, 'util', 1), ('openlmlab/moss', 0.5483125448226929, 'llm', 1), ('bytedance/lightseq', 0.5469551682472229, 'nlp', 0), ('nateshmbhat/pyttsx3', 0.5467420220375061, 'util', 0), ('lianjiatech/belle', 0.5449079871177673, 'llm', 0), ('lucidrains/dalle2-pytorch', 0.5398170948028564, 'diffusion', 0), ('openai/openai-cookbook', 0.5388956665992737, 'ml', 1), ('bigscience-workshop/megatron-deepspeed', 0.5385422110557556, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5385422110557556, 'llm', 0), ('pytorch-labs/gpt-fast', 0.5367690920829773, 'llm', 0), ('hannibal046/awesome-llm', 0.5346177220344543, 'study', 0), ('guardrails-ai/guardrails', 0.5327882766723633, 'llm', 1), ('lucidrains/deep-daze', 0.5265099406242371, 'ml', 0), ('run-llama/rags', 0.5192126035690308, 'llm', 1), ('nvidia/tensorrt-llm', 0.5171143412590027, 'viz', 0), ('microsoft/autogen', 0.5105615258216858, 'llm', 0), ('allenai/allennlp', 0.510489821434021, 'nlp', 0), ('promptslab/promptify', 0.5102137327194214, 'nlp', 1), ('openai/tiktoken', 0.5088499784469604, 'nlp', 0), ('explosion/spacy-transformers', 0.5079010128974915, 'llm', 1), ('eleutherai/gpt-neo', 0.5072481632232666, 'llm', 0), ('pndurette/gtts', 0.5039756298065186, 'util', 0)]
21
5
null
0
1
0
58
20
0
4
4
1
1
90
1
39
617
util
https://github.com/suor/funcy
[]
null
[]
[]
null
null
null
suor/funcy
funcy
3,206
140
71
Python
null
A fancy and practical functional tools
suor
2024-01-13
2012-10-13
589
5.439166
null
A fancy and practical functional tools
['functional-programming', 'utilities']
['functional-programming', 'utilities']
2023-12-17
[('evhub/coconut', 0.6461945176124573, 'util', 1), ('pytoolz/toolz', 0.6413887143135071, 'util', 0), ('gondolav/pyfuncol', 0.5316035747528076, 'util', 0), ('pytoolz/cytoolz', 0.5295758247375488, 'util', 0), ('ethereum/eth-utils', 0.5216156244277954, 'crypto', 0)]
33
2
null
0.56
17
13
137
1
0
5
5
17
16
90
0.9
39
1,412
viz
https://github.com/netflix/flamescope
['data-visualization']
null
[]
[]
null
null
null
netflix/flamescope
flamescope
2,951
181
342
Python
null
FlameScope is a visualization tool for exploring different time ranges as Flame Graphs.
netflix
2024-01-13
2018-03-30
304
9.689024
https://avatars.githubusercontent.com/u/913567?v=4
FlameScope is a visualization tool for exploring different time ranges as Flame Graphs.
[]
['data-visualization']
2022-04-21
[('mwaskom/seaborn', 0.5240253806114197, 'viz', 1), ('matplotlib/mplfinance', 0.5054373741149902, 'finance', 0)]
26
6
null
0
1
0
71
21
0
0
0
1
4
90
4
39
1,475
util
https://github.com/pexpect/pexpect
['automation']
null
[]
[]
null
null
null
pexpect/pexpect
pexpect
2,476
475
91
Python
http://pexpect.readthedocs.io/
A Python module for controlling interactive programs in a pseudo-terminal
pexpect
2024-01-12
2013-09-17
541
4.57671
https://avatars.githubusercontent.com/u/5480175?v=4
A Python module for controlling interactive programs in a pseudo-terminal
[]
['automation']
2023-11-25
[('tmbo/questionary', 0.6019250750541687, 'term', 0), ('google/python-fire', 0.5853911638259888, 'term', 0), ('python/cpython', 0.5793547630310059, 'util', 0), ('pallets/click', 0.5701817870140076, 'term', 0), ('jquast/blessed', 0.5613400340080261, 'term', 0), ('google/pyglove', 0.557771623134613, 'util', 0), ('urwid/urwid', 0.553383469581604, 'term', 0), ('pyscript/pyscript-cli', 0.5519907474517822, 'web', 0), ('hoffstadt/dearpygui', 0.5491853952407837, 'gui', 0), ('pyston/pyston', 0.5372031331062317, 'util', 0), ('microsoft/playwright-python', 0.5341052412986755, 'testing', 1), ('tiangolo/typer', 0.5308032035827637, 'term', 0), ('textualize/trogon', 0.5282593965530396, 'term', 0), ('stanfordnlp/dspy', 0.5249006152153015, 'llm', 0), ('pypy/pypy', 0.5242745280265808, 'util', 0), ('eleutherai/pyfra', 0.5216565728187561, 'ml', 0), ('pytoolz/toolz', 0.5134918093681335, 'util', 0), ('ianmiell/shutit', 0.5116491317749023, 'util', 0), ('willmcgugan/textual', 0.5012505054473877, 'term', 0)]
108
5
null
0.56
13
5
126
2
1
2
1
13
14
90
1.1
39
892
ml
https://github.com/shankarpandala/lazypredict
[]
null
[]
[]
null
null
null
shankarpandala/lazypredict
lazypredict
2,347
276
27
Python
null
Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning
shankarpandala
2024-01-13
2019-11-16
219
10.695964
null
Lazy Predict help build a lot of basic models without much code and helps understand which models works better without any parameter tuning
['automl', 'classification', 'machine-learning', 'regression']
['automl', 'classification', 'machine-learning', 'regression']
2022-09-28
[('microsoft/flaml', 0.6851475834846497, 'ml', 4), ('microsoft/nni', 0.5795509815216064, 'ml', 2), ('winedarksea/autots', 0.5729676485061646, 'time-series', 2), ('automl/auto-sklearn', 0.5726633667945862, 'ml', 1), ('rafiqhasan/auto-tensorflow', 0.5576849579811096, 'ml-dl', 2), ('nccr-itmo/fedot', 0.5503329038619995, 'ml-ops', 2), ('mljar/mljar-supervised', 0.5433629155158997, 'ml', 2), ('awslabs/autogluon', 0.5431965589523315, 'ml', 2), ('mosaicml/composer', 0.5417070984840393, 'ml-dl', 1), ('keras-team/autokeras', 0.5269849896430969, 'ml-dl', 2), ('xplainable/xplainable', 0.5252819061279297, 'ml-interpretability', 1), ('eugeneyan/testing-ml', 0.5170032382011414, 'testing', 1), ('firmai/atspy', 0.5108960866928101, 'time-series', 0), ('huggingface/evaluate', 0.5062326788902283, 'ml', 1), ('patchy631/machine-learning', 0.5044746398925781, 'ml', 0), ('teamhg-memex/eli5', 0.5024835467338562, 'ml', 1), ('selfexplainml/piml-toolbox', 0.500099241733551, 'ml-interpretability', 0)]
17
7
null
0
10
2
51
16
0
3
3
10
6
90
0.6
39
1,843
util
https://github.com/pndurette/gtts
['tts']
null
[]
[]
null
null
null
pndurette/gtts
gTTS
2,078
347
66
Python
http://gtts.readthedocs.org/
Python library and CLI tool to interface with Google Translate's text-to-speech API
pndurette
2024-01-14
2014-05-15
506
4.10093
null
Python library and CLI tool to interface with Google Translate's text-to-speech API
['cli', 'gtts', 'speech', 'speech-api', 'text-to-speech', 'tts']
['cli', 'gtts', 'speech', 'speech-api', 'text-to-speech', 'tts']
2024-01-07
[('googleapis/python-speech', 0.7090864181518555, 'ml', 0), ('uberi/speech_recognition', 0.7022308707237244, 'ml', 0), ('nateshmbhat/pyttsx3', 0.6920114159584045, 'util', 1), ('facebookresearch/seamless_communication', 0.5938905477523804, 'nlp', 1), ('espnet/espnet', 0.5670027732849121, 'nlp', 0), ('pemistahl/lingua-py', 0.5668443441390991, 'nlp', 0), ('irmen/pyminiaudio', 0.5513820648193359, 'util', 0), ('dialogflow/dialogflow-python-client-v2', 0.5459315776824951, 'nlp', 0), ('spotify/pedalboard', 0.5376996994018555, 'util', 0), ('speechbrain/speechbrain', 0.5305692553520203, 'nlp', 0), ('dsdanielpark/bard-api', 0.5274245738983154, 'llm', 0), ('minimaxir/simpleaichat', 0.526296854019165, 'llm', 0), ('gunthercox/chatterbot-corpus', 0.5201086401939392, 'nlp', 0), ('googleapis/google-api-python-client', 0.5190337300300598, 'util', 0), ('killianlucas/open-interpreter', 0.5171147584915161, 'llm', 0), ('m-bain/whisperx', 0.509675920009613, 'nlp', 1), ('minimaxir/gpt-2-simple', 0.5039756298065186, 'llm', 0), ('plachtaa/vall-e-x', 0.5036769509315491, 'llm', 2)]
37
2
null
0.73
15
15
118
0
4
4
4
15
16
90
1.1
39
816
data
https://github.com/uqfoundation/dill
[]
null
[]
[]
1
null
null
uqfoundation/dill
dill
2,062
208
23
Python
http://dill.rtfd.io
serialize all of Python
uqfoundation
2024-01-13
2013-06-28
552
3.731644
https://avatars.githubusercontent.com/u/2855931?v=4
serialize all of Python
[]
[]
2024-01-01
[('jsonpickle/jsonpickle', 0.601097047328949, 'data', 0), ('marshmallow-code/marshmallow', 0.5810075402259827, 'util', 0), ('instagram/libcst', 0.5361902713775635, 'util', 0), ('python-odin/odin', 0.5188406705856323, 'util', 0), ('replicate/replicate-python', 0.5080131888389587, 'ml', 0), ('mkdocstrings/griffe', 0.506209135055542, 'util', 0)]
43
5
null
0.65
32
12
128
0
1
2
1
33
31
90
0.9
39
693
util
https://github.com/grantjenks/python-diskcache
[]
null
[]
[]
null
null
null
grantjenks/python-diskcache
python-diskcache
1,953
151
22
Python
http://www.grantjenks.com/docs/diskcache/
Python disk-backed cache (Django-compatible). Faster than Redis and Memcached. Pure-Python.
grantjenks
2024-01-14
2016-02-03
416
4.685058
null
Python disk-backed cache (Django-compatible). Faster than Redis and Memcached. Pure-Python.
['cache', 'filesystem', 'key-value-store', 'persistence']
['cache', 'filesystem', 'key-value-store', 'persistence']
2023-08-31
[('python-cachier/cachier', 0.6893970966339111, 'perf', 1), ('dgilland/cacheout', 0.6435301899909973, 'perf', 0), ('aio-libs/aiocache', 0.6346278786659241, 'data', 1), ('long2ice/fastapi-cache', 0.6009683609008789, 'web', 1), ('erotemic/ubelt', 0.5623111724853516, 'util', 0), ('klen/py-frameworks-bench', 0.5420731902122498, 'perf', 0), ('pytables/pytables', 0.5363883376121521, 'data', 0), ('joblib/joblib', 0.5340135097503662, 'util', 0), ('fsspec/filesystem_spec', 0.5200872421264648, 'util', 0), ('spotify/annoy', 0.5176307559013367, 'ml', 0), ('samuelcolvin/arq', 0.5104993581771851, 'data', 0), ('samuelcolvin/watchfiles', 0.5041387677192688, 'util', 1), ('neoteroi/blacksheep', 0.5029258728027344, 'web', 0)]
24
3
null
0.56
12
3
97
5
0
11
11
12
28
90
2.3
39
32
nlp
https://github.com/jamesturk/jellyfish
[]
null
[]
[]
null
null
null
jamesturk/jellyfish
jellyfish
1,944
160
44
Jupyter Notebook
https://jamesturk.github.io/jellyfish/
🪼 a python library for doing approximate and phonetic matching of strings.
jamesturk
2024-01-12
2010-07-09
707
2.747426
null
🪼 a python library for doing approximate and phonetic matching of strings.
['fuzzy-search', 'hamming', 'jaro-winkler', 'levenshtein', 'metaphone', 'soundex']
['fuzzy-search', 'hamming', 'jaro-winkler', 'levenshtein', 'metaphone', 'soundex']
2023-11-17
[('life4/textdistance', 0.6177361011505127, 'nlp', 1), ('uberi/speech_recognition', 0.545852541923523, 'ml', 0), ('pytoolz/toolz', 0.5310186147689819, 'util', 0), ('spotify/pedalboard', 0.5257704854011536, 'util', 0)]
31
7
null
1.67
13
10
165
2
0
4
4
13
22
90
1.7
39
1,333
util
https://github.com/carpedm20/emoji
[]
null
[]
[]
null
null
null
carpedm20/emoji
emoji
1,776
299
26
Python
null
emoji terminal output for Python
carpedm20
2024-01-13
2014-08-18
493
3.60139
null
emoji terminal output for Python
['emoji']
['emoji']
2023-12-05
[('trananhkma/fucking-awesome-python', 0.5481189489364624, 'study', 0), ('tartley/colorama', 0.5459503531455994, 'util', 0), ('willmcgugan/rich', 0.5216153264045715, 'term', 1), ('jquast/blessed', 0.5172060132026672, 'term', 0)]
65
2
null
0.77
6
3
115
1
8
3
8
6
11
90
1.8
39
1,855
template
https://github.com/cjolowicz/cookiecutter-hypermodern-python
['hypermodern']
Cookiecutter template for a Python package based on the Hypermodern Python article series.
[]
[]
null
null
null
cjolowicz/cookiecutter-hypermodern-python
cookiecutter-hypermodern-python
1,665
243
19
Python
http://cookiecutter-hypermodern-python.readthedocs.io/
Hypermodern Python Cookiecutter
cjolowicz
2024-01-11
2020-02-07
207
8.021335
null
Hypermodern Python Cookiecutter
[]
['hypermodern']
2023-07-08
[('ionelmc/cookiecutter-pylibrary', 0.6513864994049072, 'template', 0), ('lyz-code/cookiecutter-python-project', 0.6242104768753052, 'template', 0), ('tedivm/robs_awesome_python_template', 0.5808916687965393, 'template', 0), ('giswqs/pypackage', 0.5635570883750916, 'template', 0)]
21
6
null
1.04
8
1
48
6
0
6
6
8
4
90
0.5
39
1,303
sim
https://github.com/microsoft/promptcraft-robotics
['prompt-engineering']
null
[]
[]
null
null
null
microsoft/promptcraft-robotics
PromptCraft-Robotics
1,587
167
40
Python
https://aka.ms/ChatGPT-Robotics
Community for applying LLMs to robotics and a robot simulator with ChatGPT integration
microsoft
2024-01-13
2023-02-08
50
31.205056
https://avatars.githubusercontent.com/u/6154722?v=4
Community for applying LLMs to robotics and a robot simulator with ChatGPT integration
['airsim', 'chatgpt', 'llm', 'prompt-engineering', 'robotics', 'simulation']
['airsim', 'chatgpt', 'llm', 'prompt-engineering', 'robotics', 'simulation']
2023-04-19
[('nomic-ai/gpt4all', 0.6439793109893799, 'llm', 0), ('hwchase17/langchain', 0.6214913129806519, 'llm', 0), ('microsoft/promptflow', 0.6192827224731445, 'llm', 3), ('deep-diver/llm-as-chatbot', 0.6085308194160461, 'llm', 0), ('embedchain/embedchain', 0.596112847328186, 'llm', 2), ('microsoft/chatgpt-robot-manipulation-prompts', 0.580747663974762, 'llm', 0), ('chatarena/chatarena', 0.5778838992118835, 'llm', 1), ('mmabrouk/chatgpt-wrapper', 0.5717716217041016, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5677699446678162, 'perf', 0), ('pathwaycom/llm-app', 0.5630580186843872, 'llm', 1), ('microsoft/lmops', 0.5502687096595764, 'llm', 1), ('h2oai/h2o-llmstudio', 0.5414144992828369, 'llm', 2), ('iryna-kondr/scikit-llm', 0.5381367206573486, 'llm', 2), ('microsoft/autogen', 0.5330193638801575, 'llm', 1), ('confident-ai/deepeval', 0.5318647623062134, 'testing', 2), ('agenta-ai/agenta', 0.5304033756256104, 'llm', 2), ('microsoft/semantic-kernel', 0.5297889113426208, 'llm', 1), ('shishirpatil/gorilla', 0.5253349542617798, 'llm', 2), ('run-llama/rags', 0.5236408710479736, 'llm', 2), ('prefecthq/marvin', 0.5221617817878723, 'nlp', 1), ('chainlit/chainlit', 0.5212441086769104, 'llm', 2), ('dylanhogg/llmgraph', 0.5207331776618958, 'ml', 2), ('cheshire-cat-ai/core', 0.513721764087677, 'llm', 1), ('humanoidagents/humanoidagents', 0.51203453540802, 'sim', 2), ('mnotgod96/appagent', 0.5117555260658264, 'llm', 2)]
4
1
null
0.1
3
2
11
9
1
1
1
3
3
90
1
39
350
ml
https://github.com/jina-ai/finetuner
[]
null
[]
[]
null
null
null
jina-ai/finetuner
finetuner
1,373
64
25
Python
https://finetuner.jina.ai
:dart: Task-oriented embedding tuning for BERT, CLIP, etc.
jina-ai
2024-01-13
2021-08-11
128
10.655211
https://avatars.githubusercontent.com/u/60539444?v=4
:dart: Task-oriented embedding tuning for BERT, CLIP, etc.
['bert', 'few-shot-learning', 'fine-tuning', 'finetuning', 'jina', 'metric-learning', 'negative-sampling', 'neural-search', 'openai-clip', 'pretrained-models', 'siamese-network', 'similarity-learning', 'transfer-learning', 'triplet-loss']
['bert', 'few-shot-learning', 'fine-tuning', 'finetuning', 'jina', 'metric-learning', 'negative-sampling', 'neural-search', 'openai-clip', 'pretrained-models', 'siamese-network', 'similarity-learning', 'transfer-learning', 'triplet-loss']
2023-07-26
[('jina-ai/clip-as-service', 0.7554095387458801, 'nlp', 2), ('paddlepaddle/paddlenlp', 0.6416314840316772, 'llm', 3), ('llmware-ai/llmware', 0.6378600597381592, 'llm', 1), ('extreme-bert/extreme-bert', 0.6179499626159668, 'llm', 1), ('alibaba/easynlp', 0.6169459819793701, 'nlp', 3), ('ukplab/sentence-transformers', 0.5992518663406372, 'nlp', 0), ('huggingface/transformers', 0.5934631824493408, 'nlp', 2), ('ddangelov/top2vec', 0.587577760219574, 'nlp', 1), ('amansrivastava17/embedding-as-service', 0.5800686478614807, 'nlp', 1), ('whu-zqh/chatgpt-vs.-bert', 0.577040433883667, 'llm', 1), ('explosion/spacy-transformers', 0.5754354596138, 'llm', 2), ('neuml/txtai', 0.56916743516922, 'nlp', 1), ('deepset-ai/farm', 0.5661262273788452, 'nlp', 3), ('jonasgeiping/cramming', 0.5652620792388916, 'nlp', 0), ('intellabs/fastrag', 0.5626152157783508, 'nlp', 0), ('qdrant/quaterion', 0.5520226359367371, 'ml', 2), ('bigscience-workshop/petals', 0.5490538477897644, 'data', 1), ('graykode/nlp-tutorial', 0.5485501885414124, 'study', 1), ('explosion/thinc', 0.5483794808387756, 'ml-dl', 0), ('qdrant/fastembed', 0.5480974912643433, 'ml', 0), ('plasticityai/magnitude', 0.5438824892044067, 'nlp', 0), ('nvidia/deeplearningexamples', 0.5358811616897583, 'ml-dl', 0), ('bytedance/lightseq', 0.5338277220726013, 'nlp', 1), ('luodian/otter', 0.5296557545661926, 'llm', 0), ('docarray/docarray', 0.5270631313323975, 'data', 1), ('koaning/embetter', 0.526446521282196, 'data', 0), ('bigscience-workshop/megatron-deepspeed', 0.5171146988868713, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5171146988868713, 'llm', 0), ('huggingface/neuralcoref', 0.5169621706008911, 'nlp', 0), ('muennighoff/sgpt', 0.512883186340332, 'llm', 1), ('qanastek/drbert', 0.5117612481117249, 'llm', 1), ('eleutherai/lm-evaluation-harness', 0.5112559199333191, 'llm', 0), ('openai/clip', 0.505680501461029, 'ml-dl', 0), ('maartengr/bertopic', 0.5031505227088928, 'nlp', 1), ('lm-sys/fastchat', 0.5029986500740051, 'llm', 0), ('thilinarajapakse/simpletransformers', 0.5025129914283752, 'nlp', 0), ('freedomintelligence/llmzoo', 0.5019564628601074, 'llm', 0)]
35
3
null
1.06
8
6
30
6
10
17
10
8
1
90
0.1
39
509
typing
https://github.com/agronholm/typeguard
['typechecker', 'code-quality']
null
[]
[]
null
null
null
agronholm/typeguard
typeguard
1,372
101
22
Python
null
Run-time type checker for Python
agronholm
2024-01-13
2015-12-27
422
3.248985
null
Run-time type checker for Python
[]
['code-quality', 'typechecker']
2024-01-09
[('microsoft/pyright', 0.9137517213821411, 'typing', 2), ('facebook/pyre-check', 0.8064729571342468, 'typing', 2), ('google/pytype', 0.7289842367172241, 'typing', 2), ('python/mypy', 0.7131239771842957, 'typing', 2), ('instagram/monkeytype', 0.6599376201629639, 'typing', 1), ('pycqa/mccabe', 0.5824611186981201, 'util', 0), ('patrick-kidger/torchtyping', 0.5700576305389404, 'typing', 0), ('python/typeshed', 0.5519527792930603, 'typing', 1), ('jendrikseipp/vulture', 0.5461918711662292, 'util', 1), ('grantjenks/blue', 0.5374644994735718, 'util', 1), ('rubik/radon', 0.5345003604888916, 'util', 0), ('pydantic/pydantic', 0.5333467721939087, 'util', 0), ('psf/black', 0.5326973795890808, 'util', 1), ('google/yapf', 0.5313608050346375, 'util', 1), ('landscapeio/prospector', 0.528834879398346, 'util', 0), ('tiangolo/typer', 0.5242935419082642, 'term', 0), ('nedbat/coveragepy', 0.5188262462615967, 'testing', 0), ('pympler/pympler', 0.5068668127059937, 'perf', 0), ('pycqa/pycodestyle', 0.5046524405479431, 'util', 0)]
33
4
null
3.96
19
11
98
0
2
8
2
19
21
90
1.1
39
900
viz
https://github.com/datapane/datapane
[]
null
[]
[]
null
null
null
datapane/datapane
datapane
1,330
96
19
Python
https://datapane.com
Build and share data reports in 100% Python
datapane
2024-01-13
2020-04-23
196
6.761075
https://avatars.githubusercontent.com/u/55440415?v=4
Build and share data reports in 100% Python
['dashboard', 'data-visualization', 'reporting']
['dashboard', 'data-visualization', 'reporting']
2023-09-07
[('federicoceratto/dashing', 0.6180770993232727, 'term', 1), ('mwaskom/seaborn', 0.5832452774047852, 'viz', 1), ('plotly/dash', 0.5667321681976318, 'viz', 1), ('holoviz/panel', 0.5654339790344238, 'viz', 0), ('altair-viz/altair', 0.556462287902832, 'viz', 0), ('pytables/pytables', 0.5492084622383118, 'data', 0), ('lux-org/lux', 0.5429391860961914, 'viz', 0), ('man-group/dtale', 0.5396667718887329, 'viz', 1), ('kanaries/pygwalker', 0.5378132462501526, 'pandas', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5317434668540955, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.5247305035591125, 'jupyter', 1), ('enthought/mayavi', 0.5168454051017761, 'viz', 0)]
13
4
null
2.87
1
1
45
4
0
15
15
1
1
90
1
39
163
llm
https://github.com/explosion/spacy-transformers
[]
null
[]
[]
null
null
null
explosion/spacy-transformers
spacy-transformers
1,306
162
32
Python
https://spacy.io/usage/embeddings-transformers
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
explosion
2024-01-13
2019-07-26
235
5.543966
https://avatars.githubusercontent.com/u/20011530?v=4
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy
['bert', 'google', 'gpt-2', 'huggingface', 'language-model', 'machine-learning', 'natural-language-processing', 'natural-language-understanding', 'nlp', 'openai', 'pytorch', 'pytorch-model', 'spacy', 'spacy-extension', 'spacy-pipeline', 'transfer-learning', 'xlnet']
['bert', 'google', 'gpt-2', 'huggingface', 'language-model', 'machine-learning', 'natural-language-processing', 'natural-language-understanding', 'nlp', 'openai', 'pytorch', 'pytorch-model', 'spacy', 'spacy-extension', 'spacy-pipeline', 'transfer-learning', 'xlnet']
2023-12-19
[('explosion/spacy-models', 0.6662450432777405, 'nlp', 4), ('huggingface/transformers', 0.6527365446090698, 'nlp', 6), ('bigscience-workshop/megatron-deepspeed', 0.6363678574562073, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6363678574562073, 'llm', 0), ('extreme-bert/extreme-bert', 0.6331859230995178, 'llm', 6), ('huggingface/neuralcoref', 0.6309342980384827, 'nlp', 6), ('explosion/spacy-stanza', 0.6275186538696289, 'nlp', 5), ('explosion/spacy-streamlit', 0.5857328772544861, 'nlp', 4), ('jina-ai/finetuner', 0.5754354596138, 'ml', 2), ('alibaba/easynlp', 0.5717461109161377, 'nlp', 5), ('jonasgeiping/cramming', 0.5527690649032593, 'nlp', 2), ('karpathy/mingpt', 0.5479704141616821, 'llm', 0), ('deepset-ai/farm', 0.5454752445220947, 'nlp', 4), ('lucidrains/toolformer-pytorch', 0.5443832278251648, 'llm', 1), ('paddlepaddle/paddlenlp', 0.539587140083313, 'llm', 2), ('bobazooba/xllm', 0.529644787311554, 'llm', 2), ('lianjiatech/belle', 0.5292598009109497, 'llm', 0), ('llmware-ai/llmware', 0.5283253192901611, 'llm', 4), ('neuralmagic/sparseml', 0.525894284248352, 'ml-dl', 3), ('thilinarajapakse/simpletransformers', 0.5258124470710754, 'nlp', 0), ('explosion/spacy-llm', 0.524055004119873, 'llm', 5), ('explosion/thinc', 0.5206478238105774, 'ml-dl', 5), ('explosion/spacy', 0.5188299417495728, 'nlp', 4), ('qanastek/drbert', 0.5139819979667664, 'llm', 3), ('huggingface/optimum', 0.5108177661895752, 'ml', 1), ('google-research/electra', 0.5100114941596985, 'ml-dl', 1), ('microsoft/autogen', 0.5083666443824768, 'llm', 0), ('minimaxir/gpt-2-simple', 0.5079010128974915, 'llm', 1), ('lm-sys/fastchat', 0.5027205348014832, 'llm', 1)]
22
6
null
0.87
6
6
54
1
10
11
10
6
1
90
0.2
39
446
gis
https://github.com/pysal/pysal
[]
null
[]
[]
1
null
null
pysal/pysal
pysal
1,236
303
84
Jupyter Notebook
http://pysal.org/pysal
PySAL: Python Spatial Analysis Library Meta-Package
pysal
2024-01-14
2013-02-19
571
2.164623
https://avatars.githubusercontent.com/u/3769919?v=4
PySAL: Python Spatial Analysis Library Meta-Package
[]
[]
2023-12-11
[('makepath/xarray-spatial', 0.6753366589546204, 'gis', 0), ('earthlab/earthpy', 0.6416592597961426, 'gis', 0), ('artelys/geonetworkx', 0.625034749507904, 'gis', 0), ('toblerity/rtree', 0.6110436320304871, 'gis', 0), ('scikit-geometry/scikit-geometry', 0.5866171717643738, 'gis', 0), ('albahnsen/pycircular', 0.581803023815155, 'math', 0), ('scitools/cartopy', 0.5811754465103149, 'gis', 0), ('altair-viz/altair', 0.5805773735046387, 'viz', 0), ('residentmario/geoplot', 0.579075276851654, 'gis', 0), ('geopandas/geopandas', 0.5672765374183655, 'gis', 0), ('opengeos/leafmap', 0.5648621320724487, 'gis', 0), ('pytoolz/toolz', 0.5646018385887146, 'util', 0), ('marcomusy/vedo', 0.560834527015686, 'viz', 0), ('scipy/scipy', 0.5544923543930054, 'math', 0), ('has2k1/plotnine', 0.5488908290863037, 'viz', 0), ('eleutherai/pyfra', 0.547865092754364, 'ml', 0), ('numpy/numpy', 0.5434750318527222, 'math', 0), ('gboeing/pynamical', 0.5425774455070496, 'sim', 0), ('pyutils/line_profiler', 0.5387760400772095, 'profiling', 0), ('contextlab/hypertools', 0.535285472869873, 'ml', 0), ('holoviz/geoviews', 0.535015881061554, 'gis', 0), ('stan-dev/pystan', 0.5347137451171875, 'ml', 0), ('pandas-dev/pandas', 0.5282700061798096, 'pandas', 0), ('scikit-mobility/scikit-mobility', 0.5261431336402893, 'gis', 0), ('scitools/iris', 0.5261117815971375, 'gis', 0), ('enthought/mayavi', 0.5210456848144531, 'viz', 0), ('rasbt/mlxtend', 0.5194495320320129, 'ml', 0), ('pycaret/pycaret', 0.5162516236305237, 'ml', 0), ('pyproj4/pyproj', 0.5152866244316101, 'gis', 0), ('csurfer/pyheat', 0.5142292380332947, 'profiling', 0), ('wesm/pydata-book', 0.5121508836746216, 'study', 0), ('scikit-learn-contrib/metric-learn', 0.5091261267662048, 'ml', 0), ('mwaskom/seaborn', 0.5034690499305725, 'viz', 0), ('alkaline-ml/pmdarima', 0.5029148459434509, 'time-series', 0)]
78
6
null
0.15
7
5
133
1
3
3
3
7
22
90
3.1
39
1,447
ml-rl
https://github.com/humancompatibleai/imitation
[]
null
[]
[]
null
null
null
humancompatibleai/imitation
imitation
1,050
198
17
Python
https://imitation.readthedocs.io/
Clean PyTorch implementations of imitation and reward learning algorithms
humancompatibleai
2024-01-14
2018-12-08
268
3.911655
https://avatars.githubusercontent.com/u/33107497?v=4
Clean PyTorch implementations of imitation and reward learning algorithms
['gymnasium', 'imitation-learning', 'inverse-reinforcement-learning', 'reward-learning']
['gymnasium', 'imitation-learning', 'inverse-reinforcement-learning', 'reward-learning']
2023-12-15
[('thu-ml/tianshou', 0.7333576679229736, 'ml-rl', 1), ('pytorch/rl', 0.6811489462852478, 'ml-rl', 0), ('denys88/rl_games', 0.6343870759010315, 'ml-rl', 0), ('nvidia-omniverse/isaacgymenvs', 0.617064356803894, 'sim', 0), ('nvidia-omniverse/omniisaacgymenvs', 0.6052762866020203, 'sim', 0), ('openai/baselines', 0.5837662816047668, 'ml-rl', 0), ('google/dopamine', 0.576420783996582, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5637737512588501, 'ml-rl', 0), ('deepmind/acme', 0.5565671920776367, 'ml-rl', 0), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5537171363830566, 'study', 0), ('pettingzoo-team/pettingzoo', 0.5525628924369812, 'ml-rl', 1), ('openai/gym', 0.5389503836631775, 'ml-rl', 0), ('mrdbourke/pytorch-deep-learning', 0.5296970009803772, 'study', 0), ('kzl/decision-transformer', 0.5276908874511719, 'ml-rl', 0), ('unity-technologies/ml-agents', 0.5231532454490662, 'ml-rl', 0), ('pytorch/ignite', 0.5217827558517456, 'ml-dl', 0), ('keras-rl/keras-rl', 0.5172331929206848, 'ml-rl', 0), ('arise-initiative/robosuite', 0.5085115432739258, 'ml-rl', 0), ('inspirai/timechamber', 0.50629061460495, 'sim', 0)]
34
4
null
1.12
40
27
62
1
2
2
2
40
65
90
1.6
39
813
viz
https://github.com/facultyai/dash-bootstrap-components
[]
null
[]
[]
null
null
null
facultyai/dash-bootstrap-components
dash-bootstrap-components
1,036
220
23
JavaScript
https://dash-bootstrap-components.opensource.faculty.ai/
Bootstrap components for Plotly Dash
facultyai
2024-01-12
2018-09-21
279
3.705672
https://avatars.githubusercontent.com/u/10586141?v=4
Bootstrap components for Plotly Dash
['bootstrap', 'dashboards', 'julia', 'plotly-dash', 'r']
['bootstrap', 'dashboards', 'julia', 'plotly-dash', 'r']
2024-01-06
[('plotly/plotly.py', 0.5394929051399231, 'viz', 1)]
31
2
null
1.06
16
10
65
0
14
31
14
16
20
90
1.2
39
1,312
llm
https://github.com/nomic-ai/pygpt4all
[]
null
[]
[]
null
null
null
nomic-ai/pygpt4all
pygpt4all
1,019
162
13
C++
https://nomic-ai.github.io/pygpt4all/
Official supported Python bindings for llama.cpp + gpt4all
nomic-ai
2024-01-12
2023-04-03
43
23.619205
https://avatars.githubusercontent.com/u/102670180?v=4
Official supported Python bindings for llama.cpp + gpt4all
[]
[]
2023-05-12
[('abetlen/llama-cpp-python', 0.7292018532752991, 'llm', 0), ('numba/llvmlite', 0.5271598100662231, 'util', 0)]
12
3
null
1.48
0
0
10
8
5
6
5
0
0
90
0
39
614
jupyter
https://github.com/nbqa-dev/nbqa
[]
null
[]
[]
null
null
null
nbqa-dev/nbqa
nbQA
924
36
8
Python
https://nbqa.readthedocs.io/en/latest/index.html
Run ruff, isort, pyupgrade, mypy, pylint, flake8, and more on Jupyter Notebooks
nbqa-dev
2024-01-12
2020-07-11
185
4.983051
https://avatars.githubusercontent.com/u/69012749?v=4
Run ruff, isort, pyupgrade, mypy, pylint, flake8, and more on Jupyter Notebooks
['black', 'codequality', 'doctest', 'flake8', 'isort', 'jupyter-notebook', 'lint', 'mypy', 'pre-commit', 'pre-commit-hook', 'pylint', 'pyupgrade', 'ruff', 'yapf']
['black', 'codequality', 'doctest', 'flake8', 'isort', 'jupyter-notebook', 'lint', 'mypy', 'pre-commit', 'pre-commit-hook', 'pylint', 'pyupgrade', 'ruff', 'yapf']
2023-11-27
[('mwouts/jupytext', 0.5719586610794067, 'jupyter', 1), ('psf/black', 0.5564059019088745, 'util', 2), ('cohere-ai/notebooks', 0.550182044506073, 'llm', 0), ('jupyter/nbformat', 0.5436616539955139, 'jupyter', 0), ('jupyter/nbdime', 0.5352687239646912, 'jupyter', 1), ('grantjenks/blue', 0.5135296583175659, 'util', 2), ('computationalmodelling/nbval', 0.5108411312103271, 'jupyter', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5034378170967102, 'study', 0)]
25
6
null
0.6
6
5
43
2
0
25
25
6
6
90
1
39
475
pandas
https://github.com/holoviz/hvplot
[]
null
[]
[]
null
null
null
holoviz/hvplot
hvplot
874
94
23
Python
https://hvplot.holoviz.org
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
holoviz
2024-01-12
2018-03-19
306
2.854876
https://avatars.githubusercontent.com/u/51678735?v=4
A high-level plotting API for pandas, dask, xarray, and networkx built on HoloViews
['datashader', 'holoviews', 'holoviz', 'plotting']
['datashader', 'holoviews', 'holoviz', 'plotting']
2023-12-22
[('matplotlib/matplotlib', 0.7096381187438965, 'viz', 1), ('cuemacro/chartpy', 0.6870236992835999, 'viz', 1), ('holoviz/holoviews', 0.682068407535553, 'viz', 3), ('man-group/dtale', 0.6696478724479675, 'viz', 0), ('holoviz/holoviz', 0.6662247776985168, 'viz', 3), ('holoviz/panel', 0.6510308980941772, 'viz', 2), ('plotly/plotly.py', 0.6457611918449402, 'viz', 0), ('mwaskom/seaborn', 0.636111855506897, 'viz', 0), ('kanaries/pygwalker', 0.6253153085708618, 'pandas', 0), ('residentmario/geoplot', 0.6143922805786133, 'gis', 0), ('bokeh/bokeh', 0.6104094982147217, 'viz', 1), ('graphistry/pygraphistry', 0.6067784428596497, 'data', 0), ('holoviz/geoviews', 0.6014821529388428, 'gis', 3), ('westhealth/pyvis', 0.5998131036758423, 'graph', 0), ('pyqtgraph/pyqtgraph', 0.5959815979003906, 'viz', 0), ('altair-viz/altair', 0.5933358669281006, 'viz', 0), ('holoviz/datashader', 0.5903522372245789, 'gis', 2), ('contextlab/hypertools', 0.5875470042228699, 'ml', 0), ('scitools/iris', 0.5860223770141602, 'gis', 0), ('has2k1/plotnine', 0.5800595879554749, 'viz', 1), ('pyvista/pyvista', 0.5786033868789673, 'viz', 1), ('enthought/mayavi', 0.5784933567047119, 'viz', 0), ('jakevdp/pythondatasciencehandbook', 0.5669666528701782, 'study', 0), ('maartenbreddels/ipyvolume', 0.5658844113349915, 'jupyter', 1), ('lux-org/lux', 0.5583831071853638, 'viz', 0), ('scitools/cartopy', 0.5497469305992126, 'gis', 0), ('matplotlib/mplfinance', 0.5378217101097107, 'finance', 0), ('pygraphviz/pygraphviz', 0.5362616181373596, 'viz', 0), ('makepath/xarray-spatial', 0.5334243178367615, 'gis', 1), ('pydata/xarray', 0.5328260064125061, 'util', 0), ('vizzuhq/ipyvizzu', 0.5226277112960815, 'jupyter', 1), ('artelys/geonetworkx', 0.5222033858299255, 'gis', 0), ('blaze/blaze', 0.5221161246299744, 'pandas', 0), ('facebookresearch/hiplot', 0.5185054540634155, 'viz', 0), ('dfki-ric/pytransform3d', 0.5157265663146973, 'math', 0), ('plotly/dash', 0.5148411393165588, 'viz', 0), ('marcomusy/vedo', 0.5138098001480103, 'viz', 0), ('rapidsai/cudf', 0.5121793746948242, 'pandas', 0), ('nomic-ai/deepscatter', 0.511212944984436, 'viz', 0), ('vaexio/vaex', 0.5080651640892029, 'perf', 0), ('adamerose/pandasgui', 0.5072020888328552, 'pandas', 0), ('federicoceratto/dashing', 0.5051881670951843, 'term', 0), ('nschloe/tikzplotlib', 0.5042620897293091, 'util', 0), ('jmcnamara/xlsxwriter', 0.5030190348625183, 'data', 0), ('holoviz/spatialpandas', 0.5009598135948181, 'pandas', 1), ('raphaelquast/eomaps', 0.5002750754356384, 'gis', 1)]
45
3
null
1.81
95
37
71
1
3
21
3
95
193
90
2
39
481
gis
https://github.com/sentinel-hub/sentinelhub-py
[]
null
[]
[]
null
null
null
sentinel-hub/sentinelhub-py
sentinelhub-py
753
237
49
Python
http://sentinelhub-py.readthedocs.io/en/latest/
Download and process satellite imagery in Python using Sentinel Hub services.
sentinel-hub
2024-01-12
2017-05-17
349
2.152307
https://avatars.githubusercontent.com/u/31830596?v=4
Download and process satellite imagery in Python using Sentinel Hub services.
['aws', 'ogc-services', 'satellite-imagery', 'sentinel-hub']
['aws', 'ogc-services', 'satellite-imagery', 'sentinel-hub']
2024-01-10
[('radiantearth/radiant-mlhub', 0.6164925694465637, 'gis', 1), ('pytroll/satpy', 0.6114635467529297, 'gis', 0), ('sentinelsat/sentinelsat', 0.5519406199455261, 'gis', 1), ('boto/boto3', 0.5275383591651917, 'util', 1), ('cuemacro/findatapy', 0.5211452841758728, 'finance', 0)]
46
3
null
2.13
38
34
81
0
12
9
12
38
45
90
1.2
39
1,182
nlp
https://github.com/pemistahl/lingua-py
[]
null
[]
[]
null
null
null
pemistahl/lingua-py
lingua-py
747
37
11
Python
null
The most accurate natural language detection library for Python, suitable for short text and mixed-language text
pemistahl
2024-01-14
2021-07-13
133
5.616541
null
The most accurate natural language detection library for Python, suitable for short text and mixed-language text
['language-classification', 'language-detection', 'language-identification', 'language-recognition', 'natural-language-processing', 'nlp']
['language-classification', 'language-detection', 'language-identification', 'language-recognition', 'natural-language-processing', 'nlp']
2023-12-12
[('uberi/speech_recognition', 0.6296498775482178, 'ml', 0), ('allenai/allennlp', 0.6268466711044312, 'nlp', 2), ('explosion/spacy', 0.5869116187095642, 'nlp', 2), ('sloria/textblob', 0.5679237246513367, 'nlp', 2), ('pndurette/gtts', 0.5668443441390991, 'util', 0), ('pypy/pypy', 0.5571848154067993, 'util', 0), ('flairnlp/flair', 0.5448145270347595, 'nlp', 2), ('rasbt/mlxtend', 0.5422750115394592, 'ml', 0), ('gunthercox/chatterbot-corpus', 0.5412878394126892, 'nlp', 0), ('pytoolz/toolz', 0.5412816405296326, 'util', 0), ('nipunsadvilkar/pysbd', 0.5244992971420288, 'nlp', 0), ('clips/pattern', 0.5218809247016907, 'nlp', 1), ('openeventdata/mordecai', 0.5192466974258423, 'gis', 1), ('pyston/pyston', 0.5171454548835754, 'util', 0), ('pandas-dev/pandas', 0.5153101682662964, 'pandas', 0), ('kagisearch/vectordb', 0.509565532207489, 'data', 0), ('explosion/spacy-models', 0.5069782137870789, 'nlp', 2), ('pycaret/pycaret', 0.5025511980056763, 'ml', 0), ('rasahq/rasa', 0.5019610524177551, 'llm', 2), ('dylanhogg/awesome-python', 0.5016226172447205, 'study', 2)]
5
2
null
0.73
41
30
30
1
6
6
6
42
88
90
2.1
39
634
data
https://github.com/dask/fastparquet
[]
null
[]
[]
null
null
null
dask/fastparquet
fastparquet
707
173
20
Python
null
python implementation of the parquet columnar file format.
dask
2024-01-10
2015-11-06
429
1.645826
https://avatars.githubusercontent.com/u/17131925?v=4
python implementation of the parquet columnar file format.
[]
[]
2023-12-22
[('ktrueda/parquet-tools', 0.5958738327026367, 'data', 0), ('crunch-io/lazycsv', 0.5394817590713501, 'perf', 0), ('jupyter/nbformat', 0.5203571915626526, 'jupyter', 0), ('google/yapf', 0.5155162811279297, 'util', 0), ('wireservice/csvkit', 0.5032108426094055, 'util', 0)]
93
5
null
0.85
30
25
100
1
0
6
6
30
69
90
2.3
39
1,584
util
https://github.com/barracuda-fsh/pyobd
['diagnostics']
null
[]
[]
null
null
null
barracuda-fsh/pyobd
pyobd
678
20
16
Python
null
open source obd2 car diagnostics program - reuploaded
barracuda-fsh
2024-01-13
2023-08-18
23
28.763636
null
open source obd2 car diagnostics program - reuploaded
[]
['diagnostics']
2023-09-17
[]
2
0
null
0.29
1
1
5
4
2
5
2
1
3
90
3
39
1,803
ml
https://github.com/awslabs/python-deequ
['aws', 'data-quality', 'spark']
Python API for Deequ, a library built on Spark for defining "unit tests for data", which measure data quality in large datasets
[]
[]
null
null
null
awslabs/python-deequ
python-deequ
618
169
19
Python
null
Python API for Deequ
awslabs
2024-01-12
2020-11-09
168
3.675446
https://avatars.githubusercontent.com/u/3299148?v=4
Python API for Deequ
[]
['aws', 'data-quality', 'spark']
2024-01-08
[('pynamodb/pynamodb', 0.6457101702690125, 'data', 1), ('boto/boto3', 0.5848604440689087, 'util', 1), ('geeogi/async-python-lambda-template', 0.5767794251441956, 'template', 0), ('aws/aws-sdk-pandas', 0.5529321432113647, 'pandas', 1), ('nficano/python-lambda', 0.542289137840271, 'util', 1), ('datastax/python-driver', 0.5413904190063477, 'data', 0), ('nasdaq/data-link-python', 0.5292037725448608, 'finance', 0), ('aws/chalice', 0.5238412618637085, 'web', 1), ('aws/aws-lambda-python-runtime-interface-client', 0.5195323824882507, 'util', 0), ('amzn/ion-python', 0.5171683430671692, 'data', 0)]
18
5
null
0.35
37
7
39
0
4
2
4
37
61
90
1.6
39
1,444
util
https://github.com/pypa/build
['build']
null
[]
[]
null
null
null
pypa/build
build
605
116
25
Python
https://build.pypa.io
A simple, correct Python build frontend
pypa
2024-01-13
2020-05-10
194
3.113971
https://avatars.githubusercontent.com/u/647025?v=4
A simple, correct Python build frontend
[]
['build']
2023-12-21
[('pypa/hatch', 0.5941884517669678, 'util', 1), ('r0x0r/pywebview', 0.5934130549430847, 'gui', 0), ('tezromach/python-package-template', 0.5865764021873474, 'template', 0), ('pypa/pipenv', 0.5441533327102661, 'util', 0), ('pallets/flask', 0.5296503901481628, 'web', 0), ('ofek/pyapp', 0.5296021103858948, 'util', 1), ('eugeneyan/python-collab-template', 0.523838460445404, 'template', 0), ('amaargiru/pyroad', 0.5195523500442505, 'study', 0), ('willmcgugan/textual', 0.5193080306053162, 'term', 0), ('pyodide/micropip', 0.5155296325683594, 'util', 0), ('tedivm/robs_awesome_python_template', 0.5029564499855042, 'template', 0)]
48
6
null
2.04
42
26
45
1
2
6
2
42
77
90
1.8
39
779
util
https://github.com/gefyrahq/gefyra
[]
null
[]
[]
null
null
null
gefyrahq/gefyra
gefyra
597
27
9
Python
https://gefyra.dev
Blazingly-fast :rocket:, rock-solid, local application development :arrow_right: with Kubernetes.
gefyrahq
2024-01-09
2021-11-18
114
5.204234
https://avatars.githubusercontent.com/u/101178654?v=4
Blazingly-fast 🚀, rock-solid, local application development :arrow_right: with Kubernetes.
['coding', 'container', 'containers', 'developer-tool', 'development', 'docker', 'k8s', 'kubernetes', 'tunnel']
['coding', 'container', 'containers', 'developer-tool', 'development', 'docker', 'k8s', 'kubernetes', 'tunnel']
2024-01-02
[('aquasecurity/trivy', 0.6041578054428101, 'security', 3), ('bodywork-ml/bodywork-core', 0.5484521389007568, 'ml-ops', 1), ('orchest/orchest', 0.5443967580795288, 'ml-ops', 2), ('astronomer/astronomer', 0.5323020815849304, 'ml-ops', 2), ('flyteorg/flyte', 0.5291821956634521, 'ml-ops', 1), ('backtick-se/cowait', 0.5228185653686523, 'util', 2), ('tiangolo/full-stack-fastapi-postgresql', 0.5177972912788391, 'template', 1), ('kubeflow/pipelines', 0.5056382417678833, 'ml-ops', 1), ('kubeflow-kale/kale', 0.5049176216125488, 'ml-ops', 0)]
13
1
null
9.48
56
33
26
0
14
30
14
56
34
90
0.6
39
1,702
util
https://github.com/platformdirs/platformdirs
[]
null
[]
[]
null
null
null
platformdirs/platformdirs
platformdirs
425
42
9
Python
https://platformdirs.readthedocs.io
A small Python module for determining appropriate platform-specific dirs, e.g. a "user data dir".
platformdirs
2024-01-12
2021-05-13
141
2.998992
https://avatars.githubusercontent.com/u/84131773?v=4
A small Python module for determining appropriate platform-specific dirs, e.g. a "user data dir".
['appdirs', 'configuration', 'cross-platform', 'xdg', 'xdg-user-dirs']
['appdirs', 'configuration', 'cross-platform', 'xdg', 'xdg-user-dirs']
2024-01-10
[('fsspec/filesystem_spec', 0.5413647294044495, 'util', 0), ('erotemic/ubelt', 0.5185686945915222, 'util', 1)]
66
5
null
1.67
23
21
33
0
21
17
21
23
20
90
0.9
39
1,784
llm
https://github.com/tigerlab-ai/tiger
[]
null
[]
[]
null
null
null
tigerlab-ai/tiger
tiger
356
24
10
Jupyter Notebook
https://www.tigerlab.ai
Open Source LLM toolkit to build trustworthy LLM applications. TigerArmor (AI safety), TigerRAG (embedding, RAG), TigerTune (fine-tuning)
tigerlab-ai
2024-01-12
2023-10-23
14
25.171717
null
Open Source LLM toolkit to build trustworthy LLM applications. TigerArmor (AI safety), TigerRAG (embedding, RAG), TigerTune (fine-tuning)
['ai-safety', 'aisafety', 'classification', 'data-augmentation', 'fine-tuning', 'large-language-models', 'llm', 'llm-training', 'rag']
['ai-safety', 'aisafety', 'classification', 'data-augmentation', 'fine-tuning', 'large-language-models', 'llm', 'llm-training', 'rag']
2023-12-02
[('alpha-vllm/llama2-accessory', 0.7141748666763306, 'llm', 1), ('argilla-io/argilla', 0.6661051511764526, 'nlp', 1), ('hiyouga/llama-factory', 0.6649466753005981, 'llm', 3), ('hiyouga/llama-efficient-tuning', 0.6649465560913086, 'llm', 3), ('hegelai/prompttools', 0.6615456342697144, 'llm', 1), ('h2oai/h2o-llmstudio', 0.6549601554870605, 'llm', 3), ('bentoml/openllm', 0.6545884013175964, 'ml-ops', 2), ('microsoft/semantic-kernel', 0.6522761583328247, 'llm', 1), ('pathwaycom/llm-app', 0.6506632566452026, 'llm', 2), ('microsoft/promptflow', 0.6455790996551514, 'llm', 1), ('bobazooba/xllm', 0.6268063187599182, 'llm', 2), ('iryna-kondr/scikit-llm', 0.6261765956878662, 'llm', 1), ('nebuly-ai/nebullvm', 0.6134838461875916, 'perf', 2), ('ludwig-ai/ludwig', 0.6120554804801941, 'ml-ops', 3), ('bigscience-workshop/petals', 0.6084714531898499, 'data', 1), ('ray-project/llm-applications', 0.6013271808624268, 'llm', 2), ('young-geng/easylm', 0.6003850698471069, 'llm', 1), ('nomic-ai/gpt4all', 0.5997213125228882, 'llm', 0), ('alphasecio/langchain-examples', 0.5991637706756592, 'llm', 1), ('salesforce/xgen', 0.5921275615692139, 'llm', 2), ('mlc-ai/mlc-llm', 0.5859246850013733, 'llm', 1), ('embedchain/embedchain', 0.5847614407539368, 'llm', 1), ('paddlepaddle/paddlenlp', 0.5830023884773254, 'llm', 1), ('salesforce/codet5', 0.5818438529968262, 'nlp', 1), ('llmware-ai/llmware', 0.5777447819709778, 'llm', 2), ('intel/intel-extension-for-transformers', 0.5748347640037537, 'perf', 0), ('eugeneyan/open-llms', 0.5710621476173401, 'study', 2), ('deepset-ai/haystack', 0.5681328773498535, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5661339163780212, 'study', 1), ('nat/openplayground', 0.5651535987854004, 'llm', 0), ('microsoft/torchscale', 0.5640652179718018, 'llm', 0), ('doccano/doccano', 0.5629643797874451, 'nlp', 0), ('agenta-ai/agenta', 0.5620597004890442, 'llm', 3), ('aiwaves-cn/agents', 0.5588130950927734, 'nlp', 1), ('guardrails-ai/guardrails', 0.5576193928718567, 'llm', 1), ('nvidia/tensorrt-llm', 0.5560727119445801, 'viz', 0), ('microsoft/nni', 0.5559183359146118, 'ml', 0), ('citadel-ai/langcheck', 0.5546644926071167, 'llm', 0), ('microsoft/jarvis', 0.552547812461853, 'llm', 0), ('microsoft/lmops', 0.5503789186477661, 'llm', 1), ('mlflow/mlflow', 0.5502049922943115, 'ml-ops', 0), ('vllm-project/vllm', 0.5497113466262817, 'llm', 1), ('arize-ai/phoenix', 0.5459373593330383, 'ml-interpretability', 0), ('lucidrains/toolformer-pytorch', 0.5445385575294495, 'llm', 0), ('night-chen/toolqa', 0.5423557758331299, 'llm', 1), ('infinitylogesh/mutate', 0.5381948947906494, 'nlp', 1), ('conceptofmind/toolformer', 0.5376387238502502, 'llm', 0), ('shishirpatil/gorilla', 0.5373891592025757, 'llm', 1), ('hwchase17/langchain', 0.5362697243690491, 'llm', 0), ('explosion/spacy-llm', 0.5356959104537964, 'llm', 2), ('determined-ai/determined', 0.5315389633178711, 'ml-ops', 0), ('lancedb/lancedb', 0.531322181224823, 'data', 0), ('cheshire-cat-ai/core', 0.5307193398475647, 'llm', 1), ('langchain-ai/langgraph', 0.5296244025230408, 'llm', 0), ('confident-ai/deepeval', 0.5287721157073975, 'testing', 1), ('nvidia/nemo-guardrails', 0.527998149394989, 'llm', 0), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5272374749183655, 'study', 0), ('lastmile-ai/aiconfig', 0.5260499715805054, 'util', 1), ('jerryjliu/llama_index', 0.5246336460113525, 'llm', 3), ('zilliztech/gptcache', 0.5229496955871582, 'llm', 1), ('lm-sys/fastchat', 0.5211068987846375, 'llm', 0), ('truera/trulens', 0.5201952457427979, 'llm', 1), ('microsoft/flaml', 0.5200607180595398, 'ml', 1), ('lightning-ai/lit-gpt', 0.5195765495300293, 'llm', 1), ('cg123/mergekit', 0.5194407105445862, 'llm', 1), ('microsoft/autogen', 0.5187461376190186, 'llm', 0), ('rasahq/rasa', 0.5164182186126709, 'llm', 0), ('giskard-ai/giskard', 0.5133479237556458, 'data', 1), ('nvidia/deeplearningexamples', 0.5106365084648132, 'ml-dl', 1), ('ibm/dromedary', 0.5087694525718689, 'llm', 0), ('lianjiatech/belle', 0.5057373642921448, 'llm', 0), ('openlm-research/open_llama', 0.5050448179244995, 'llm', 0), ('tensorflow/tensorflow', 0.5049441456794739, 'ml-dl', 0), ('huggingface/datasets', 0.5033867955207825, 'nlp', 0), ('titanml/takeoff', 0.5030698180198669, 'llm', 1), ('berriai/litellm', 0.5017346143722534, 'llm', 1), ('openbmb/toolbench', 0.5014435052871704, 'llm', 0), ('epfllm/meditron', 0.501189649105072, 'llm', 0), ('eleutherai/the-pile', 0.5005179643630981, 'data', 1)]
8
1
null
2.25
19
12
3
1
0
0
0
19
8
90
0.4
39
1,539
llm
https://github.com/tsinghuadatabasegroup/db-gpt
['language-model', 'dba']
LLM As Database Administrator
[]
[]
null
null
null
tsinghuadatabasegroup/db-gpt
DB-GPT
327
45
8
Python
http://dbgpt.dbmind.cn/
An LLM Based Diagnosis System (https://arxiv.org/pdf/2312.01454.pdf)
tsinghuadatabasegroup
2024-01-14
2023-04-02
43
7.554455
null
An LLM Based Diagnosis System (https://arxiv.org/pdf/2312.01454.pdf)
['database', 'dba', 'diagnosis', 'tuning']
['database', 'dba', 'diagnosis', 'language-model', 'tuning']
2024-01-13
[('epfllm/meditron', 0.5455986261367798, 'llm', 1), ('hiyouga/llama-factory', 0.5159657001495361, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5159655809402466, 'llm', 1), ('microsoft/torchscale', 0.5131277441978455, 'llm', 0), ('young-geng/easylm', 0.5007253289222717, 'llm', 1)]
6
3
null
7.5
53
45
10
0
0
0
0
53
72
90
1.4
39
1,657
data
https://github.com/unstructured-io/unstructured-api
['unstructured', 'api']
API for Open-Source Pre-Processing Tools for Unstructured Data
[]
[]
null
null
null
unstructured-io/unstructured-api
unstructured-api
231
50
17
Python
null
null
unstructured-io
2024-01-09
2022-12-09
59
3.877698
https://avatars.githubusercontent.com/u/108372208?v=4
API for Open-Source Pre-Processing Tools for Unstructured Data
[]
['api', 'unstructured']
2024-01-12
[('unstructured-io/pipeline-sec-filings', 0.5717188715934753, 'data', 1), ('simonw/datasette', 0.5543832778930664, 'data', 0), ('saulpw/visidata', 0.536859393119812, 'term', 0)]
23
3
null
3.85
61
55
13
0
29
27
29
61
57
90
0.9
39
723
ml
https://github.com/cleverhans-lab/cleverhans
[]
null
[]
[]
null
null
null
cleverhans-lab/cleverhans
cleverhans
6,000
1,394
190
Jupyter Notebook
null
An adversarial example library for constructing attacks, building defenses, and benchmarking both
cleverhans-lab
2024-01-13
2016-09-15
384
15.59599
https://avatars.githubusercontent.com/u/51966688?v=4
An adversarial example library for constructing attacks, building defenses, and benchmarking both
['benchmarking', 'machine-learning', 'security']
['benchmarking', 'machine-learning', 'security']
2023-01-31
[('borealisai/advertorch', 0.7116900086402893, 'ml', 3), ('huggingface/evaluate', 0.5058858394622803, 'ml', 1), ('zorzi-s/projectregularization', 0.5036975741386414, 'gis', 0)]
131
3
null
0.02
1
0
89
12
0
1
1
1
0
90
0
38
565
ml
https://github.com/mdbloice/augmentor
[]
null
[]
[]
null
null
null
mdbloice/augmentor
Augmentor
4,997
870
124
Python
https://augmentor.readthedocs.io/en/stable
Image augmentation library in Python for machine learning.
mdbloice
2024-01-13
2016-03-01
413
12.099274
null
Image augmentation library in Python for machine learning.
['augmentation', 'deep-learning', 'machine-learning', 'neural-networks']
['augmentation', 'deep-learning', 'machine-learning', 'neural-networks']
2023-03-29
[('aleju/imgaug', 0.7141932845115662, 'ml', 3), ('lightly-ai/lightly', 0.7019970417022705, 'ml', 2), ('albumentations-team/albumentations', 0.6705105900764465, 'ml-dl', 3), ('facebookresearch/augly', 0.6478663086891174, 'data', 0), ('pytorch/ignite', 0.5899521708488464, 'ml-dl', 2), ('fepegar/torchio', 0.5896494388580322, 'ml-dl', 3), ('featurelabs/featuretools', 0.5716681480407715, 'ml', 1), ('rasbt/mlxtend', 0.5698684453964233, 'ml', 1), ('weecology/deepforest', 0.5662134885787964, 'gis', 0), ('google-research/deeplab2', 0.5629528760910034, 'ml', 0), ('luispedro/mahotas', 0.5612508654594421, 'viz', 0), ('deci-ai/super-gradients', 0.5568101406097412, 'ml-dl', 1), ('dmlc/dgl', 0.5562937259674072, 'ml-dl', 1), ('gradio-app/gradio', 0.5561718344688416, 'viz', 2), ('intel/intel-extension-for-pytorch', 0.5521341562271118, 'perf', 2), ('ageron/handson-ml2', 0.5503374338150024, 'ml', 0), ('skorch-dev/skorch', 0.5499297976493835, 'ml-dl', 1), ('python-pillow/pillow', 0.5397363305091858, 'util', 0), ('imageio/imageio', 0.5311002135276794, 'util', 0), ('pycaret/pycaret', 0.5300421118736267, 'ml', 1), ('rasbt/machine-learning-book', 0.5249707102775574, 'study', 3), ('tensorflow/addons', 0.5146579742431641, 'ml', 2), ('yzhao062/pyod', 0.5144423842430115, 'data', 3), ('nvlabs/gcvit', 0.5139862895011902, 'diffusion', 1), ('neuralmagic/sparseml', 0.5088579654693604, 'ml-dl', 0), ('scikit-learn/scikit-learn', 0.5044978260993958, 'ml', 1), ('facebookresearch/pytorch3d', 0.5032729506492615, 'ml-dl', 0), ('pyg-team/pytorch_geometric', 0.5032522678375244, 'ml-dl', 1), ('huggingface/huggingface_hub', 0.5017703175544739, 'ml', 2)]
23
3
null
0.1
2
1
96
10
0
3
3
2
1
90
0.5
38
1,213
ml-interpretability
https://github.com/tensorflow/lucid
[]
null
[]
[]
null
null
null
tensorflow/lucid
lucid
4,592
659
159
Jupyter Notebook
null
A collection of infrastructure and tools for research in neural network interpretability.
tensorflow
2024-01-12
2018-01-25
313
14.637523
https://avatars.githubusercontent.com/u/15658638?v=4
A collection of infrastructure and tools for research in neural network interpretability.
['colab', 'interpretability', 'jupyter-notebook', 'machine-learning', 'tensorflow', 'visualization']
['colab', 'interpretability', 'jupyter-notebook', 'machine-learning', 'tensorflow', 'visualization']
2021-03-19
[('pytorch/captum', 0.6784272193908691, 'ml-interpretability', 1), ('pair-code/lit', 0.6758688688278198, 'ml-interpretability', 2), ('csinva/imodels', 0.6663603782653809, 'ml', 2), ('interpretml/interpret', 0.626980721950531, 'ml-interpretability', 2), ('marcotcr/lime', 0.61471027135849, 'ml-interpretability', 0), ('lutzroeder/netron', 0.5944969654083252, 'ml', 2), ('pytorch/ignite', 0.5938147902488708, 'ml-dl', 1), ('eleutherai/pythia', 0.5809341669082642, 'ml-interpretability', 1), ('seldonio/alibi', 0.5702253580093384, 'ml-interpretability', 2), ('rafiqhasan/auto-tensorflow', 0.5636606216430664, 'ml-dl', 2), ('teamhg-memex/eli5', 0.5620574355125427, 'ml', 1), ('maif/shapash', 0.5549944639205933, 'ml', 2), ('selfexplainml/piml-toolbox', 0.5517100095748901, 'ml-interpretability', 0), ('oegedijk/explainerdashboard', 0.5506213903427124, 'ml-interpretability', 0), ('ageron/handson-ml2', 0.5488042235374451, 'ml', 0), ('nvidia/deeplearningexamples', 0.5472056269645691, 'ml-dl', 1), ('tensorflow/tensorflow', 0.5469701290130615, 'ml-dl', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5438190698623657, 'study', 1), ('onnx/onnx', 0.5405921936035156, 'ml', 2), ('carla-recourse/carla', 0.5387822389602661, 'ml', 2), ('ddbourgin/numpy-ml', 0.5334033370018005, 'ml', 1), ('wandb/client', 0.5249351263046265, 'ml', 2), ('huggingface/evaluate', 0.5247843861579895, 'ml', 1), ('skorch-dev/skorch', 0.5241331458091736, 'ml-dl', 1), ('explosion/thinc', 0.522412121295929, 'ml-dl', 2), ('huggingface/datasets', 0.5218112468719482, 'nlp', 2), ('tensorflow/data-validation', 0.5206327438354492, 'ml-ops', 0), ('tensorly/tensorly', 0.5121048092842102, 'ml-dl', 2), ('mlflow/mlflow', 0.5101231336593628, 'ml-ops', 1), ('rasbt/machine-learning-book', 0.5070700645446777, 'study', 1), ('arogozhnikov/einops', 0.5045328140258789, 'ml-dl', 1), ('xl0/lovely-tensors', 0.5038846731185913, 'ml-dl', 1), ('slundberg/shap', 0.5016194581985474, 'ml-interpretability', 2), ('districtdatalabs/yellowbrick', 0.5002766251564026, 'ml', 2)]
40
3
null
0
2
1
73
34
0
4
4
2
1
90
0.5
38
292
util
https://github.com/pytoolz/toolz
[]
null
[]
[]
null
null
null
pytoolz/toolz
toolz
4,431
305
83
Python
http://toolz.readthedocs.org/
A functional standard library for Python.
pytoolz
2024-01-13
2013-09-13
541
8.181746
https://avatars.githubusercontent.com/u/5448828?v=4
A functional standard library for Python.
[]
[]
2022-11-03
[('pyston/pyston', 0.719200074672699, 'util', 0), ('pypy/pypy', 0.7066237330436707, 'util', 0), ('pmorissette/ffn', 0.6924606561660767, 'finance', 0), ('google/latexify_py', 0.6760282516479492, 'util', 0), ('eleutherai/pyfra', 0.6730476021766663, 'ml', 0), ('python/cpython', 0.6690644025802612, 'util', 0), ('ta-lib/ta-lib-python', 0.653429388999939, 'finance', 0), ('pandas-dev/pandas', 0.6519975066184998, 'pandas', 0), ('python-rope/rope', 0.649603009223938, 'util', 0), ('evhub/coconut', 0.6476520895957947, 'util', 0), ('suor/funcy', 0.6413887143135071, 'util', 0), ('fastai/fastcore', 0.6410788297653198, 'util', 0), ('urwid/urwid', 0.6324057579040527, 'term', 0), ('erotemic/ubelt', 0.6275792717933655, 'util', 0), ('connorferster/handcalcs', 0.6247959733009338, 'jupyter', 0), ('artemyk/dynpy', 0.6178411841392517, 'sim', 0), ('gondolav/pyfuncol', 0.6170833706855774, 'util', 0), ('pyparsing/pyparsing', 0.6166950464248657, 'util', 0), ('agronholm/apscheduler', 0.6112861037254333, 'util', 0), ('dgilland/cacheout', 0.6084659695625305, 'perf', 0), ('rasbt/mlxtend', 0.6010292172431946, 'ml', 0), ('instagram/libcst', 0.6008638739585876, 'util', 0), ('wesm/pydata-book', 0.599173903465271, 'study', 0), ('dylanhogg/awesome-python', 0.5974959135055542, 'study', 0), ('goldmansachs/gs-quant', 0.5948769450187683, 'finance', 0), ('pyeve/cerberus', 0.5941500067710876, 'data', 0), ('pyscript/pyscript-cli', 0.5934836864471436, 'web', 0), ('pdm-project/pdm', 0.592634379863739, 'util', 0), ('sympy/sympy', 0.5918540358543396, 'math', 0), ('instagram/monkeytype', 0.5914798974990845, 'typing', 0), ('marshmallow-code/marshmallow', 0.5878369808197021, 'util', 0), ('landscapeio/prospector', 0.5871560573577881, 'util', 0), ('cython/cython', 0.5866791605949402, 'util', 0), ('imageio/imageio', 0.5862778425216675, 'util', 0), ('google/pytype', 0.5861064195632935, 'typing', 0), ('facebook/pyre-check', 0.5858352184295654, 'typing', 0), ('gbeced/pyalgotrade', 0.5849488377571106, 'finance', 0), ('astral-sh/ruff', 0.5842194557189941, 'util', 0), ('google/python-fire', 0.5839331150054932, 'term', 0), ('julienpalard/pipe', 0.5835241079330444, 'util', 0), ('1200wd/bitcoinlib', 0.5831727385520935, 'crypto', 0), ('legrandin/pycryptodome', 0.5827405452728271, 'util', 0), ('primal100/pybitcointools', 0.5817379951477051, 'crypto', 0), ('hoffstadt/dearpygui', 0.5808964371681213, 'gui', 0), ('fredrik-johansson/mpmath', 0.580827534198761, 'math', 0), ('ethtx/ethtx', 0.5787340402603149, 'crypto', 0), ('pypa/installer', 0.5778533220291138, 'util', 0), ('klen/py-frameworks-bench', 0.5774570107460022, 'perf', 0), ('xrudelis/pytrait', 0.5742577314376831, 'util', 0), ('timofurrer/awesome-asyncio', 0.5735023021697998, 'study', 0), ('featurelabs/featuretools', 0.5733933448791504, 'ml', 0), ('lk-geimfari/mimesis', 0.5705004334449768, 'data', 0), ('numpy/numpy', 0.5658218860626221, 'math', 0), ('requests/toolbelt', 0.5654045939445496, 'util', 0), ('pysal/pysal', 0.5646018385887146, 'gis', 0), ('has2k1/plotnine', 0.5640243887901306, 'viz', 0), ('python-odin/odin', 0.563791811466217, 'util', 0), ('tiangolo/typer', 0.5614187121391296, 'term', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5609208941459656, 'study', 0), ('pyscf/pyscf', 0.5605663657188416, 'sim', 0), ('mementum/backtrader', 0.5593503713607788, 'finance', 0), ('python/typeshed', 0.5580030083656311, 'typing', 0), ('nedbat/coveragepy', 0.5574312210083008, 'testing', 0), ('google/gin-config', 0.555968701839447, 'util', 0), ('python-cachier/cachier', 0.5554683208465576, 'perf', 0), ('stanfordnlp/dspy', 0.5550901889801025, 'llm', 0), ('pytorch/data', 0.5517788529396057, 'data', 0), ('pygamelib/pygamelib', 0.5512012839317322, 'gamedev', 0), ('amaargiru/pyroad', 0.5507724285125732, 'study', 0), ('google/pyglove', 0.550031304359436, 'util', 0), ('brandon-rhodes/python-patterns', 0.5499976277351379, 'util', 0), ('allrod5/injectable', 0.5491871237754822, 'util', 0), ('python-trio/trio', 0.5491801500320435, 'perf', 0), ('jquast/blessed', 0.5486643314361572, 'term', 0), ('openai/openai-python', 0.5484781861305237, 'util', 0), ('masoniteframework/masonite', 0.5471121668815613, 'web', 0), ('googleapis/google-api-python-client', 0.5453507304191589, 'util', 0), ('alkaline-ml/pmdarima', 0.5435473918914795, 'time-series', 0), ('hhatto/autopep8', 0.5430788397789001, 'util', 0), ('pympler/pympler', 0.5427612066268921, 'perf', 0), ('cuemacro/finmarketpy', 0.5427136421203613, 'finance', 0), ('pyglet/pyglet', 0.5421815514564514, 'gamedev', 0), ('domokane/financepy', 0.5421152114868164, 'finance', 0), ('pemistahl/lingua-py', 0.5412816405296326, 'nlp', 0), ('paramiko/paramiko', 0.5407304763793945, 'util', 0), ('pytables/pytables', 0.5390780568122864, 'data', 0), ('mynameisfiber/high_performance_python_2e', 0.5383166670799255, 'study', 0), ('libtcod/python-tcod', 0.5379080176353455, 'gamedev', 0), ('irmen/pyminiaudio', 0.5377234816551208, 'util', 0), ('viblo/pymunk', 0.5366160869598389, 'sim', 0), ('beeware/toga', 0.5362921953201294, 'gui', 0), ('willmcgugan/textual', 0.5360779166221619, 'term', 0), ('opengeos/leafmap', 0.5356908440589905, 'gis', 0), ('google/yapf', 0.5353810787200928, 'util', 0), ('strawberry-graphql/strawberry', 0.5352164506912231, 'web', 0), ('numba/llvmlite', 0.5343791842460632, 'util', 0), ('google/jax', 0.5340706706047058, 'ml', 0), ('stan-dev/pystan', 0.5338031053543091, 'ml', 0), ('wolever/parameterized', 0.5330343842506409, 'testing', 0), ('dagworks-inc/hamilton', 0.5323624014854431, 'ml-ops', 0), ('mkdocstrings/griffe', 0.5321711301803589, 'util', 0), ('spotify/pedalboard', 0.5321218371391296, 'util', 0), ('rustpython/rustpython', 0.5320417881011963, 'util', 0), ('firmai/atspy', 0.5319315791130066, 'time-series', 0), ('thoth-station/micropipenv', 0.5317614078521729, 'util', 0), ('tiangolo/sqlmodel', 0.5314618945121765, 'data', 0), ('taylorsmarks/playsound', 0.5312017798423767, 'util', 0), ('jamesturk/jellyfish', 0.5310186147689819, 'nlp', 0), ('sqlalchemy/mako', 0.530997097492218, 'template', 0), ('plotly/plotly.py', 0.5307526588439941, 'viz', 0), ('joblib/joblib', 0.5292420983314514, 'util', 0), ('pygame/pygame', 0.5287861824035645, 'gamedev', 0), ('qdrant/fastembed', 0.5285203456878662, 'ml', 0), ('nvidia/cuda-python', 0.5279120802879333, 'ml', 0), ('pypa/hatch', 0.5271018743515015, 'util', 0), ('sqlalchemy/sqlalchemy', 0.5267731547355652, 'data', 0), ('jmcarpenter2/swifter', 0.5265946388244629, 'pandas', 0), ('prompt-toolkit/ptpython', 0.5264323949813843, 'util', 0), ('ethereum/eth-utils', 0.525811493396759, 'crypto', 0), ('kubeflow/fairing', 0.525724470615387, 'ml-ops', 0), ('python/mypy', 0.5248755216598511, 'typing', 0), ('pyca/cryptography', 0.5245878100395203, 'util', 0), ('carla-recourse/carla', 0.5241925716400146, 'ml', 0), ('altair-viz/altair', 0.5240060687065125, 'viz', 0), ('geospatialpython/pyshp', 0.5238029360771179, 'gis', 0), ('dosisod/refurb', 0.5235017538070679, 'util', 0), ('pycqa/flake8', 0.5233083367347717, 'util', 0), ('eugeneyan/python-collab-template', 0.5230408906936646, 'template', 0), ('getsentry/responses', 0.52274489402771, 'testing', 0), ('man-c/pycoingecko', 0.5226123929023743, 'crypto', 0), ('microsoft/playwright-python', 0.5224789977073669, 'testing', 0), ('webpy/webpy', 0.522210419178009, 'web', 0), ('pycqa/mccabe', 0.521766722202301, 'util', 0), ('falconry/falcon', 0.5214901566505432, 'web', 0), ('pyomo/pyomo', 0.5213468670845032, 'math', 0), ('google/temporian', 0.5204028487205505, 'time-series', 0), ('micropython/micropython', 0.5203608870506287, 'util', 0), ('keon/algorithms', 0.520076334476471, 'util', 0), ('klen/muffin', 0.5191732048988342, 'web', 0), ('arogozhnikov/einops', 0.5189169645309448, 'ml-dl', 0), ('fsspec/filesystem_spec', 0.5183253288269043, 'util', 0), ('python-markdown/markdown', 0.5181722640991211, 'util', 0), ('uberi/speech_recognition', 0.517691969871521, 'ml', 0), ('quantopian/zipline', 0.5173577070236206, 'finance', 0), ('goldsmith/wikipedia', 0.5172760486602783, 'data', 0), ('oracle/graalpython', 0.5168983936309814, 'util', 0), ('omry/omegaconf', 0.5165718197822571, 'util', 0), ('scipy/scipy', 0.5162753462791443, 'math', 0), ('cqcl/lambeq', 0.5159991979598999, 'nlp', 0), ('probml/pyprobml', 0.5156102180480957, 'ml', 0), ('krzjoa/awesome-python-data-science', 0.5155652761459351, 'study', 0), ('pytest-dev/pytest-bdd', 0.5150437355041504, 'testing', 0), ('exaloop/codon', 0.514833390712738, 'perf', 0), ('tobymao/sqlglot', 0.5141063928604126, 'data', 0), ('nickreynke/python-gedcom', 0.5138238072395325, 'data', 0), ('pexpect/pexpect', 0.5134918093681335, 'util', 0), ('faif/python-patterns', 0.5127255320549011, 'util', 0), ('dit/dit', 0.5121693015098572, 'math', 0), ('ibis-project/ibis', 0.5118052363395691, 'data', 0), ('asweigart/pyperclip', 0.5117189288139343, 'util', 0), ('alexmojaki/snoop', 0.5116428732872009, 'debug', 0), ('pyutils/line_profiler', 0.5109219551086426, 'profiling', 0), ('mcfunley/pugsql', 0.5106123685836792, 'data', 0), ('instagram/fixit', 0.5103968977928162, 'util', 0), ('marella/ctransformers', 0.5103341341018677, 'nlp', 0), ('wtforms/wtforms', 0.5101136565208435, 'web', 0), ('nteract/papermill', 0.5096691250801086, 'jupyter', 0), ('selfexplainml/piml-toolbox', 0.5094278454780579, 'ml-interpretability', 0), ('dateutil/dateutil', 0.5082383155822754, 'util', 0), ('scrapy/scrapy', 0.5080231428146362, 'data', 0), ('pyproj4/pyproj', 0.5079793334007263, 'gis', 0), ('clips/pattern', 0.5079754590988159, 'nlp', 0), ('ethereum/web3.py', 0.5079506039619446, 'crypto', 0), ('explosion/thinc', 0.507887601852417, 'ml-dl', 0), ('grantjenks/blue', 0.5073704719543457, 'util', 0), ('gradio-app/gradio', 0.5073626041412354, 'viz', 0), ('fluentpython/example-code-2e', 0.5072869062423706, 'study', 0), ('pyo3/maturin', 0.5072370171546936, 'util', 0), ('pycaret/pycaret', 0.5071802735328674, 'ml', 0), ('intel/intel-extension-for-pytorch', 0.5057084560394287, 'perf', 0), ('malloydata/malloy-py', 0.5053905844688416, 'data', 0), ('crunch-io/lazycsv', 0.5044757127761841, 'perf', 0), ('kellyjonbrazil/jc', 0.503423810005188, 'util', 0), ('samuelcolvin/python-devtools', 0.5032694935798645, 'debug', 0), ('psf/black', 0.5029543042182922, 'util', 0), ('quantecon/quantecon.py', 0.502926766872406, 'sim', 0), ('realpython/python-guide', 0.5026092529296875, 'study', 0), ('faster-cpython/tools', 0.5024548172950745, 'perf', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5019211769104004, 'template', 0), ('pylons/pyramid', 0.5017217993736267, 'web', 0), ('pygments/pygments', 0.5010949969291687, 'util', 0), ('lukaszahradnik/pyneuralogic', 0.5010553002357483, 'math', 0), ('cohere-ai/notebooks', 0.5008567571640015, 'llm', 0), ('scikit-mobility/scikit-mobility', 0.5007225871086121, 'gis', 0), ('delta-io/delta-rs', 0.5006144642829895, 'pandas', 0)]
75
7
null
0
3
1
126
15
0
2
2
3
1
90
0.3
38
935
ml
https://github.com/thudm/cogvideo
[]
null
[]
[]
null
null
null
thudm/cogvideo
CogVideo
3,339
352
102
Python
null
Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers"
thudm
2024-01-13
2022-05-29
87
38.253682
https://avatars.githubusercontent.com/u/48590610?v=4
Text-to-video generation. The repo for ICLR2023 paper "CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers"
[]
[]
2023-06-09
[('sharonzhou/long_stable_diffusion', 0.6085971593856812, 'diffusion', 0), ('chenyangqiqi/fatezero', 0.6052513718605042, 'diffusion', 0), ('lucidrains/deep-daze', 0.5634084939956665, 'ml', 0), ('openai/image-gpt', 0.558464765548706, 'llm', 0), ('williamyang1991/vtoonify', 0.5548344850540161, 'ml-dl', 0), ('openai/glide-text2im', 0.5404991507530212, 'diffusion', 0), ('saharmor/dalle-playground', 0.529645562171936, 'diffusion', 0), ('ofa-sys/ofa', 0.5225783586502075, 'llm', 0), ('open-mmlab/mmediting', 0.5184540748596191, 'ml', 0), ('borisdayma/dalle-mini', 0.5106388926506042, 'diffusion', 0), ('nateraw/stable-diffusion-videos', 0.5062693357467651, 'diffusion', 0), ('huggingface/text-generation-inference', 0.5058658719062805, 'llm', 0)]
4
3
null
0.04
0
0
20
7
0
0
0
0
0
90
0
38
34
nlp
https://github.com/jbesomi/texthero
[]
null
[]
[]
null
null
null
jbesomi/texthero
texthero
2,841
240
43
Python
https://texthero.org
Text preprocessing, representation and visualization from zero to hero.
jbesomi
2024-01-14
2020-04-06
199
14.266141
null
Text preprocessing, representation and visualization from zero to hero.
['machine-learning', 'nlp', 'nlp-pipeline', 'text-clustering', 'text-mining', 'text-preprocessing', 'text-representation', 'text-visualization', 'texthero', 'word-embeddings']
['machine-learning', 'nlp', 'nlp-pipeline', 'text-clustering', 'text-mining', 'text-preprocessing', 'text-representation', 'text-visualization', 'texthero', 'word-embeddings']
2023-08-29
[('alibaba/easynlp', 0.5708900690078735, 'nlp', 2), ('nltk/nltk', 0.5517333149909973, 'nlp', 2), ('sloria/textblob', 0.5416422486305237, 'nlp', 1), ('explosion/spacy-streamlit', 0.5377371907234192, 'nlp', 2), ('rasahq/rasa', 0.5357376337051392, 'llm', 2), ('jalammar/ecco', 0.5305410623550415, 'ml-interpretability', 1), ('makcedward/nlpaug', 0.5141093134880066, 'nlp', 2), ('infinitylogesh/mutate', 0.5125301480293274, 'nlp', 0), ('allenai/allennlp', 0.5118191242218018, 'nlp', 1), ('koaning/whatlies', 0.5086743831634521, 'nlp', 1), ('explosion/spacy-llm', 0.5079323053359985, 'llm', 2), ('microsoft/unilm', 0.5031306147575378, 'nlp', 1)]
21
6
null
0.1
0
0
46
5
0
2
2
0
0
90
0
38
431
pandas
https://github.com/pydata/pandas-datareader
[]
null
[]
[]
null
null
null
pydata/pandas-datareader
pandas-datareader
2,761
675
141
Python
https://pydata.github.io/pandas-datareader/stable/index.html
Extract data from a wide range of Internet sources into a pandas DataFrame.
pydata
2024-01-12
2015-01-15
471
5.853119
https://avatars.githubusercontent.com/u/1284191?v=4
Extract data from a wide range of Internet sources into a pandas DataFrame.
['data', 'data-analysis', 'dataset', 'econdb', 'economic-data', 'fama-french', 'finance', 'financial-data', 'fred', 'html', 'pandas', 'pydata', 'stock-data']
['data', 'data-analysis', 'dataset', 'econdb', 'economic-data', 'fama-french', 'finance', 'financial-data', 'fred', 'html', 'pandas', 'pydata', 'stock-data']
2023-10-24
[('ranaroussi/yfinance', 0.6126816868782043, 'finance', 3), ('twopirllc/pandas-ta', 0.5820935368537903, 'finance', 2), ('cuemacro/findatapy', 0.5381442308425903, 'finance', 1), ('lux-org/lux', 0.5096178650856018, 'viz', 1)]
91
1
null
0.38
27
16
110
3
0
3
3
27
30
90
1.1
38
1,280
ml
https://github.com/scikit-optimize/scikit-optimize
[]
null
[]
[]
null
null
null
scikit-optimize/scikit-optimize
scikit-optimize
2,700
535
64
Python
https://scikit-optimize.github.io
Sequential model-based optimization with a `scipy.optimize` interface
scikit-optimize
2024-01-12
2016-03-20
410
6.58078
https://avatars.githubusercontent.com/u/18578550?v=4
Sequential model-based optimization with a `scipy.optimize` interface
['bayesian-optimization', 'bayesopt', 'binder', 'hyperparameter', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'machine-learning', 'optimization', 'scientific-computing', 'scientific-visualization', 'scikit-learn', 'sequential-recommendation', 'visualization']
['bayesian-optimization', 'bayesopt', 'binder', 'hyperparameter', 'hyperparameter-optimization', 'hyperparameter-search', 'hyperparameter-tuning', 'machine-learning', 'optimization', 'scientific-computing', 'scientific-visualization', 'scikit-learn', 'sequential-recommendation', 'visualization']
2021-10-12
[('google/vizier', 0.6410875916481018, 'ml', 5), ('automl/auto-sklearn', 0.6117300391197205, 'ml', 5), ('pymc-devs/pymc3', 0.5821582674980164, 'ml', 0), ('ray-project/tune-sklearn', 0.550593912601471, 'ml', 3), ('hyperopt/hyperopt', 0.5412236452102661, 'ml', 0), ('pytorch/botorch', 0.5391286611557007, 'ml-dl', 0), ('scipy/scipy', 0.5384607911109924, 'math', 1), ('districtdatalabs/yellowbrick', 0.5361714959144592, 'ml', 3), ('microsoft/flaml', 0.5336490869522095, 'ml', 3), ('pyomo/pyomo', 0.5328642129898071, 'math', 1), ('kubeflow/katib', 0.5325116515159607, 'ml', 0), ('cma-es/pycma', 0.5281330943107605, 'math', 0), ('epistasislab/tpot', 0.5264012217521667, 'ml', 3), ('bayesianmodelingandcomputationinpython/bookcode_edition1', 0.5192668437957764, 'study', 0), ('pyro-ppl/pyro', 0.5141356587409973, 'ml-dl', 1), ('uber/orbit', 0.5112178325653076, 'time-series', 1), ('optuna/optuna', 0.5056672096252441, 'ml', 2)]
76
5
null
0
23
4
95
27
0
3
3
23
33
90
1.4
38
173
viz
https://github.com/facebookresearch/hiplot
[]
null
[]
[]
null
null
null
facebookresearch/hiplot
hiplot
2,641
135
29
TypeScript
https://facebookresearch.github.io/hiplot/
HiPlot makes understanding high dimensional data easy
facebookresearch
2024-01-13
2019-11-08
220
11.973446
https://avatars.githubusercontent.com/u/16943930?v=4
HiPlot makes understanding high dimensional data easy
[]
[]
2023-07-19
[('contextlab/hypertools', 0.5843124985694885, 'ml', 0), ('holoviz/holoviews', 0.5553148984909058, 'viz', 0), ('holoviz/hvplot', 0.5185054540634155, 'pandas', 0), ('holoviz/datashader', 0.5003904104232788, 'gis', 0)]
9
1
null
0.17
9
1
51
6
0
10
10
9
7
90
0.8
38
1,028
finance
https://github.com/goldmansachs/gs-quant
[]
null
[]
[]
null
null
null
goldmansachs/gs-quant
gs-quant
2,255
477
91
Jupyter Notebook
https://developer.gs.com/discover/products/gs-quant/
Python toolkit for quantitative finance
goldmansachs
2024-01-14
2018-12-14
267
8.427656
https://avatars.githubusercontent.com/u/1268489?v=4
Python toolkit for quantitative finance
['derivatives', 'goldman-sachs', 'gs-quant', 'risk-management', 'trading-strategies']
['derivatives', 'goldman-sachs', 'gs-quant', 'risk-management', 'trading-strategies']
2024-01-09
[('ranaroussi/quantstats', 0.7339354157447815, 'finance', 0), ('cuemacro/finmarketpy', 0.6932242512702942, 'finance', 1), ('ta-lib/ta-lib-python', 0.6905857920646667, 'finance', 0), ('domokane/financepy', 0.6860893964767456, 'finance', 2), ('gbeced/pyalgotrade', 0.6751449108123779, 'finance', 0), ('quantconnect/lean', 0.6400971412658691, 'finance', 1), ('google/tf-quant-finance', 0.6332827806472778, 'finance', 0), ('pmorissette/ffn', 0.6325653195381165, 'finance', 0), ('quantecon/quantecon.py', 0.6292877197265625, 'sim', 0), ('eleutherai/pyfra', 0.6204242706298828, 'ml', 0), ('robcarver17/pysystemtrade', 0.6150317788124084, 'finance', 0), ('quantopian/pyfolio', 0.6110407114028931, 'finance', 0), ('firmai/atspy', 0.6063892841339111, 'time-series', 0), ('zvtvz/zvt', 0.6025742888450623, 'finance', 1), ('plotly/dash', 0.5997943878173828, 'viz', 0), ('pytoolz/toolz', 0.5948769450187683, 'util', 0), ('mementum/backtrader', 0.5926412343978882, 'finance', 0), ('krzjoa/awesome-python-data-science', 0.5910742282867432, 'study', 0), ('quantopian/zipline', 0.5875362753868103, 'finance', 0), ('scikit-mobility/scikit-mobility', 0.5793623328208923, 'gis', 0), ('pandas-dev/pandas', 0.5788717865943909, 'pandas', 0), ('wesm/pydata-book', 0.5769721269607544, 'study', 0), ('dylanhogg/awesome-python', 0.5735217928886414, 'study', 0), ('statsmodels/statsmodels', 0.5688977241516113, 'ml', 0), ('gradio-app/gradio', 0.5611568689346313, 'viz', 0), ('scikit-learn/scikit-learn', 0.5592624545097351, 'ml', 0), ('kernc/backtesting.py', 0.5561110377311707, 'finance', 1), ('bashtage/arch', 0.5530153512954712, 'time-series', 0), ('holoviz/panel', 0.5493612289428711, 'viz', 0), ('microsoft/qlib', 0.5478851199150085, 'finance', 0), ('polyaxon/datatile', 0.5469740033149719, 'pandas', 0), ('malloydata/malloy-py', 0.5456441044807434, 'data', 0), ('numerai/example-scripts', 0.5451831221580505, 'finance', 0), ('willmcgugan/textual', 0.5451081991195679, 'term', 0), ('hydrosquall/tiingo-python', 0.5450910329818726, 'finance', 0), ('pypy/pypy', 0.5446727275848389, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5427274107933044, 'study', 0), ('1200wd/bitcoinlib', 0.5417495965957642, 'crypto', 0), ('qdrant/qdrant-client', 0.5404823422431946, 'util', 0), ('twopirllc/pandas-ta', 0.5390924215316772, 'finance', 0), ('dagworks-inc/hamilton', 0.5357715487480164, 'ml-ops', 0), ('pallets/flask', 0.5355310440063477, 'web', 0), ('mementum/bta-lib', 0.5344659090042114, 'finance', 0), ('amaargiru/pyroad', 0.5344632863998413, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.533323347568512, 'study', 0), ('scikit-learn-contrib/metric-learn', 0.5309397578239441, 'ml', 0), ('geopandas/geopandas', 0.5308281183242798, 'gis', 0), ('google/pyglove', 0.5296308994293213, 'util', 0), ('ageron/handson-ml2', 0.5294873118400574, 'ml', 0), ('selfexplainml/piml-toolbox', 0.5287847518920898, 'ml-interpretability', 0), ('pycaret/pycaret', 0.5278028845787048, 'ml', 0), ('featurelabs/featuretools', 0.5276992321014404, 'ml', 0), ('alkaline-ml/pmdarima', 0.5274640917778015, 'time-series', 0), ('rasbt/mlxtend', 0.5270822644233704, 'ml', 0), ('python/cpython', 0.5255565643310547, 'util', 0), ('gbeced/basana', 0.5250836610794067, 'finance', 0), ('sqlalchemy/sqlalchemy', 0.5246463418006897, 'data', 0), ('beeware/toga', 0.5231086611747742, 'gui', 0), ('cuemacro/findatapy', 0.5208711624145508, 'finance', 0), ('clips/pattern', 0.5158860087394714, 'nlp', 0), ('probml/pyprobml', 0.5155179500579834, 'ml', 0), ('bottlepy/bottle', 0.5141693949699402, 'web', 0), ('federicoceratto/dashing', 0.5140957832336426, 'term', 0), ('pymc-devs/pymc3', 0.5136345028877258, 'ml', 0), ('pyscf/pyscf', 0.5135458707809448, 'sim', 0), ('fredrik-johansson/mpmath', 0.5134932398796082, 'math', 0), ('kubeflow/fairing', 0.5122407078742981, 'ml-ops', 0), ('hoffstadt/dearpygui', 0.5079163908958435, 'gui', 0), ('numpy/numpy', 0.5077769160270691, 'math', 0), ('r0x0r/pywebview', 0.5072776079177856, 'gui', 0), ('lballabio/quantlib-swig', 0.5069200396537781, 'finance', 0), ('fastai/fastcore', 0.5064576268196106, 'util', 0), ('samuelcolvin/python-devtools', 0.5059173107147217, 'debug', 0), ('ai4finance-foundation/fingpt', 0.5048463344573975, 'finance', 0), ('google/gin-config', 0.5047725439071655, 'util', 0), ('cython/cython', 0.5038447380065918, 'util', 0), ('masoniteframework/masonite', 0.5026025176048279, 'web', 0), ('polakowo/vectorbt', 0.5025342106819153, 'finance', 1), ('tensorly/tensorly', 0.5013471841812134, 'ml-dl', 0), ('crflynn/stochastic', 0.5013076663017273, 'sim', 0)]
27
2
null
1
1
0
62
0
51
37
51
1
0
90
0
38
1,315
study
https://github.com/krzjoa/awesome-python-data-science
['awesome']
null
[]
[]
null
null
null
krzjoa/awesome-python-data-science
awesome-python-data-science
2,179
353
56
null
https://krzjoa.github.io/awesome-python-data-science
Probably the best curated list of data science software in Python.
krzjoa
2024-01-10
2017-12-21
318
6.836844
null
Probably the best curated list of data science software in Python.
['awesome', 'awesome-list', 'awesome-python', 'data-analysis', 'data-science', 'data-visualization', 'deep-learning', 'machine-learning', 'scikit-learn', 'statistics']
['awesome', 'awesome-list', 'awesome-python', 'data-analysis', 'data-science', 'data-visualization', 'deep-learning', 'machine-learning', 'scikit-learn', 'statistics']
2023-10-30
[('dylanhogg/awesome-python', 0.7601116299629211, 'study', 6), ('plotly/dash', 0.6923890113830566, 'viz', 2), ('pandas-dev/pandas', 0.6641040444374084, 'pandas', 2), ('polyaxon/datatile', 0.6403499245643616, 'pandas', 3), ('firmai/industry-machine-learning', 0.6359909772872925, 'study', 2), ('gradio-app/gradio', 0.620049238204956, 'viz', 5), ('rasbt/mlxtend', 0.610371470451355, 'ml', 2), ('thealgorithms/python', 0.5975322127342224, 'study', 0), ('dagworks-inc/hamilton', 0.5971183776855469, 'ml-ops', 3), ('holoviz/panel', 0.5961334705352783, 'viz', 0), ('airbnb/knowledge-repo', 0.5916482210159302, 'data', 2), ('goldmansachs/gs-quant', 0.5910742282867432, 'finance', 0), ('timofurrer/awesome-asyncio', 0.5890659093856812, 'study', 2), ('featurelabs/featuretools', 0.580768883228302, 'ml', 3), ('scikit-learn/scikit-learn', 0.578446090221405, 'ml', 4), ('ranaroussi/quantstats', 0.5782219767570496, 'finance', 0), ('wesm/pydata-book', 0.5766783952713013, 'study', 0), ('ibis-project/ibis', 0.5760530233383179, 'data', 0), ('man-group/dtale', 0.5704981088638306, 'viz', 3), ('jovianml/opendatasets', 0.5699965357780457, 'data', 2), ('malloydata/malloy-py', 0.5664848685264587, 'data', 0), ('tiangolo/sqlmodel', 0.5662049651145935, 'data', 0), ('merantix-momentum/squirrel-core', 0.5624656081199646, 'ml', 3), ('fatiando/verde', 0.559866726398468, 'gis', 1), ('scitools/iris', 0.5579238533973694, 'gis', 1), ('pycaret/pycaret', 0.554579496383667, 'ml', 2), ('cython/cython', 0.5530298352241516, 'util', 0), ('keon/algorithms', 0.5512800812721252, 'util', 0), ('ta-lib/ta-lib-python', 0.5507447123527527, 'finance', 0), ('joowani/binarytree', 0.5454331636428833, 'util', 0), ('eleutherai/pyfra', 0.5438522100448608, 'ml', 0), ('eventual-inc/daft', 0.5433785915374756, 'pandas', 3), ('1200wd/bitcoinlib', 0.5427032113075256, 'crypto', 0), ('unionai-oss/pandera', 0.5424999594688416, 'pandas', 0), ('fastai/fastcore', 0.5385904908180237, 'util', 0), ('python-odin/odin', 0.5375770330429077, 'util', 0), ('scikit-learn-contrib/imbalanced-learn', 0.535544753074646, 'ml', 4), ('saulpw/visidata', 0.5329089760780334, 'term', 0), ('scikit-mobility/scikit-mobility', 0.5322821736335754, 'gis', 3), ('zenodo/zenodo', 0.5312089323997498, 'util', 0), ('ydataai/ydata-profiling', 0.5310283303260803, 'pandas', 5), ('statsmodels/statsmodels', 0.5274232625961304, 'ml', 3), ('imageio/imageio', 0.5262821316719055, 'util', 0), ('earthlab/earthpy', 0.5236297249794006, 'gis', 0), ('pypy/pypy', 0.5223199725151062, 'util', 0), ('geopandas/geopandas', 0.5221031308174133, 'gis', 0), ('clips/pattern', 0.5186637043952942, 'nlp', 1), ('pytoolz/toolz', 0.5155652761459351, 'util', 0), ('jakevdp/pythondatasciencehandbook', 0.5150753259658813, 'study', 1), ('residentmario/geoplot', 0.5134770274162292, 'gis', 0), ('mito-ds/monorepo', 0.5128975510597229, 'jupyter', 3), ('great-expectations/great_expectations', 0.5083687901496887, 'ml-ops', 1), ('google/pyglove', 0.5056788325309753, 'util', 1), ('ploomber/ploomber', 0.5054386258125305, 'ml-ops', 2), ('feast-dev/feast', 0.5033879280090332, 'ml-ops', 2), ('scipy/scipy', 0.5031641721725464, 'math', 0), ('domokane/financepy', 0.5010226368904114, 'finance', 0), ('wandb/client', 0.5009933114051819, 'ml', 3)]
31
9
null
1.04
1
1
74
3
0
0
0
1
1
90
1
38
294
util
https://github.com/pyfilesystem/pyfilesystem2
[]
null
[]
[]
null
null
null
pyfilesystem/pyfilesystem2
pyfilesystem2
1,921
180
43
Python
https://www.pyfilesystem.org
Python's Filesystem abstraction layer
pyfilesystem
2024-01-13
2016-10-14
380
5.047673
https://avatars.githubusercontent.com/u/11898830?v=4
Python's Filesystem abstraction layer
['filesystem', 'filesystem-library', 'ftp', 'pyfilesystem', 'pyfilesystem2', 'tar', 'zip']
['filesystem', 'filesystem-library', 'ftp', 'pyfilesystem', 'pyfilesystem2', 'tar', 'zip']
2022-10-18
[('fsspec/filesystem_spec', 0.7090234160423279, 'util', 0), ('drivendataorg/cloudpathlib', 0.5201523900032043, 'data', 0)]
47
5
null
0
9
2
88
15
0
7
7
9
18
90
2
38
46
jupyter
https://github.com/maartenbreddels/ipyvolume
[]
null
[]
[]
null
null
null
maartenbreddels/ipyvolume
ipyvolume
1,896
239
52
TypeScript
null
3d plotting for Python in the Jupyter notebook based on IPython widgets using WebGL
maartenbreddels
2024-01-09
2016-12-21
370
5.112481
https://avatars.githubusercontent.com/u/99180851?v=4
3d plotting for Python in the Jupyter notebook based on IPython widgets using WebGL
['dataviz', 'ipython-widget', 'jupyter', 'jupyter-notebook', 'plotting', 'quiver', 'rendering-3d-volumes', 'scientific-visualization', 'threejs', 'virtual-reality', 'visualisation', 'volume-rendering', 'webgl']
['dataviz', 'ipython-widget', 'jupyter', 'jupyter-notebook', 'plotting', 'quiver', 'rendering-3d-volumes', 'scientific-visualization', 'threejs', 'virtual-reality', 'visualisation', 'volume-rendering', 'webgl']
2023-07-07
[('vizzuhq/ipyvizzu', 0.7133920788764954, 'jupyter', 4), ('plotly/plotly.py', 0.6658064723014832, 'viz', 2), ('bokeh/bokeh', 0.6592708230018616, 'viz', 3), ('jupyter-widgets/ipywidgets', 0.6541346311569214, 'jupyter', 0), ('giswqs/mapwidget', 0.6517302989959717, 'gis', 1), ('voila-dashboards/voila', 0.6421133279800415, 'jupyter', 2), ('ipython/ipyparallel', 0.6384920477867126, 'perf', 1), ('jupyterlab/jupyterlab-desktop', 0.6347945928573608, 'jupyter', 2), ('matplotlib/matplotlib', 0.6306770443916321, 'viz', 1), ('jupyter/notebook', 0.6165135502815247, 'jupyter', 2), ('holoviz/holoviz', 0.6008582711219788, 'viz', 0), ('holoviz/panel', 0.597214937210083, 'viz', 2), ('vispy/vispy', 0.5861509442329407, 'viz', 0), ('ipython/ipykernel', 0.5854012966156006, 'util', 2), ('pyglet/pyglet', 0.580999493598938, 'gamedev', 1), ('opengeos/leafmap', 0.5771999359130859, 'gis', 3), ('man-group/dtale', 0.5735721588134766, 'viz', 1), ('marcomusy/vedo', 0.5702053308486938, 'viz', 1), ('jakevdp/pythondatasciencehandbook', 0.5677738189697266, 'study', 1), ('holoviz/hvplot', 0.5658844113349915, 'pandas', 1), ('jupyter/nbformat', 0.5637709498405457, 'jupyter', 0), ('jupyterlab/jupyterlab', 0.5636622309684753, 'jupyter', 1), ('cuemacro/chartpy', 0.5550907254219055, 'viz', 1), ('dfki-ric/pytransform3d', 0.5542986392974854, 'math', 0), ('koaning/drawdata', 0.5521408915519714, 'jupyter', 1), ('jupyterlite/jupyterlite', 0.5511241555213928, 'jupyter', 1), ('giswqs/geemap', 0.5499334931373596, 'gis', 3), ('enthought/mayavi', 0.5471249222755432, 'viz', 1), ('plotly/dash', 0.5407821536064148, 'viz', 1), ('jupyter-widgets/ipyleaflet', 0.540547251701355, 'gis', 1), ('aws/graph-notebook', 0.539257287979126, 'jupyter', 2), ('holoviz/geoviews', 0.5372338891029358, 'gis', 1), ('kanaries/pygwalker', 0.5359721779823303, 'pandas', 0), ('wesm/pydata-book', 0.5356112122535706, 'study', 0), ('residentmario/geoplot', 0.5270797610282898, 'gis', 0), ('brandtbucher/specialist', 0.5239526033401489, 'perf', 0), ('altair-viz/altair', 0.5231117010116577, 'viz', 0), ('connorferster/handcalcs', 0.5224195122718811, 'jupyter', 0), ('cohere-ai/notebooks', 0.5213759541511536, 'llm', 0), ('mwouts/jupytext', 0.520946741104126, 'jupyter', 1), ('r0x0r/pywebview', 0.5197725296020508, 'gui', 0), ('fchollet/deep-learning-with-python-notebooks', 0.516755223274231, 'study', 0), ('computationalmodelling/nbval', 0.5154886841773987, 'jupyter', 1), ('quantopian/qgrid', 0.5143440961837769, 'jupyter', 0), ('wxwidgets/phoenix', 0.5121052861213684, 'gui', 0), ('rapidsai/jupyterlab-nvdashboard', 0.5118504762649536, 'jupyter', 0), ('pysimplegui/pysimplegui', 0.5105063319206238, 'gui', 0), ('webpy/webpy', 0.5092483162879944, 'web', 0), ('ipython/ipython', 0.5083285570144653, 'util', 1), ('jupyter/nbconvert', 0.5078595280647278, 'jupyter', 0), ('klen/muffin', 0.50477135181427, 'web', 0), ('pyvista/pyvista', 0.5043342709541321, 'viz', 2), ('masoniteframework/masonite', 0.5016263127326965, 'web', 0), ('python/cpython', 0.5007892847061157, 'util', 0), ('bloomberg/ipydatagrid', 0.5007188320159912, 'jupyter', 0)]
45
7
null
0.44
2
0
86
6
0
7
7
2
2
90
1
38
1,211
util
https://github.com/astanin/python-tabulate
[]
null
[]
[]
null
null
null
astanin/python-tabulate
python-tabulate
1,881
194
21
Python
https://pypi.org/project/tabulate/
Pretty-print tabular data in Python, a library and a command-line utility. Repository migrated from bitbucket.org/astanin/python-tabulate.
astanin
2024-01-12
2019-09-02
230
8.173184
null
Pretty-print tabular data in Python, a library and a command-line utility. Repository migrated from bitbucket.org/astanin/python-tabulate.
[]
[]
2023-04-30
[('jazzband/prettytable', 0.6471048593521118, 'term', 0), ('jazzband/tablib', 0.6442596316337585, 'data', 0), ('camelot-dev/camelot', 0.6331050395965576, 'util', 0), ('wireservice/csvkit', 0.5541922450065613, 'util', 0), ('vaexio/vaex', 0.5106703042984009, 'perf', 0), ('saulpw/visidata', 0.5104148387908936, 'term', 0), ('mljar/mljar-supervised', 0.5009972453117371, 'ml', 0)]
84
3
null
0
19
2
53
9
0
6
6
19
9
90
0.5
38
262
sim
https://github.com/quantecon/quantecon.py
[]
null
[]
[]
null
null
null
quantecon/quantecon.py
QuantEcon.py
1,802
2,287
150
Python
https://quantecon.org/quantecon-py/
A community based Python library for quantitative economics
quantecon
2024-01-12
2013-03-22
566
3.180535
https://avatars.githubusercontent.com/u/8703060?v=4
A community based Python library for quantitative economics
[]
[]
2023-08-09
[('gbeced/pyalgotrade', 0.6401932835578918, 'finance', 0), ('goldmansachs/gs-quant', 0.6292877197265625, 'finance', 0), ('domokane/financepy', 0.5794845819473267, 'finance', 0), ('eleutherai/pyfra', 0.5649722218513489, 'ml', 0), ('cuemacro/finmarketpy', 0.5637820959091187, 'finance', 0), ('pmorissette/ffn', 0.559691309928894, 'finance', 0), ('robcarver17/pysystemtrade', 0.5519441962242126, 'finance', 0), ('statsmodels/statsmodels', 0.5498467087745667, 'ml', 0), ('wesm/pydata-book', 0.5465633273124695, 'study', 0), ('quantopian/zipline', 0.5450539588928223, 'finance', 0), ('ta-lib/ta-lib-python', 0.54204261302948, 'finance', 0), ('rasbt/mlxtend', 0.5213393568992615, 'ml', 0), ('ranaroussi/quantstats', 0.513916015625, 'finance', 0), ('py-why/dowhy', 0.513481080532074, 'ml', 0), ('quantopian/pyfolio', 0.5116593837738037, 'finance', 0), ('alkaline-ml/pmdarima', 0.5083404779434204, 'time-series', 0), ('dit/dit', 0.5037375688552856, 'math', 0), ('pytoolz/toolz', 0.502926766872406, 'util', 0), ('microsoft/qlib', 0.5021764636039734, 'finance', 0), ('scikit-mobility/scikit-mobility', 0.5013092756271362, 'gis', 0)]
43
7
null
0.42
5
0
132
5
4
4
4
5
12
90
2.4
38
1,616
data
https://github.com/samuelcolvin/arq
[]
null
[]
[]
null
null
null
samuelcolvin/arq
arq
1,766
147
32
Python
https://arq-docs.helpmanual.io/
Fast job queuing and RPC in python with asyncio and redis.
samuelcolvin
2024-01-13
2016-07-21
392
4.496908
null
Fast job queuing and RPC in python with asyncio and redis.
['async', 'asyncio', 'concurrency', 'concurrent', 'distributed', 'msgpack', 'queue', 'redis', 'tasks', 'worker']
['async', 'asyncio', 'concurrency', 'concurrent', 'distributed', 'msgpack', 'queue', 'redis', 'tasks', 'worker']
2023-10-30
[('python-trio/trio', 0.6487094759941101, 'perf', 1), ('agronholm/anyio', 0.6350996494293213, 'perf', 1), ('magicstack/uvloop', 0.6330302953720093, 'util', 2), ('airtai/faststream', 0.6273122429847717, 'perf', 2), ('aio-libs/aiohttp', 0.6253662705421448, 'web', 2), ('geeogi/async-python-lambda-template', 0.6250224113464355, 'template', 0), ('noxdafox/pebble', 0.5885294675827026, 'perf', 1), ('sumerc/yappi', 0.5881884098052979, 'profiling', 1), ('bogdanp/dramatiq', 0.5857503414154053, 'util', 1), ('pallets/quart', 0.5751336216926575, 'web', 1), ('alirn76/panther', 0.5734840035438538, 'web', 0), ('joblib/loky', 0.5648357272148132, 'perf', 0), ('hyperopt/hyperopt', 0.5642699599266052, 'ml', 0), ('aio-libs/aiocache', 0.554317057132721, 'data', 2), ('eventlet/eventlet', 0.5532472729682922, 'perf', 1), ('joblib/joblib', 0.5469869375228882, 'util', 0), ('dask/dask', 0.5444415211677551, 'perf', 0), ('samuelcolvin/aioaws', 0.5388724207878113, 'data', 1), ('celery/celery', 0.5360067486763, 'perf', 1), ('neoteroi/blacksheep', 0.5355557799339294, 'web', 1), ('encode/httpx', 0.525906503200531, 'web', 1), ('timofurrer/awesome-asyncio', 0.5215858817100525, 'study', 1), ('alex-sherman/unsync', 0.5158486366271973, 'util', 0), ('fastai/fastcore', 0.5146878957748413, 'util', 0), ('mher/flower', 0.5143932104110718, 'perf', 1), ('pytest-dev/pytest-asyncio', 0.5120292901992798, 'testing', 1), ('agronholm/apscheduler', 0.5115315914154053, 'util', 0), ('grantjenks/python-diskcache', 0.5104993581771851, 'util', 0), ('aio-libs/aiobotocore', 0.5054838061332703, 'util', 1), ('tiangolo/asyncer', 0.5030202865600586, 'perf', 2), ('samuelcolvin/watchfiles', 0.5021094679832458, 'util', 1)]
55
3
null
0.06
19
8
91
2
0
8
8
19
17
90
0.9
38