Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
323
security
https://github.com/pyupio/safety
[]
null
[]
[]
null
null
null
pyupio/safety
safety
1,571
138
32
Python
https://pyup.io/safety/
Safety checks Python dependencies for known security vulnerabilities and suggests the proper remediations for vulnerabilities detected.
pyupio
2024-01-12
2016-10-19
379
4.135765
https://avatars.githubusercontent.com/u/16113910?v=4
Safety checks Python dependencies for known security vulnerabilities and suggests the proper remediations for vulnerabilities detected.
['security', 'security-vulnerability', 'travis', 'vulnerability-detection', 'vulnerability-scanners']
['security', 'security-vulnerability', 'travis', 'vulnerability-detection', 'vulnerability-scanners']
2023-11-15
[('trailofbits/pip-audit', 0.7114713788032532, 'security', 1), ('aswinnnn/pyscan', 0.6276425123214722, 'security', 2), ('sonatype-nexus-community/jake', 0.607435405254364, 'security', 1), ('jazzband/pip-tools', 0.5792787671089172, 'util', 0), ('facebookincubator/bowler', 0.5631865859031677, 'util', 0), ('facebook/pyre-check', 0.5607929229736328, 'typing', 1), ('legrandin/pycryptodome', 0.5586642622947693, 'util', 1), ('pdm-project/pdm', 0.5419641733169556, 'util', 0), ('pyca/cryptography', 0.5316013097763062, 'util', 0), ('fsspec/filesystem_spec', 0.5129398107528687, 'util', 0)]
41
4
null
0.44
12
1
88
2
0
8
8
12
11
90
0.9
38
1,261
llm
https://github.com/ist-daslab/gptq
[]
null
[]
[]
null
null
null
ist-daslab/gptq
gptq
1,533
118
28
Python
https://arxiv.org/abs/2210.17323
Code for the ICLR 2023 paper "GPTQ: Accurate Post-training Quantization of Generative Pretrained Transformers".
ist-daslab
2024-01-13
2022-10-19
66
22.929487
https://avatars.githubusercontent.com/u/35098403?v=4
Code for the ICLR 2023 paper "GPTQ: Accurate Post-training Quantization of Generative Pretrained Transformers".
[]
[]
2023-07-11
[('karpathy/mingpt', 0.7072771787643433, 'llm', 0), ('huggingface/optimum', 0.6178866624832153, 'ml', 0), ('openai/image-gpt', 0.6169224381446838, 'llm', 0), ('alignmentresearch/tuned-lens', 0.5439256429672241, 'ml-interpretability', 0), ('eleutherai/knowledge-neurons', 0.53592449426651, 'ml-interpretability', 0), ('nielsrogge/transformers-tutorials', 0.5349066257476807, 'study', 0), ('huggingface/transformers', 0.5263904929161072, 'nlp', 0), ('bigscience-workshop/megatron-deepspeed', 0.5179560780525208, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5179560780525208, 'llm', 0), ('promptslab/awesome-prompt-engineering', 0.5007389187812805, 'study', 0)]
5
3
null
0.29
8
2
15
6
0
0
0
8
5
90
0.6
38
1,330
llm
https://github.com/jina-ai/thinkgpt
['chain-of-thought', 'language-model']
null
[]
[]
null
null
null
jina-ai/thinkgpt
thinkgpt
1,420
119
25
Python
null
Agent techniques to augment your LLM and push it beyong its limits
jina-ai
2024-01-13
2023-04-14
41
34.158076
https://avatars.githubusercontent.com/u/60539444?v=4
Agent techniques to augment your LLM and push it beyong its limits
[]
['chain-of-thought', 'language-model']
2023-05-16
[('aiwaves-cn/agents', 0.6464569568634033, 'nlp', 1), ('ibm/dromedary', 0.6295039057731628, 'llm', 1), ('microsoft/autogen', 0.5731350779533386, 'llm', 0), ('minedojo/voyager', 0.5710037350654602, 'llm', 0), ('hwchase17/langchain', 0.5536667704582214, 'llm', 1), ('nomic-ai/gpt4all', 0.551749587059021, 'llm', 1), ('young-geng/easylm', 0.5500134825706482, 'llm', 1), ('langchain-ai/langgraph', 0.5343421697616577, 'llm', 0), ('mooler0410/llmspracticalguide', 0.5296755433082581, 'study', 0), ('operand/agency', 0.5273327827453613, 'llm', 0), ('deepset-ai/haystack', 0.527265191078186, 'llm', 1), ('nebuly-ai/nebullvm', 0.5268137454986572, 'perf', 0), ('explosion/spacy-llm', 0.5256912708282471, 'llm', 0), ('noahshinn/reflexion', 0.5254539847373962, 'llm', 0), ('keirp/automatic_prompt_engineer', 0.5156129002571106, 'llm', 1), ('mlc-ai/mlc-llm', 0.5101083517074585, 'llm', 1), ('microsoft/lmops', 0.5094317197799683, 'llm', 1), ('ray-project/ray-llm', 0.5078703165054321, 'llm', 0), ('kyegomez/tree-of-thoughts', 0.5059940814971924, 'llm', 0), ('geekan/metagpt', 0.5057692527770996, 'llm', 0), ('oliveirabruno01/babyagi-asi', 0.5025618076324463, 'llm', 1), ('deep-diver/pingpong', 0.5024981498718262, 'llm', 0)]
3
2
null
1.19
2
0
9
8
0
0
0
2
1
90
0.5
38
1,678
util
https://github.com/pycqa/pyflakes
[]
null
[]
[]
null
null
null
pycqa/pyflakes
pyflakes
1,317
182
29
Python
https://pypi.org/project/pyflakes
A simple program which checks Python source files for errors
pycqa
2024-01-12
2014-04-07
512
2.571548
https://avatars.githubusercontent.com/u/8749848?v=4
A simple program which checks Python source files for errors
['linter']
['linter']
2024-01-05
[('klen/pylama', 0.6928360462188721, 'util', 1), ('nedbat/coveragepy', 0.5710163116455078, 'testing', 0), ('instagram/fixit', 0.5664411783218384, 'util', 1), ('landscapeio/prospector', 0.5659628510475159, 'util', 0), ('pycqa/pycodestyle', 0.5580477118492126, 'util', 0), ('google/yapf', 0.5379751920700073, 'util', 0), ('microsoft/pyright', 0.511178195476532, 'typing', 0), ('google/pytype', 0.5093093514442444, 'typing', 1), ('python/mypy', 0.5037577748298645, 'typing', 1)]
84
4
null
0.19
11
10
119
0
0
3
3
11
14
90
1.3
38
445
ml
https://github.com/csinva/imodels
[]
null
[]
[]
null
null
null
csinva/imodels
imodels
1,237
110
26
Jupyter Notebook
https://csinva.io/imodels
Interpretable ML package πŸ” for concise, transparent, and accurate predictive modeling (sklearn-compatible).
csinva
2024-01-11
2019-07-04
238
5.181927
null
Interpretable ML package πŸ” for concise, transparent, and accurate predictive modeling (sklearn-compatible).
['ai', 'artificial-intelligence', 'bayesian-rule-list', 'data-science', 'explainable-ai', 'explainable-ml', 'imodels', 'interpretability', 'machine-learning', 'ml', 'optimal-classification-tree', 'rule-learning', 'rulefit', 'rules', 'scikit-learn', 'statistics', 'supervised-learning']
['ai', 'artificial-intelligence', 'bayesian-rule-list', 'data-science', 'explainable-ai', 'explainable-ml', 'imodels', 'interpretability', 'machine-learning', 'ml', 'optimal-classification-tree', 'rule-learning', 'rulefit', 'rules', 'scikit-learn', 'statistics', 'supervised-learning']
2023-12-30
[('interpretml/interpret', 0.7508851289749146, 'ml-interpretability', 7), ('pair-code/lit', 0.6702791452407837, 'ml-interpretability', 1), ('tensorflow/lucid', 0.6663603782653809, 'ml-interpretability', 2), ('maif/shapash', 0.6528401374816895, 'ml', 3), ('selfexplainml/piml-toolbox', 0.6522828936576843, 'ml-interpretability', 0), ('marcotcr/lime', 0.6466513276100159, 'ml-interpretability', 0), ('pytorch/captum', 0.6309248208999634, 'ml-interpretability', 1), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.6214880347251892, 'study', 2), ('xplainable/xplainable', 0.6195234656333923, 'ml-interpretability', 5), ('seldonio/alibi', 0.6186242699623108, 'ml-interpretability', 2), ('teamhg-memex/eli5', 0.6143868565559387, 'ml', 3), ('mlflow/mlflow', 0.5987911224365234, 'ml-ops', 3), ('huggingface/evaluate', 0.5934129357337952, 'ml', 1), ('eleutherai/pythia', 0.5875741243362427, 'ml-interpretability', 1), ('polyaxon/datatile', 0.5763207674026489, 'pandas', 3), ('huggingface/datasets', 0.5633199214935303, 'nlp', 1), ('tensorflow/tensorflow', 0.5597484707832336, 'ml-dl', 2), ('oegedijk/explainerdashboard', 0.5566130876541138, 'ml-interpretability', 0), ('cleanlab/cleanlab', 0.5562312602996826, 'ml', 1), ('tensorflow/data-validation', 0.5509118437767029, 'ml-ops', 0), ('skops-dev/skops', 0.5491555333137512, 'ml-ops', 2), ('ddbourgin/numpy-ml', 0.5491467118263245, 'ml', 1), ('giskard-ai/giskard', 0.5474556088447571, 'data', 3), ('firmai/industry-machine-learning', 0.5446041226387024, 'study', 2), ('slundberg/shap', 0.5444343090057373, 'ml-interpretability', 2), ('whylabs/whylogs', 0.5419551730155945, 'util', 2), ('linkedin/fasttreeshap', 0.5407923460006714, 'ml', 3), ('wandb/client', 0.5401941537857056, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5383384227752686, 'ml', 2), ('automl/auto-sklearn', 0.5375404953956604, 'ml', 1), ('nccr-itmo/fedot', 0.5283494591712952, 'ml-ops', 1), ('mosaicml/composer', 0.5268099904060364, 'ml-dl', 1), ('scikit-learn/scikit-learn', 0.525899350643158, 'ml', 3), ('microsoft/nni', 0.524517297744751, 'ml', 2), ('explosion/thinc', 0.5241812467575073, 'ml-dl', 3), ('rasbt/machine-learning-book', 0.5234281420707703, 'study', 2), ('patchy631/machine-learning', 0.5233355760574341, 'ml', 0), ('koaning/scikit-lego', 0.5232925415039062, 'ml', 2), ('rafiqhasan/auto-tensorflow', 0.5232248902320862, 'ml-dl', 1), ('carla-recourse/carla', 0.5205970406532288, 'ml', 4), ('alirezadir/machine-learning-interview-enlightener', 0.5202349424362183, 'study', 2), ('onnx/onnx', 0.5179754495620728, 'ml', 3), ('bentoml/bentoml', 0.5169817209243774, 'ml-ops', 2), ('rasbt/mlxtend', 0.5165061354637146, 'ml', 3), ('determined-ai/determined', 0.5160141587257385, 'ml-ops', 2), ('aimhubio/aim', 0.5152265429496765, 'ml-ops', 4), ('polyaxon/polyaxon', 0.5118154883384705, 'ml-ops', 4), ('gradio-app/gradio', 0.5105863809585571, 'viz', 2), ('featurelabs/featuretools', 0.5102759599685669, 'ml', 3), ('kubeflow/fairing', 0.5098203420639038, 'ml-ops', 0), ('tensorflow/tensor2tensor', 0.5070091485977173, 'ml', 1), ('ml-tooling/opyrator', 0.5064631104469299, 'viz', 1), ('arize-ai/phoenix', 0.5046104192733765, 'ml-interpretability', 0), ('cdpierse/transformers-interpret', 0.500318169593811, 'ml-interpretability', 3), ('tensorlayer/tensorlayer', 0.5001160502433777, 'ml-rl', 1)]
22
5
null
2.12
8
4
55
0
5
8
5
8
1
90
0.1
38
1,010
time-series
https://github.com/bashtage/arch
[]
null
[]
[]
null
null
null
bashtage/arch
arch
1,215
279
44
Python
null
ARCH models in Python
bashtage
2024-01-13
2014-08-29
491
2.471665
null
ARCH models in Python
['adf', 'arch', 'bootstrap', 'df-gls', 'dickey-fuller', 'finance', 'financial-econometrics', 'forecasting', 'model-confidence-set', 'multiple-comparison-procedures', 'phillips-perron', 'reality-check', 'risk', 'spa', 'time-series', 'unit-root', 'variance', 'volatility']
['adf', 'arch', 'bootstrap', 'df-gls', 'dickey-fuller', 'finance', 'financial-econometrics', 'forecasting', 'model-confidence-set', 'multiple-comparison-procedures', 'phillips-perron', 'reality-check', 'risk', 'spa', 'time-series', 'unit-root', 'variance', 'volatility']
2024-01-05
[('firmai/atspy', 0.6273349523544312, 'time-series', 3), ('alkaline-ml/pmdarima', 0.6099317669868469, 'time-series', 2), ('statsmodels/statsmodels', 0.5926198363304138, 'ml', 1), ('goldmansachs/gs-quant', 0.5530153512954712, 'finance', 0), ('kernc/backtesting.py', 0.5312038064002991, 'finance', 1), ('awslabs/gluonts', 0.5267676115036011, 'time-series', 2), ('domokane/financepy', 0.5076860785484314, 'finance', 2), ('pmorissette/ffn', 0.5025431513786316, 'finance', 0), ('ranaroussi/quantstats', 0.5018336772918701, 'finance', 1), ('cuemacro/finmarketpy', 0.5008066892623901, 'finance', 0), ('crflynn/stochastic', 0.5002689957618713, 'sim', 0)]
35
3
null
1.29
25
24
114
0
8
5
8
25
25
90
1
38
1,043
data
https://github.com/ydataai/ydata-synthetic
[]
null
[]
[]
null
null
null
ydataai/ydata-synthetic
ydata-synthetic
1,195
233
29
Jupyter Notebook
https://docs.synthetic.ydata.ai
Synthetic data generators for tabular and time-series data
ydataai
2024-01-13
2020-05-04
195
6.123719
https://avatars.githubusercontent.com/u/57689451?v=4
Synthetic data generators for tabular and time-series data
['datageneration', 'datagenerator', 'deep-learning', 'gan', 'gan-architectures', 'gans', 'generative-adversarial-network', 'machine-learning', 'pytorch', 'synthetic-data', 'tensorflow2', 'time-series', 'timeseries', 'training-data']
['datageneration', 'datagenerator', 'deep-learning', 'gan', 'gan-architectures', 'gans', 'generative-adversarial-network', 'machine-learning', 'pytorch', 'synthetic-data', 'tensorflow2', 'time-series', 'timeseries', 'training-data']
2024-01-02
[('sdv-dev/sdv', 0.9112098217010498, 'data', 7), ('awslabs/autogluon', 0.5872030258178711, 'ml', 4), ('borisbanushev/stockpredictionai', 0.5105303525924683, 'finance', 0), ('vaexio/vaex', 0.5099949836730957, 'perf', 1), ('winedarksea/autots', 0.5098974704742432, 'time-series', 3), ('nicolas-hbt/pygraft', 0.5071893334388733, 'ml', 2), ('mljar/mljar-supervised', 0.5016704797744751, 'ml', 1)]
22
1
null
1.23
34
17
45
0
9
9
9
34
16
90
0.5
38
966
gis
https://github.com/microsoft/globalmlbuildingfootprints
[]
null
[]
[]
null
null
null
microsoft/globalmlbuildingfootprints
GlobalMLBuildingFootprints
1,186
175
60
Python
null
Worldwide building footprints derived from satellite imagery
microsoft
2024-01-12
2022-04-22
92
12.811728
https://avatars.githubusercontent.com/u/6154722?v=4
Worldwide building footprints derived from satellite imagery
[]
[]
2024-01-03
[('zorzi-s/polyworldpretrainednetwork', 0.600134015083313, 'gis', 0), ('lydorn/polygonization-by-frame-field-learning', 0.5449085831642151, 'gis', 0)]
7
2
null
0.35
17
8
21
0
0
0
0
17
11
90
0.6
38
625
util
https://github.com/pyca/bcrypt
[]
null
[]
[]
null
null
null
pyca/bcrypt
bcrypt
1,083
195
28
Python
null
Modern(-ish) password hashing for your software and your servers
pyca
2024-01-13
2013-05-11
559
1.935904
https://avatars.githubusercontent.com/u/5615737?v=4
Modern(-ish) password hashing for your software and your servers
[]
[]
2024-01-12
[]
32
5
null
3.48
86
81
130
0
0
2
2
86
90
90
1
38
811
ml
https://github.com/automl/tabpfn
[]
null
[]
[]
null
null
null
automl/tabpfn
TabPFN
1,028
85
14
Python
http://priorlabs.ai
Official implementation of the TabPFN paper (https://arxiv.org/abs/2207.01848) and the tabpfn package.
automl
2024-01-13
2022-07-01
82
12.449827
https://avatars.githubusercontent.com/u/6469053?v=4
Official implementation of the TabPFN paper (https://arxiv.org/abs/2207.01848) and the tabpfn package.
[]
[]
2023-10-22
[]
7
3
null
0.67
26
14
19
3
0
0
0
26
23
90
0.9
38
1,150
data
https://github.com/aio-libs/aiocache
[]
null
[]
[]
null
null
null
aio-libs/aiocache
aiocache
971
139
22
Python
http://aiocache.readthedocs.io
Asyncio cache manager for redis, memcached and memory
aio-libs
2024-01-11
2016-09-30
382
2.538088
https://avatars.githubusercontent.com/u/7049303?v=4
Asyncio cache manager for redis, memcached and memory
['asyncio', 'cache', 'cachemanager', 'memcached', 'redis']
['asyncio', 'cache', 'cachemanager', 'memcached', 'redis']
2024-01-10
[('long2ice/fastapi-cache', 0.6432105898857117, 'web', 3), ('grantjenks/python-diskcache', 0.6346278786659241, 'util', 1), ('samuelcolvin/arq', 0.554317057132721, 'data', 2), ('dgilland/cacheout', 0.5477664470672607, 'perf', 0), ('python-cachier/cachier', 0.5451957583427429, 'perf', 2)]
43
5
null
2.15
36
33
89
0
3
3
3
36
28
90
0.8
38
89
testing
https://github.com/taverntesting/tavern
[]
null
[]
[]
null
null
null
taverntesting/tavern
tavern
969
186
27
Python
https://taverntesting.github.io/
A command-line tool and Python library and Pytest plugin for automated testing of RESTful APIs, with a simple, concise and flexible YAML-based syntax
taverntesting
2024-01-12
2017-11-01
325
2.973696
https://avatars.githubusercontent.com/u/33286481?v=4
A command-line tool and Python library and Pytest plugin for automated testing of RESTful APIs, with a simple, concise and flexible YAML-based syntax
['http', 'mqtt', 'pytest', 'test-automation', 'testing']
['http', 'mqtt', 'pytest', 'test-automation', 'testing']
2023-12-26
[('pytest-dev/pytest-xdist', 0.6020364165306091, 'testing', 1), ('simple-salesforce/simple-salesforce', 0.6006324291229248, 'data', 0), ('ionelmc/pytest-benchmark', 0.5957930684089661, 'testing', 1), ('getsentry/responses', 0.5727768540382385, 'testing', 0), ('wolever/parameterized', 0.5629963874816895, 'testing', 0), ('lundberg/respx', 0.5600868463516235, 'testing', 2), ('seleniumbase/seleniumbase', 0.5573855042457581, 'testing', 1), ('hugapi/hug', 0.5526415705680847, 'util', 1), ('falconry/falcon', 0.5523936152458191, 'web', 1), ('flipkart-incubator/astra', 0.552314817905426, 'web', 0), ('requests/toolbelt', 0.545853853225708, 'util', 1), ('python-restx/flask-restx', 0.5409488081932068, 'web', 0), ('nedbat/coveragepy', 0.5402073264122009, 'testing', 0), ('pytest-dev/pytest', 0.5295860767364502, 'testing', 1), ('buildbot/buildbot', 0.5253430604934692, 'util', 0), ('computationalmodelling/nbval', 0.5216328501701355, 'jupyter', 2), ('pmorissette/bt', 0.5144594311714172, 'finance', 0), ('pytest-dev/pytest-cov', 0.511971116065979, 'testing', 1), ('samuelcolvin/pytest-pretty', 0.5094279050827026, 'testing', 1), ('pytest-dev/pytest-testinfra', 0.5087285041809082, 'testing', 1), ('pytest-dev/pytest-mock', 0.5072631239891052, 'testing', 1), ('teemu/pytest-sugar', 0.5043500661849976, 'testing', 2), ('nasdaq/data-link-python', 0.5025106072425842, 'finance', 0)]
61
4
null
1.06
27
19
76
1
0
33
33
27
16
90
0.6
38
147
util
https://github.com/zenodo/zenodo
[]
null
[]
[]
null
null
null
zenodo/zenodo
zenodo
862
252
45
Python
https://zenodo.org
Research. Shared.
zenodo
2024-01-06
2013-02-11
572
1.506617
https://avatars.githubusercontent.com/u/2675345?v=4
Research. Shared.
['digital-library', 'elasticsearch', 'flask', 'invenio', 'inveniosoftware', 'library-management', 'open-access', 'open-science', 'postgresql', 'research-data-management', 'research-data-repository', 'scientific-publications', 'zenodo']
['digital-library', 'elasticsearch', 'flask', 'invenio', 'inveniosoftware', 'library-management', 'open-access', 'open-science', 'postgresql', 'research-data-management', 'research-data-repository', 'scientific-publications', 'zenodo']
2023-12-11
[('simonw/datasette', 0.6021542549133301, 'data', 0), ('tiangolo/full-stack-fastapi-postgresql', 0.5640177726745605, 'template', 1), ('piccolo-orm/piccolo_admin', 0.5565163493156433, 'data', 1), ('airbytehq/airbyte', 0.5533841252326965, 'data', 1), ('airbnb/knowledge-repo', 0.5470719933509827, 'data', 0), ('cerlymarco/medium_notebook', 0.5398790240287781, 'study', 0), ('firmai/industry-machine-learning', 0.5377620458602905, 'study', 0), ('plotly/dash', 0.5337997078895569, 'viz', 1), ('krzjoa/awesome-python-data-science', 0.5312089323997498, 'study', 0), ('aws/aws-sdk-pandas', 0.5311623811721802, 'pandas', 0), ('saulpw/visidata', 0.5197573900222778, 'term', 0), ('netflix/metaflow', 0.513927161693573, 'ml-ops', 0), ('eleutherai/pyfra', 0.5133705139160156, 'ml', 0), ('brettkromkamp/contextualise', 0.5124539136886597, 'data', 0), ('alphasecio/langchain-examples', 0.511971652507782, 'llm', 0), ('coleifer/peewee', 0.5084249377250671, 'data', 0), ('github/innovationgraph', 0.5064103007316589, 'data', 0), ('polyaxon/datatile', 0.5025171041488647, 'pandas', 0)]
67
5
null
0.48
65
12
133
1
0
39
39
64
111
90
1.7
38
803
data
https://github.com/neo4j/neo4j-python-driver
[]
null
[]
[]
null
null
null
neo4j/neo4j-python-driver
neo4j-python-driver
850
213
98
Python
https://neo4j.com/docs/api/python-driver/current/
Neo4j Bolt driver for Python
neo4j
2024-01-08
2015-05-05
456
1.864035
https://avatars.githubusercontent.com/u/201120?v=4
Neo4j Bolt driver for Python
['binary-protocol', 'cypher', 'database-driver', 'driver', 'graph-database', 'neo4j', 'protocol', 'query-language']
['binary-protocol', 'cypher', 'database-driver', 'driver', 'graph-database', 'neo4j', 'protocol', 'query-language']
2024-01-09
[('accenture/cymple', 0.6172598600387573, 'data', 2), ('datastax/python-driver', 0.5756858587265015, 'data', 0), ('scylladb/python-driver', 0.5569538474082947, 'data', 0), ('pydot/pydot', 0.5061096549034119, 'viz', 0)]
43
4
null
1.9
36
36
106
0
15
14
15
36
25
90
0.7
38
790
ml-interpretability
https://github.com/selfexplainml/piml-toolbox
[]
null
[]
[]
null
null
null
selfexplainml/piml-toolbox
PiML-Toolbox
791
96
21
Jupyter Notebook
https://selfexplainml.github.io/PiML-Toolbox
PiML (Python Interpretable Machine Learning) toolbox for model development & diagnostics
selfexplainml
2024-01-13
2022-04-29
91
8.638066
https://avatars.githubusercontent.com/u/74489521?v=4
PiML (Python Interpretable Machine Learning) toolbox for model development & diagnostics
['interpretable-machine-learning', 'low-code', 'ml-workflow', 'model-diagnostics']
['interpretable-machine-learning', 'low-code', 'ml-workflow', 'model-diagnostics']
2024-01-08
[('csinva/imodels', 0.6522828936576843, 'ml', 0), ('kubeflow/fairing', 0.6489830613136292, 'ml-ops', 0), ('pair-code/lit', 0.6214944124221802, 'ml-interpretability', 0), ('districtdatalabs/yellowbrick', 0.6020028591156006, 'ml', 0), ('huggingface/evaluate', 0.5961371660232544, 'ml', 0), ('wandb/client', 0.5873650908470154, 'ml', 0), ('teamhg-memex/eli5', 0.5864848494529724, 'ml', 0), ('pan-ml/panml', 0.5762995481491089, 'llm', 0), ('featurelabs/featuretools', 0.5691878795623779, 'ml', 0), ('ml-tooling/opyrator', 0.5633277297019958, 'viz', 0), ('stan-dev/pystan', 0.5616912245750427, 'ml', 0), ('microsoft/nni', 0.5612987279891968, 'ml', 0), ('apple/coremltools', 0.558883786201477, 'ml', 0), ('gradio-app/gradio', 0.5576595664024353, 'viz', 0), ('evidentlyai/evidently', 0.5544941425323486, 'ml-ops', 0), ('linkedin/fasttreeshap', 0.5518995523452759, 'ml', 0), ('tensorflow/lucid', 0.5517100095748901, 'ml-interpretability', 0), ('huggingface/datasets', 0.5501903891563416, 'nlp', 0), ('mlflow/mlflow', 0.5481675863265991, 'ml-ops', 0), ('scikit-learn/scikit-learn', 0.5468170642852783, 'ml', 0), ('rafiqhasan/auto-tensorflow', 0.5389483571052551, 'ml-dl', 0), ('polyaxon/datatile', 0.5384085178375244, 'pandas', 0), ('rasbt/mlxtend', 0.5372369885444641, 'ml', 0), ('epistasislab/tpot', 0.5343623161315918, 'ml', 0), ('tensorflow/data-validation', 0.5335401892662048, 'ml-ops', 0), ('nccr-itmo/fedot', 0.53252112865448, 'ml-ops', 0), ('pytorch/captum', 0.5324576497077942, 'ml-interpretability', 0), ('goldmansachs/gs-quant', 0.5287847518920898, 'finance', 0), ('pycaret/pycaret', 0.5286346077919006, 'ml', 0), ('maif/shapash', 0.527449905872345, 'ml', 0), ('zenml-io/zenml', 0.5244457125663757, 'ml-ops', 0), ('dagworks-inc/hamilton', 0.5237611532211304, 'ml-ops', 0), ('interpretml/interpret', 0.5234452486038208, 'ml-interpretability', 1), ('eleutherai/pyfra', 0.5199788808822632, 'ml', 0), ('huggingface/huggingface_hub', 0.5193759202957153, 'ml', 0), ('brokenloop/jsontopydantic', 0.515333354473114, 'util', 0), ('skops-dev/skops', 0.5126495957374573, 'ml-ops', 0), ('probml/pyprobml', 0.512611985206604, 'ml', 0), ('pytoolz/toolz', 0.5094278454780579, 'util', 0), ('polyaxon/polyaxon', 0.5091049075126648, 'ml-ops', 0), ('whylabs/whylogs', 0.5081930756568909, 'util', 0), ('huggingface/transformers', 0.5078108310699463, 'nlp', 0), ('titanml/takeoff', 0.5073431134223938, 'llm', 0), ('seldonio/alibi', 0.5072975158691406, 'ml-interpretability', 0), ('mljar/mljar-supervised', 0.5052536129951477, 'ml', 0), ('microsoft/flaml', 0.5052233338356018, 'ml', 0), ('lucidrains/toolformer-pytorch', 0.5051028728485107, 'llm', 0), ('pymc-devs/pymc3', 0.5050045847892761, 'ml', 0), ('amaargiru/pyroad', 0.5047166347503662, 'study', 0), ('firmai/atspy', 0.5030118823051453, 'time-series', 0), ('conceptofmind/toolformer', 0.5030021071434021, 'llm', 0), ('fmind/mlops-python-package', 0.5029227137565613, 'template', 0), ('anthropics/evals', 0.5009229183197021, 'llm', 0), ('shankarpandala/lazypredict', 0.500099241733551, 'ml', 0)]
6
2
null
2.46
4
1
21
0
3
2
3
4
3
90
0.8
38
824
typing
https://github.com/python-attrs/cattrs
[]
null
[]
[]
null
null
null
python-attrs/cattrs
cattrs
725
101
20
Python
https://catt.rs
Composable custom class converters for attrs.
python-attrs
2024-01-13
2016-08-28
387
1.872003
https://avatars.githubusercontent.com/u/25880274?v=4
Composable custom class converters for attrs.
['attrs', 'deserialization', 'serialization']
['attrs', 'deserialization', 'serialization']
2024-01-13
[('lidatong/dataclasses-json', 0.5296611189842224, 'util', 0)]
62
3
null
2.48
78
63
90
0
4
4
4
78
121
90
1.6
38
1,754
ml
https://github.com/criteo/autofaiss
['knn', 'similarity', 'embeddings', 'vector-search']
null
[]
[]
1
null
null
criteo/autofaiss
autofaiss
684
65
18
Python
https://criteo.github.io/autofaiss/
Automatically create Faiss knn indices with the most optimal similarity search parameters.
criteo
2024-01-13
2021-04-28
143
4.754717
https://avatars.githubusercontent.com/u/1713646?v=4
Automatically create Faiss knn indices with the most optimal similarity search parameters.
[]
['embeddings', 'knn', 'similarity', 'vector-search']
2024-01-13
[('facebookresearch/faiss', 0.629601776599884, 'ml', 3), ('qdrant/quaterion', 0.6242879629135132, 'ml', 1), ('lmcinnes/pynndescent', 0.5459467172622681, 'ml', 0), ('qdrant/qdrant', 0.5368368625640869, 'data', 1)]
15
4
null
0.25
14
7
33
0
4
25
4
14
15
90
1.1
38
1,752
jupyter
https://github.com/aws/graph-notebook
[]
null
[]
[]
null
null
null
aws/graph-notebook
graph-notebook
652
157
35
Jupyter Notebook
https://github.com/aws/graph-notebook
Library extending Jupyter notebooks to integrate with Apache TinkerPop, openCypher, and RDF SPARQL.
aws
2024-01-13
2020-10-01
173
3.753289
https://avatars.githubusercontent.com/u/2232217?v=4
Library extending Jupyter notebooks to integrate with Apache TinkerPop, openCypher, and RDF SPARQL.
['apache', 'cypher', 'graph', 'gremlin', 'jupyter', 'jupyter-notebook', 'jupyter-widgets', 'neptune', 'opencypher', 'rdf', 'sparql', 'tinkerpop']
['apache', 'cypher', 'graph', 'gremlin', 'jupyter', 'jupyter-notebook', 'jupyter-widgets', 'neptune', 'opencypher', 'rdf', 'sparql', 'tinkerpop']
2023-12-21
[('jupyter-widgets/ipywidgets', 0.687077522277832, 'jupyter', 0), ('voila-dashboards/voila', 0.6807038187980652, 'jupyter', 2), ('cohere-ai/notebooks', 0.6492716073989868, 'llm', 0), ('mwouts/jupytext', 0.6454940438270569, 'jupyter', 1), ('jupyterlab/jupyterlab-desktop', 0.6357448697090149, 'jupyter', 2), ('jupyter/nbformat', 0.6213883757591248, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.5957169532775879, 'jupyter', 2), ('jupyter/notebook', 0.5949639081954956, 'jupyter', 2), ('bloomberg/ipydatagrid', 0.5870513916015625, 'jupyter', 0), ('quantopian/qgrid', 0.571941614151001, 'jupyter', 0), ('ipython/ipykernel', 0.568101167678833, 'util', 2), ('jupyter-lsp/jupyterlab-lsp', 0.5679754018783569, 'jupyter', 2), ('jakevdp/pythondatasciencehandbook', 0.559874951839447, 'study', 1), ('jupyter/nbdime', 0.5575152039527893, 'jupyter', 2), ('holoviz/panel', 0.5436458587646484, 'viz', 1), ('nteract/papermill', 0.5402319431304932, 'jupyter', 1), ('maartenbreddels/ipyvolume', 0.539257287979126, 'jupyter', 2), ('jupyter-widgets/ipyleaflet', 0.5392546653747559, 'gis', 1), ('opengeos/leafmap', 0.5389112830162048, 'gis', 2), ('mamba-org/gator', 0.5385718941688538, 'jupyter', 1), ('tkrabel/bamboolib', 0.5372664928436279, 'pandas', 1), ('alphasecio/langchain-examples', 0.5361274480819702, 'llm', 1), ('ipython/ipyparallel', 0.5359687805175781, 'perf', 1), ('plotly/plotly.py', 0.5306247472763062, 'viz', 1), ('fchollet/deep-learning-with-python-notebooks', 0.525762140750885, 'study', 0), ('jupyterlab/jupyterlab', 0.5233699083328247, 'jupyter', 1), ('jupyter/nbconvert', 0.522909939289093, 'jupyter', 0), ('giswqs/mapwidget', 0.5196599364280701, 'gis', 1), ('ageron/handson-ml2', 0.519343912601471, 'ml', 0), ('accenture/cymple', 0.5142837166786194, 'data', 1), ('strawberry-graphql/strawberry', 0.5056154131889343, 'web', 0), ('aws/aws-sdk-pandas', 0.5009594559669495, 'pandas', 0)]
30
4
null
1.63
20
13
40
1
10
13
10
20
18
90
0.9
38
619
gis
https://github.com/scitools/iris
[]
null
[]
[]
null
null
null
scitools/iris
iris
587
279
45
Python
https://scitools-iris.readthedocs.io/en/stable/
A powerful, format-agnostic, and community-driven Python package for analysing and visualising Earth science data
scitools
2024-01-05
2012-08-06
599
0.979733
https://avatars.githubusercontent.com/u/1391487?v=4
A powerful, format-agnostic, and community-driven Python package for analysing and visualising Earth science data
['data-analysis', 'earth-science', 'grib', 'iris', 'meteorology', 'netcdf', 'oceanography', 'spaceweather', 'visualisation']
['data-analysis', 'earth-science', 'grib', 'iris', 'meteorology', 'netcdf', 'oceanography', 'spaceweather', 'visualisation']
2024-01-12
[('enthought/mayavi', 0.7232843041419983, 'viz', 0), ('giswqs/geemap', 0.6783716082572937, 'gis', 0), ('residentmario/geoplot', 0.6692157983779907, 'gis', 0), ('holoviz/holoviz', 0.6550614833831787, 'viz', 0), ('mwaskom/seaborn', 0.6527572870254517, 'viz', 0), ('contextlab/hypertools', 0.6321009993553162, 'ml', 0), ('pyqtgraph/pyqtgraph', 0.6289077401161194, 'viz', 0), ('altair-viz/altair', 0.6287659406661987, 'viz', 0), ('sentinel-hub/eo-learn', 0.623789370059967, 'gis', 0), ('marcomusy/vedo', 0.6136019825935364, 'viz', 0), ('pytroll/satpy', 0.6135034561157227, 'gis', 0), ('cloudsen12/easystac', 0.6042935252189636, 'gis', 0), ('gregorhd/mapcompare', 0.6005646586418152, 'gis', 0), ('roban/cosmolopy', 0.5999904274940491, 'sim', 0), ('lux-org/lux', 0.5947362184524536, 'viz', 0), ('holoviz/hvplot', 0.5860223770141602, 'pandas', 0), ('man-group/dtale', 0.5857634544372559, 'viz', 1), ('holoviz/panel', 0.5823258757591248, 'viz', 0), ('opengeos/leafmap', 0.5820508003234863, 'gis', 0), ('earthlab/earthpy', 0.5802125930786133, 'gis', 0), ('has2k1/plotnine', 0.5705260634422302, 'viz', 1), ('holoviz/geoviews', 0.5698901414871216, 'gis', 0), ('matplotlib/matplotlib', 0.5653036236763, 'viz', 0), ('krzjoa/awesome-python-data-science', 0.5579238533973694, 'study', 1), ('numpy/numpy', 0.5556809306144714, 'math', 0), ('artelys/geonetworkx', 0.5512532591819763, 'gis', 0), ('raphaelquast/eomaps', 0.5512466430664062, 'gis', 0), ('kanaries/pygwalker', 0.5480643510818481, 'pandas', 1), ('geopandas/geopandas', 0.5416747331619263, 'gis', 0), ('pandas-dev/pandas', 0.5412265062332153, 'pandas', 1), ('graphistry/pygraphistry', 0.5314244627952576, 'data', 0), ('pysal/pysal', 0.5261117815971375, 'gis', 0), ('makepath/xarray-spatial', 0.523902952671051, 'gis', 0), ('plotly/plotly.py', 0.5217393040657043, 'viz', 0), ('fatiando/verde', 0.5199081301689148, 'gis', 1), ('imageio/imageio', 0.5107640027999878, 'util', 0), ('albahnsen/pycircular', 0.5095266103744507, 'math', 0), ('bokeh/bokeh', 0.5092189908027649, 'viz', 1), ('bmabey/pyldavis', 0.5086809992790222, 'ml', 0), ('plotly/dash', 0.5075518488883972, 'viz', 0), ('mito-ds/monorepo', 0.5061976909637451, 'jupyter', 1), ('jakevdp/pythondatasciencehandbook', 0.5051771402359009, 'study', 0), ('westhealth/pyvis', 0.503166139125824, 'graph', 0), ('rasbt/mlxtend', 0.5022916793823242, 'ml', 0)]
107
2
null
5.21
276
209
139
0
8
7
8
276
410
90
1.5
38
216
ml-ops
https://github.com/nccr-itmo/fedot
[]
null
[]
[]
null
null
null
nccr-itmo/fedot
FEDOT
579
80
9
Python
https://fedot.readthedocs.io
Automated modeling and machine learning framework FEDOT
nccr-itmo
2024-01-13
2020-01-13
211
2.742219
https://avatars.githubusercontent.com/u/65946329?v=4
Automated modeling and machine learning framework FEDOT
['automated-machine-learning', 'automation', 'automl', 'evolutionary-algorithms', 'fedot', 'genetic-programming', 'hyperparameter-optimization', 'machine-learning', 'multimodality', 'parameter-tuning', 'structural-learning']
['automated-machine-learning', 'automation', 'automl', 'evolutionary-algorithms', 'fedot', 'genetic-programming', 'hyperparameter-optimization', 'machine-learning', 'multimodality', 'parameter-tuning', 'structural-learning']
2024-01-10
[('automl/auto-sklearn', 0.7373944520950317, 'ml', 3), ('microsoft/nni', 0.6999444365501404, 'ml', 4), ('winedarksea/autots', 0.6496773958206177, 'time-series', 2), ('microsoft/flaml', 0.6372272372245789, 'ml', 4), ('keras-team/autokeras', 0.6287457346916199, 'ml-dl', 3), ('awslabs/autogluon', 0.6268003582954407, 'ml', 4), ('adap/flower', 0.618629515171051, 'ml-ops', 1), ('districtdatalabs/yellowbrick', 0.6075289249420166, 'ml', 1), ('epistasislab/tpot', 0.6070546507835388, 'ml', 6), ('huggingface/autotrain-advanced', 0.5916618704795837, 'ml', 1), ('xplainable/xplainable', 0.5892693996429443, 'ml-interpretability', 1), ('nevronai/metisfl', 0.5833522081375122, 'ml', 1), ('mlflow/mlflow', 0.5817329287528992, 'ml-ops', 1), ('featurelabs/featuretools', 0.5784884095191956, 'ml', 3), ('mosaicml/composer', 0.5770966410636902, 'ml-dl', 1), ('ml-tooling/opyrator', 0.5759302377700806, 'viz', 1), ('mljar/mljar-supervised', 0.5752649307250977, 'ml', 4), ('alpa-projects/alpa', 0.5670198202133179, 'ml-dl', 1), ('operand/agency', 0.5655133128166199, 'llm', 1), ('tensorflow/tensorflow', 0.5654616355895996, 'ml-dl', 1), ('bentoml/bentoml', 0.5645349621772766, 'ml-ops', 1), ('polyaxon/polyaxon', 0.5636411905288696, 'ml-ops', 2), ('huggingface/datasets', 0.5636368989944458, 'nlp', 1), ('google/pyglove', 0.5598992109298706, 'util', 2), ('determined-ai/determined', 0.5581679940223694, 'ml-ops', 2), ('shankarpandala/lazypredict', 0.5503329038619995, 'ml', 2), ('ludwig-ai/ludwig', 0.5483391284942627, 'ml-ops', 1), ('rafiqhasan/auto-tensorflow', 0.5481418371200562, 'ml-dl', 2), ('giskard-ai/giskard', 0.5448036789894104, 'data', 1), ('onnx/onnx', 0.5438551306724548, 'ml', 1), ('ai4finance-foundation/finrl', 0.5424655675888062, 'finance', 0), ('ray-project/ray', 0.541328489780426, 'ml-ops', 3), ('explosion/thinc', 0.5396167635917664, 'ml-dl', 1), ('ddbourgin/numpy-ml', 0.5393419861793518, 'ml', 1), ('microsoft/lmops', 0.5380227565765381, 'llm', 0), ('ourownstory/neural_prophet', 0.5363118648529053, 'ml', 1), ('firmai/industry-machine-learning', 0.5340647101402283, 'study', 1), ('apple/coremltools', 0.5334883332252502, 'ml', 1), ('firmai/atspy', 0.5334661602973938, 'time-series', 0), ('selfexplainml/piml-toolbox', 0.53252112865448, 'ml-interpretability', 0), ('lucidrains/toolformer-pytorch', 0.5307614803314209, 'llm', 0), ('csinva/imodels', 0.5283494591712952, 'ml', 1), ('scikit-learn/scikit-learn', 0.5258017778396606, 'ml', 1), ('gradio-app/gradio', 0.5231483578681946, 'viz', 1), ('polyaxon/datatile', 0.521264910697937, 'pandas', 0), ('sktime/sktime', 0.520081639289856, 'time-series', 1), ('mlc-ai/mlc-llm', 0.5192214250564575, 'llm', 0), ('patchy631/machine-learning', 0.517076313495636, 'ml', 0), ('online-ml/river', 0.5161853432655334, 'ml', 1), ('eugeneyan/testing-ml', 0.5155410766601562, 'testing', 1), ('horovod/horovod', 0.5143430829048157, 'ml-ops', 1), ('ggerganov/ggml', 0.5140013098716736, 'ml', 1), ('hpcaitech/colossalai', 0.5125412344932556, 'llm', 0), ('interpretml/interpret', 0.5118159651756287, 'ml-interpretability', 1), ('huggingface/transformers', 0.5109488368034363, 'nlp', 1), ('neuralmagic/sparseml', 0.508357048034668, 'ml-dl', 1), ('alirezadir/machine-learning-interview-enlightener', 0.5080487728118896, 'study', 1), ('kubeflow/pipelines', 0.5040023922920227, 'ml-ops', 1), ('tensorly/tensorly', 0.5016763806343079, 'ml-dl', 1), ('feast-dev/feast', 0.5015140175819397, 'ml-ops', 1)]
32
3
null
2.06
102
58
49
0
4
3
4
102
146
90
1.4
38
905
util
https://github.com/methexis-inc/terminal-copilot
[]
null
[]
[]
null
null
null
methexis-inc/terminal-copilot
terminal-copilot
539
41
7
Python
null
A smart terminal assistant that helps you find the right command.
methexis-inc
2024-01-10
2022-12-11
59
9.091566
https://avatars.githubusercontent.com/u/110575158?v=4
A smart terminal assistant that helps you find the right command.
[]
[]
2023-12-09
[('tiangolo/typer', 0.5327745079994202, 'term', 0), ('tconbeer/harlequin', 0.5151594877243042, 'term', 0)]
10
3
null
0.35
4
4
13
1
3
5
3
4
6
90
1.5
38
1,533
data
https://github.com/dbt-labs/dbt-spark
['spark', 'dbt']
null
[]
[]
null
null
null
dbt-labs/dbt-spark
dbt-spark
339
199
18
Python
https://getdbt.com
dbt-spark contains all of the code enabling dbt to work with Apache Spark and Databricks
dbt-labs
2024-01-06
2019-03-21
253
1.336149
https://avatars.githubusercontent.com/u/18339788?v=4
dbt-spark contains all of the code enabling dbt to work with Apache Spark and Databricks
[]
['dbt', 'spark']
2024-01-11
[('databricks/dbt-databricks', 0.6950157284736633, 'data', 1)]
73
4
null
2.98
94
63
59
0
28
18
28
94
103
90
1.1
38
1,837
llm
https://github.com/bobazooba/xllm
[]
null
[]
[]
null
null
null
bobazooba/xllm
xllm
308
17
3
Python
https://t.me/talequestbot
πŸ¦– Xβ€”LLM: Cutting Edge & Easy LLM Finetuning
bobazooba
2024-01-14
2023-11-10
11
26.617284
null
πŸ¦– Xβ€”LLM: Cutting Edge & Easy LLM Finetuning
['alpaca', 'bitsandbytes', 'cerebras', 'chatgpt', 'deep-learning', 'deep-neural-networks', 'gpt', 'gpt-4', 'gptq', 'large-language-models', 'llama', 'llama2', 'llm', 'mistral', 'openai', 'pytorch', 'torch', 'vicuna', 'zephyr']
['alpaca', 'bitsandbytes', 'cerebras', 'chatgpt', 'deep-learning', 'deep-neural-networks', 'gpt', 'gpt-4', 'gptq', 'large-language-models', 'llama', 'llama2', 'llm', 'mistral', 'openai', 'pytorch', 'torch', 'vicuna', 'zephyr']
2023-12-07
[('hiyouga/llama-efficient-tuning', 0.7037465572357178, 'llm', 5), ('hiyouga/llama-factory', 0.7037465572357178, 'llm', 5), ('lianjiatech/belle', 0.6800654530525208, 'llm', 1), ('bigscience-workshop/petals', 0.667163610458374, 'data', 6), ('intel/intel-extension-for-transformers', 0.6433131694793701, 'perf', 0), ('tigerlab-ai/tiger', 0.6268063187599182, 'llm', 2), ('hannibal046/awesome-llm', 0.6244999766349792, 'study', 1), ('artidoro/qlora', 0.6219983100891113, 'llm', 0), ('vllm-project/vllm', 0.6193138957023621, 'llm', 4), ('explosion/spacy-llm', 0.6183709502220154, 'llm', 5), ('microsoft/autogen', 0.6154872179031372, 'llm', 3), ('next-gpt/next-gpt', 0.61397784948349, 'llm', 4), ('lightning-ai/lit-llama', 0.6132877469062805, 'llm', 1), ('salesforce/xgen', 0.607836902141571, 'llm', 2), ('xtekky/gpt4free', 0.6042348742485046, 'llm', 4), ('paddlepaddle/paddlenlp', 0.6009507775306702, 'llm', 2), ('ray-project/ray-llm', 0.5996918082237244, 'llm', 2), ('young-geng/easylm', 0.5975850224494934, 'llm', 3), ('squeezeailab/squeezellm', 0.596723735332489, 'llm', 3), ('ludwig-ai/ludwig', 0.5947787761688232, 'ml-ops', 6), ('zilliztech/gptcache', 0.5947780013084412, 'llm', 5), ('opengvlab/omniquant', 0.5902096033096313, 'llm', 2), ('eth-sri/lmql', 0.5887289047241211, 'llm', 1), ('nvidia/tensorrt-llm', 0.5863513350486755, 'viz', 0), ('bentoml/openllm', 0.5858603119850159, 'ml-ops', 5), ('dylanhogg/llmgraph', 0.5852743983268738, 'ml', 3), ('microsoft/lora', 0.5789094567298889, 'llm', 2), ('li-plus/chatglm.cpp', 0.5759797692298889, 'llm', 1), ('juncongmoo/pyllama', 0.5698232054710388, 'llm', 0), ('thudm/chatglm2-6b', 0.5669134855270386, 'llm', 2), ('cg123/mergekit', 0.5655726194381714, 'llm', 2), ('iryna-kondr/scikit-llm', 0.5620294213294983, 'llm', 3), ('h2oai/h2o-llmstudio', 0.5602803230285645, 'llm', 5), ('jerryjliu/llama_index', 0.5593804121017456, 'llm', 2), ('microsoft/jarvis', 0.5591229200363159, 'llm', 2), ('sjtu-ipads/powerinfer', 0.5589494705200195, 'llm', 3), ('infinitylogesh/mutate', 0.5542972087860107, 'nlp', 0), ('mooler0410/llmspracticalguide', 0.5522361397743225, 'study', 1), ('titanml/takeoff', 0.551180899143219, 'llm', 2), ('microsoft/torchscale', 0.5502038598060608, 'llm', 0), ('huggingface/text-generation-inference', 0.5498690605163574, 'llm', 3), ('argilla-io/argilla', 0.5486025214195251, 'nlp', 2), ('lupantech/chameleon-llm', 0.5471572875976562, 'llm', 4), ('eleutherai/the-pile', 0.5469703674316406, 'data', 1), ('huggingface/transformers', 0.5439950227737427, 'nlp', 2), ('guardrails-ai/guardrails', 0.5430307984352112, 'llm', 2), ('salesforce/codet5', 0.5426592826843262, 'nlp', 1), ('alphasecio/langchain-examples', 0.5409016609191895, 'llm', 2), ('mlc-ai/web-llm', 0.5402325987815857, 'llm', 3), ('predibase/lorax', 0.5401611924171448, 'llm', 4), ('nomic-ai/gpt4all', 0.5367876887321472, 'llm', 0), ('run-llama/rags', 0.5356626510620117, 'llm', 3), ('nebuly-ai/nebullvm', 0.5337145328521729, 'perf', 2), ('eugeneyan/open-llms', 0.5326270461082458, 'study', 2), ('epfllm/meditron', 0.5308298468589783, 'llm', 0), ('jzhang38/tinyllama', 0.5300989151000977, 'llm', 1), ('explosion/spacy-transformers', 0.529644787311554, 'llm', 2), ('shishirpatil/gorilla', 0.5277217626571655, 'llm', 2), ('optimalscale/lmflow', 0.5273640751838684, 'llm', 3), ('openlm-research/open_llama', 0.5272755026817322, 'llm', 1), ('huawei-noah/pretrained-language-model', 0.5261392593383789, 'nlp', 0), ('microsoft/promptflow', 0.52497398853302, 'llm', 3), ('baichuan-inc/baichuan-13b', 0.5246362090110779, 'llm', 3), ('night-chen/toolqa', 0.5220770835876465, 'llm', 1), ('pathwaycom/llm-app', 0.5216497778892517, 'llm', 1), ('tairov/llama2.mojo', 0.5215964913368225, 'llm', 2), ('haotian-liu/llava', 0.5188300609588623, 'llm', 4), ('lightning-ai/lit-gpt', 0.5175870656967163, 'llm', 0), ('confident-ai/deepeval', 0.5172545909881592, 'testing', 2), ('bigscience-workshop/megatron-deepspeed', 0.5139332413673401, 'llm', 0), ('microsoft/megatron-deepspeed', 0.5139332413673401, 'llm', 0), ('freedomintelligence/llmzoo', 0.5108060240745544, 'llm', 0), ('ashleve/lightning-hydra-template', 0.5093933939933777, 'util', 2), ('ai4finance-foundation/fingpt', 0.5081082582473755, 'finance', 4), ('pytorch/glow', 0.5073339343070984, 'ml', 0), ('bytedance/lightseq', 0.5065972208976746, 'nlp', 1), ('deepset-ai/haystack', 0.5065814852714539, 'llm', 3), ('databrickslabs/dolly', 0.5060972571372986, 'llm', 1), ('llmware-ai/llmware', 0.503739595413208, 'llm', 2), ('microsoft/semantic-kernel', 0.5029643774032593, 'llm', 2), ('hegelai/prompttools', 0.5022645592689514, 'llm', 2), ('lm-sys/fastchat', 0.5017418265342712, 'llm', 0), ('langchain-ai/langgraph', 0.5015073418617249, 'llm', 0), ('alpa-projects/alpa', 0.5013929605484009, 'ml-dl', 2), ('oobabooga/text-generation-webui', 0.501327633857727, 'llm', 0)]
1
0
null
1.15
16
11
2
1
5
85
5
16
9
90
0.6
38
1,575
data
https://github.com/scikit-hep/uproot5
['science']
null
[]
[]
null
null
null
scikit-hep/uproot5
uproot5
208
63
19
Python
https://uproot.readthedocs.io
ROOT I/O in pure Python and NumPy.
scikit-hep
2024-01-09
2020-05-08
194
1.069016
https://avatars.githubusercontent.com/u/23454624?v=4
ROOT I/O in pure Python and NumPy.
['analysis', 'big-data', 'bigdata', 'file-format', 'hep', 'hep-ex', 'hep-py', 'numpy', 'root', 'root-cern', 'scikit-hep']
['analysis', 'big-data', 'bigdata', 'file-format', 'hep', 'hep-ex', 'hep-py', 'numpy', 'root', 'root-cern', 'science', 'scikit-hep']
2024-01-12
[('numpy/numpy', 0.5980868935585022, 'math', 1), ('scipy/scipy', 0.5634987354278564, 'math', 0), ('blaze/blaze', 0.5468524098396301, 'pandas', 0), ('cython/cython', 0.5226044058799744, 'util', 1), ('fredrik-johansson/mpmath', 0.516451895236969, 'math', 0), ('pypy/pypy', 0.5114945769309998, 'util', 0), ('fsspec/filesystem_spec', 0.5076752305030823, 'util', 0)]
44
4
null
3.35
87
72
45
0
26
29
26
87
180
90
2.1
38
1,532
data
https://github.com/databricks/dbt-databricks
['databricks', 'dbt']
null
[]
[]
null
null
null
databricks/dbt-databricks
dbt-databricks
165
91
19
Python
https://databricks.com
A dbt adapter for Databricks.
databricks
2024-01-06
2021-10-19
119
1.386555
https://avatars.githubusercontent.com/u/4998052?v=4
A dbt adapter for Databricks.
['databricks', 'dbt', 'etl', 'sql']
['databricks', 'dbt', 'etl', 'sql']
2024-01-12
[('dbt-labs/dbt-spark', 0.6950157284736633, 'data', 1), ('databrickslabs/dbx', 0.6466124057769775, 'data', 1), ('duckdb/dbt-duckdb', 0.5661155581474304, 'data', 1), ('airbnb/omniduct', 0.5590947866439819, 'data', 0), ('airbytehq/airbyte', 0.5521032214164734, 'data', 1), ('dbt-labs/dbt-core', 0.5302814841270447, 'ml-ops', 0), ('dlt-hub/dlt', 0.5166671276092529, 'data', 0), ('tobymao/sqlglot', 0.5069236755371094, 'data', 2), ('tconbeer/sqlfmt', 0.5048282146453857, 'data', 2)]
69
3
null
5.67
107
88
27
0
29
38
29
107
168
90
1.6
38
1,746
util
https://github.com/callowayproject/bump-my-version
['code-quality']
null
[]
[]
null
null
null
callowayproject/bump-my-version
bump-my-version
115
14
7
Python
https://callowayproject.github.io/bump-my-version/
A small command line tool to simplify releasing software by updating all version strings in your source code by the correct increment and optionally commit and tag the changes.
callowayproject
2024-01-11
2023-04-12
41
2.74744
https://avatars.githubusercontent.com/u/305772?v=4
A small command line tool to simplify releasing software by updating all version strings in your source code by the correct increment and optionally commit and tag the changes.
['bumpversion', 'version', 'versioning']
['bumpversion', 'code-quality', 'version', 'versioning']
2024-01-13
[('c4urself/bump2version', 0.7459608316421509, 'util', 1), ('pypa/setuptools_scm', 0.6197443604469299, 'util', 1), ('mtkennerly/dunamai', 0.6012407541275024, 'util', 1), ('asottile/pyupgrade', 0.5788130760192871, 'util', 1), ('mtkennerly/poetry-dynamic-versioning', 0.5595990419387817, 'util', 1), ('python-versioneer/python-versioneer', 0.5228790640830994, 'util', 0)]
12
5
null
4.5
58
50
9
0
24
38
24
58
92
90
1.6
38
747
study
https://github.com/karpathy/micrograd
[]
null
[]
[]
null
null
null
karpathy/micrograd
micrograd
7,103
917
131
Jupyter Notebook
null
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API
karpathy
2024-01-14
2020-04-13
198
35.847873
null
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API
[]
[]
2020-04-18
[('pytorch/ignite', 0.7160765528678894, 'ml-dl', 0), ('intel/intel-extension-for-pytorch', 0.6794243454933167, 'perf', 0), ('skorch-dev/skorch', 0.644400417804718, 'ml-dl', 0), ('nvidia/apex', 0.6441670060157776, 'ml-dl', 0), ('rafiqhasan/auto-tensorflow', 0.634564220905304, 'ml-dl', 0), ('denys88/rl_games', 0.6286336779594421, 'ml-rl', 0), ('pytorch/glow', 0.6073175668716431, 'ml', 0), ('ggerganov/ggml', 0.6055065393447876, 'ml', 0), ('huggingface/transformers', 0.6045575737953186, 'nlp', 0), ('mrdbourke/pytorch-deep-learning', 0.602993369102478, 'study', 0), ('microsoft/nni', 0.6010633111000061, 'ml', 0), ('arogozhnikov/einops', 0.600235104560852, 'ml-dl', 0), ('neuralmagic/sparseml', 0.597611129283905, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.597282350063324, 'study', 0), ('pytorch/rl', 0.5971662402153015, 'ml-rl', 0), ('microsoft/flaml', 0.5962915420532227, 'ml', 0), ('thu-ml/tianshou', 0.5894965529441833, 'ml-rl', 0), ('nvidia/deeplearningexamples', 0.583264946937561, 'ml-dl', 0), ('explosion/thinc', 0.581674337387085, 'ml-dl', 0), ('keras-team/autokeras', 0.5800349712371826, 'ml-dl', 0), ('pytorch/pytorch', 0.5792595744132996, 'ml-dl', 0), ('pytorch/data', 0.5738345980644226, 'data', 0), ('ray-project/ray', 0.5609050393104553, 'ml-ops', 0), ('alpa-projects/alpa', 0.5604699850082397, 'ml-dl', 0), ('ashleve/lightning-hydra-template', 0.5562566518783569, 'util', 0), ('uber/petastorm', 0.5534528493881226, 'data', 0), ('horovod/horovod', 0.552807092666626, 'ml-ops', 0), ('microsoft/onnxruntime', 0.5451004505157471, 'ml', 0), ('rentruewang/koila', 0.5448654890060425, 'ml', 0), ('tensorlayer/tensorlayer', 0.544183075428009, 'ml-rl', 0), ('lucidrains/imagen-pytorch', 0.5438899993896484, 'ml-dl', 0), ('nicolas-chaulet/torch-points3d', 0.5409857034683228, 'ml', 0), ('deepmind/dm-haiku', 0.5368869304656982, 'ml-dl', 0), ('xl0/lovely-tensors', 0.5362251400947571, 'ml-dl', 0), ('determined-ai/determined', 0.5347241163253784, 'ml-ops', 0), ('pyg-team/pytorch_geometric', 0.5318362712860107, 'ml-dl', 0), ('huggingface/optimum', 0.5316488146781921, 'ml', 0), ('google/trax', 0.5311139822006226, 'ml-dl', 0), ('aws/sagemaker-python-sdk', 0.5261572003364563, 'ml', 0), ('facebookresearch/pytorch3d', 0.5227355360984802, 'ml-dl', 0), ('lightly-ai/lightly', 0.5221474766731262, 'ml', 0), ('aiqc/aiqc', 0.5214496850967407, 'ml-ops', 0), ('intellabs/bayesian-torch', 0.5212419629096985, 'ml', 0), ('huggingface/accelerate', 0.5209835767745972, 'ml', 0), ('mosaicml/composer', 0.517072856426239, 'ml-dl', 0), ('allenai/allennlp', 0.5140243768692017, 'nlp', 0), ('google/automl', 0.5122846364974976, 'ml', 0), ('ludwig-ai/ludwig', 0.5106154680252075, 'ml-ops', 0), ('koaning/human-learn', 0.509779691696167, 'data', 0), ('pyro-ppl/pyro', 0.5077245831489563, 'ml-dl', 0), ('tensorflow/tensor2tensor', 0.5075839757919312, 'ml', 0), ('activeloopai/deeplake', 0.5072367191314697, 'ml-ops', 0), ('epistasislab/tpot', 0.5062547922134399, 'ml', 0), ('plasma-umass/scalene', 0.5055549740791321, 'profiling', 0), ('rasbt/deeplearning-models', 0.5046243667602539, 'ml-dl', 0), ('huggingface/peft', 0.5045297145843506, 'llm', 0), ('kubeflow/fairing', 0.5037677884101868, 'ml-ops', 0), ('microsoft/deepspeed', 0.5035680532455444, 'ml-dl', 0), ('lucidrains/dalle2-pytorch', 0.5032515525817871, 'diffusion', 0), ('salesforce/deeptime', 0.5016177892684937, 'time-series', 0)]
2
1
null
0
7
4
46
46
0
0
0
7
3
90
0.4
37
817
study
https://github.com/firmai/industry-machine-learning
[]
null
[]
[]
null
null
null
firmai/industry-machine-learning
industry-machine-learning
6,946
1,151
389
Jupyter Notebook
https://www.linkedin.com/company/firmai
A curated list of applied machine learning and data science notebooks and libraries across different industries (by @firmai)
firmai
2024-01-13
2019-05-03
247
28.056549
null
A curated list of applied machine learning and data science notebooks and libraries across different industries (by @firmai)
['data-science', 'datascience', 'example', 'firmai', 'jupyter-notebook', 'machine-learning', 'practical-machine-learning']
['data-science', 'datascience', 'example', 'firmai', 'jupyter-notebook', 'machine-learning', 'practical-machine-learning']
2021-12-18
[('cerlymarco/medium_notebook', 0.6431946158409119, 'study', 2), ('ageron/handson-ml2', 0.6424956321716309, 'ml', 0), ('feast-dev/feast', 0.6406149864196777, 'ml-ops', 2), ('krzjoa/awesome-python-data-science', 0.6359909772872925, 'study', 2), ('tensorflow/data-validation', 0.6276463866233826, 'ml-ops', 0), ('gradio-app/gradio', 0.6118634939193726, 'viz', 2), ('mlflow/mlflow', 0.6037585735321045, 'ml-ops', 1), ('tensorflow/tensorflow', 0.6019365191459656, 'ml-dl', 1), ('kubeflow-kale/kale', 0.5946695804595947, 'ml-ops', 2), ('scikit-learn/scikit-learn', 0.5884523987770081, 'ml', 2), ('huggingface/datasets', 0.5870203375816345, 'nlp', 1), ('mrdbourke/zero-to-mastery-ml', 0.5863468647003174, 'study', 2), ('onnx/onnx', 0.5830479264259338, 'ml', 1), ('tensorflow/tensor2tensor', 0.5822129249572754, 'ml', 1), ('polyaxon/polyaxon', 0.5819257497787476, 'ml-ops', 2), ('patchy631/machine-learning', 0.5763393044471741, 'ml', 0), ('rasbt/mlxtend', 0.5761663913726807, 'ml', 2), ('determined-ai/determined', 0.574253261089325, 'ml-ops', 2), ('polyaxon/datatile', 0.5717259049415588, 'pandas', 1), ('googlecloudplatform/vertex-ai-samples', 0.5715494751930237, 'ml', 1), ('dylanhogg/awesome-python', 0.5685208439826965, 'study', 2), ('jovianml/opendatasets', 0.5650241374969482, 'data', 2), ('alirezadir/machine-learning-interview-enlightener', 0.5614524483680725, 'study', 1), ('rasbt/machine-learning-book', 0.5610123872756958, 'study', 1), ('huggingface/evaluate', 0.5610095858573914, 'ml', 1), ('merantix-momentum/squirrel-core', 0.5604248642921448, 'ml', 2), ('xplainable/xplainable', 0.5596107840538025, 'ml-interpretability', 2), ('tensorlayer/tensorlayer', 0.5479680299758911, 'ml-rl', 0), ('automl/auto-sklearn', 0.5466862320899963, 'ml', 0), ('csinva/imodels', 0.5446041226387024, 'ml', 2), ('districtdatalabs/yellowbrick', 0.5426095128059387, 'ml', 1), ('aws/sagemaker-python-sdk', 0.5424572229385376, 'ml', 1), ('sktime/sktime', 0.541723370552063, 'time-series', 2), ('fchollet/deep-learning-with-python-notebooks', 0.5408152937889099, 'study', 0), ('teamhg-memex/eli5', 0.5391788482666016, 'ml', 2), ('zenodo/zenodo', 0.5377620458602905, 'util', 0), ('uber/petastorm', 0.5362139940261841, 'data', 1), ('nccr-itmo/fedot', 0.5340647101402283, 'ml-ops', 1), ('airbnb/knowledge-repo', 0.5338939428329468, 'data', 1), ('google-research/google-research', 0.5328598618507385, 'ml', 1), ('ddbourgin/numpy-ml', 0.5301154255867004, 'ml', 1), ('microsoft/nni', 0.528578519821167, 'ml', 2), ('explosion/thinc', 0.5279266834259033, 'ml-dl', 1), ('online-ml/river', 0.5276996493339539, 'ml', 2), ('rasbt/stat451-machine-learning-fs20', 0.5267770886421204, 'study', 0), ('wandb/client', 0.5243285894393921, 'ml', 2), ('dagworks-inc/hamilton', 0.5236888527870178, 'ml-ops', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5232796669006348, 'study', 1), ('probml/pyprobml', 0.5219587087631226, 'ml', 1), ('keras-team/keras', 0.5215654969215393, 'ml-dl', 2), ('kubeflow/pipelines', 0.5197041034698486, 'ml-ops', 2), ('fatiando/verde', 0.5189895629882812, 'gis', 1), ('d2l-ai/d2l-en', 0.5169808268547058, 'study', 2), ('scikit-learn-contrib/imbalanced-learn', 0.5154035687446594, 'ml', 2), ('google/tf-quant-finance', 0.5136438012123108, 'finance', 0), ('hazyresearch/meerkat', 0.5096346735954285, 'viz', 2), ('drivendata/cookiecutter-data-science', 0.5075307488441467, 'template', 2), ('wesm/pydata-book', 0.5071250200271606, 'study', 0), ('netflix/metaflow', 0.5058495402336121, 'ml-ops', 3), ('adap/flower', 0.5053890347480774, 'ml-ops', 1), ('doccano/doccano', 0.50450199842453, 'nlp', 1), ('milvus-io/bootcamp', 0.5041669011116028, 'data', 0), ('pycaret/pycaret', 0.5026911497116089, 'ml', 2), ('ploomber/ploomber', 0.5007092952728271, 'ml-ops', 2)]
6
4
null
0
0
0
57
25
0
0
0
0
0
90
0
37
1,022
finance
https://github.com/google/tf-quant-finance
[]
null
[]
[]
null
null
null
google/tf-quant-finance
tf-quant-finance
4,160
545
168
Python
null
High-performance TensorFlow library for quantitative finance.
google
2024-01-14
2019-07-24
235
17.637795
https://avatars.githubusercontent.com/u/1342004?v=4
High-performance TensorFlow library for quantitative finance.
['finance', 'gpu', 'gpu-computing', 'high-performance', 'high-performance-computing', 'numerical-integration', 'numerical-methods', 'numerical-optimization', 'quantitative-finance', 'quantlib', 'tensorflow']
['finance', 'gpu', 'gpu-computing', 'high-performance', 'high-performance-computing', 'numerical-integration', 'numerical-methods', 'numerical-optimization', 'quantitative-finance', 'quantlib', 'tensorflow']
2023-08-15
[('tensorly/tensorly', 0.636419951915741, 'ml-dl', 1), ('pytorch/pytorch', 0.6339718103408813, 'ml-dl', 1), ('goldmansachs/gs-quant', 0.6332827806472778, 'finance', 0), ('intel/intel-extension-for-pytorch', 0.6181202530860901, 'perf', 0), ('ggerganov/ggml', 0.6140791773796082, 'ml', 0), ('arogozhnikov/einops', 0.6102033853530884, 'ml-dl', 1), ('nvidia/tensorrt-llm', 0.6080841422080994, 'viz', 1), ('horovod/horovod', 0.6027436852455139, 'ml-ops', 1), ('tensorlayer/tensorlayer', 0.5923408269882202, 'ml-rl', 1), ('xl0/lovely-tensors', 0.5893839597702026, 'ml-dl', 0), ('microsoft/onnxruntime', 0.5870956182479858, 'ml', 1), ('tlkh/tf-metal-experiments', 0.5859279036521912, 'perf', 2), ('tensorflow/tensorflow', 0.5797778367996216, 'ml-dl', 1), ('catboost/catboost', 0.5715440511703491, 'ml', 2), ('ray-project/ray', 0.5673449039459229, 'ml-ops', 1), ('tensorflow/addons', 0.5670149326324463, 'ml', 1), ('microsoft/deepspeed', 0.5623762011528015, 'ml-dl', 1), ('google/gin-config', 0.5610681772232056, 'util', 1), ('rafiqhasan/auto-tensorflow', 0.5538135766983032, 'ml-dl', 1), ('tensorflow/similarity', 0.552481472492218, 'ml-dl', 1), ('ranaroussi/quantstats', 0.5515581369400024, 'finance', 2), ('pytorch/ignite', 0.5492528676986694, 'ml-dl', 0), ('ta-lib/ta-lib-python', 0.5487057566642761, 'finance', 2), ('huggingface/datasets', 0.5474328994750977, 'nlp', 1), ('determined-ai/determined', 0.5471197366714478, 'ml-ops', 1), ('aws/sagemaker-python-sdk', 0.5465176105499268, 'ml', 1), ('zvtvz/zvt', 0.5456732511520386, 'finance', 1), ('polyaxon/datatile', 0.5451685190200806, 'pandas', 1), ('microsoft/qlib', 0.5447477698326111, 'finance', 2), ('ai4finance-foundation/finrl', 0.54345703125, 'finance', 1), ('explosion/thinc', 0.5434539318084717, 'ml-dl', 1), ('keras-team/keras', 0.5417336821556091, 'ml-dl', 1), ('blackhc/toma', 0.5406495928764343, 'ml-dl', 1), ('nvidia/warp', 0.5373433828353882, 'sim', 1), ('pytorchlightning/pytorch-lightning', 0.534396767616272, 'ml-dl', 0), ('fastai/fastcore', 0.5327866077423096, 'util', 0), ('eventual-inc/daft', 0.5302774906158447, 'pandas', 0), ('dmlc/xgboost', 0.5295057892799377, 'ml', 0), ('d2l-ai/d2l-en', 0.5287189483642578, 'study', 1), ('mrdbourke/m1-machine-learning-test', 0.5282031893730164, 'ml', 1), ('intel/scikit-learn-intelex', 0.5270321369171143, 'perf', 1), ('activeloopai/deeplake', 0.5263845324516296, 'ml-ops', 1), ('rapidsai/cudf', 0.5263254046440125, 'pandas', 1), ('pytorch/torchrec', 0.5250528454780579, 'ml-dl', 1), ('cupy/cupy', 0.5244703888893127, 'math', 1), ('quantconnect/lean', 0.5243059992790222, 'finance', 1), ('rasbt/machine-learning-book', 0.523298442363739, 'study', 0), ('cython/cython', 0.5225537419319153, 'util', 0), ('isl-org/open3d', 0.5206282138824463, 'sim', 2), ('huggingface/transformers', 0.5193233489990234, 'nlp', 1), ('polakowo/vectorbt', 0.5182610154151917, 'finance', 2), ('googlecloudplatform/vertex-ai-samples', 0.5174439549446106, 'ml', 0), ('plasma-umass/scalene', 0.5155574083328247, 'profiling', 1), ('gradio-app/gradio', 0.5152886509895325, 'viz', 0), ('dylanhogg/awesome-python', 0.5142082571983337, 'study', 0), ('firmai/industry-machine-learning', 0.5136438012123108, 'study', 0), ('ashleve/lightning-hydra-template', 0.5111380219459534, 'util', 0), ('gbeced/pyalgotrade', 0.5105053186416626, 'finance', 0), ('ddbourgin/numpy-ml', 0.509579598903656, 'ml', 0), ('huggingface/accelerate', 0.5086351633071899, 'ml', 0), ('exaloop/codon', 0.5077102780342102, 'perf', 1), ('pytorch/glow', 0.5075867772102356, 'ml', 0), ('keras-team/autokeras', 0.5068373680114746, 'ml-dl', 1), ('merantix-momentum/squirrel-core', 0.5065999031066895, 'ml', 1), ('pytorch/rl', 0.5055859088897705, 'ml-rl', 0), ('pycaret/pycaret', 0.5044597387313843, 'ml', 1), ('pypy/pypy', 0.5041675567626953, 'util', 0), ('salesforce/warp-drive', 0.5037093162536621, 'ml-rl', 1), ('mrdbourke/tensorflow-deep-learning', 0.5032038688659668, 'study', 1), ('uber/petastorm', 0.5018066167831421, 'data', 1), ('nyandwi/modernconvnets', 0.501559853553772, 'ml-dl', 1)]
47
2
null
0.29
0
0
54
5
0
1
1
0
0
90
0
37
460
util
https://github.com/rspeer/python-ftfy
[]
null
[]
[]
null
null
null
rspeer/python-ftfy
python-ftfy
3,647
153
76
Python
http://ftfy.readthedocs.org
Fixes mojibake and other glitches in Unicode text, after the fact.
rspeer
2024-01-12
2012-08-24
596
6.113266
null
Fixes mojibake and other glitches in Unicode text, after the fact.
[]
[]
2023-11-21
[]
18
6
null
0.1
1
0
139
2
0
12
12
1
0
90
0
37
86
graph
https://github.com/stellargraph/stellargraph
[]
null
[]
[]
null
null
null
stellargraph/stellargraph
stellargraph
2,836
418
64
Python
https://stellargraph.readthedocs.io/
StellarGraph - Machine Learning on Graphs
stellargraph
2024-01-13
2018-04-13
302
9.372993
https://avatars.githubusercontent.com/u/36725857?v=4
StellarGraph - Machine Learning on Graphs
['data-science', 'deep-learning', 'gcn', 'geometric-deep-learning', 'graph-analysis', 'graph-convolutional-networks', 'graph-data', 'graph-machine-learning', 'graph-neural-networks', 'graphs', 'heterogeneous-networks', 'interpretability', 'link-prediction', 'machine-learning', 'machine-learning-algorithms', 'networkx', 'saliency-map', 'stellargraph-library']
['data-science', 'deep-learning', 'gcn', 'geometric-deep-learning', 'graph-analysis', 'graph-convolutional-networks', 'graph-data', 'graph-machine-learning', 'graph-neural-networks', 'graphs', 'heterogeneous-networks', 'interpretability', 'link-prediction', 'machine-learning', 'machine-learning-algorithms', 'networkx', 'saliency-map', 'stellargraph-library']
2021-10-29
[('chandlerbang/awesome-self-supervised-gnn', 0.6943688988685608, 'study', 3), ('danielegrattarola/spektral', 0.6824637055397034, 'ml-dl', 2), ('pyg-team/pytorch_geometric', 0.6726529002189636, 'ml-dl', 4), ('dmlc/dgl', 0.6574554443359375, 'ml-dl', 2), ('google-deepmind/materials_discovery', 0.6555060148239136, 'sim', 0), ('benedekrozemberczki/tigerlily', 0.6446079015731812, 'ml-dl', 3), ('a-r-j/graphein', 0.6164317727088928, 'sim', 3), ('graphistry/pygraphistry', 0.5959926247596741, 'data', 1), ('rampasek/graphgps', 0.5865841507911682, 'graph', 0), ('accenture/ampligraph', 0.5474543571472168, 'data', 1), ('networkx/networkx', 0.5425050258636475, 'graph', 1), ('googlecloudplatform/vertex-ai-samples', 0.5413510799407959, 'ml', 1), ('ddbourgin/numpy-ml', 0.5346408486366272, 'ml', 1), ('onnx/onnx', 0.5222296714782715, 'ml', 2), ('awslabs/dgl-ke', 0.5202558040618896, 'ml', 1), ('lutzroeder/netron', 0.514754056930542, 'ml', 2), ('tensorflow/tensorflow', 0.5133888125419617, 'ml-dl', 2), ('pygraphviz/pygraphviz', 0.5024316310882568, 'viz', 0), ('hazyresearch/hgcn', 0.500386118888855, 'ml', 0)]
36
6
null
0
5
1
70
27
0
5
5
5
2
90
0.4
37
818
study
https://github.com/alirezadir/machine-learning-interview-enlightener
[]
null
[]
[]
null
null
null
alirezadir/machine-learning-interview-enlightener
Machine-Learning-Interviews
2,645
494
53
Jupyter Notebook
null
This repo is meant to serve as a guide for Machine Learning/AI technical interviews.
alirezadir
2024-01-14
2021-01-31
156
16.924132
null
This repo is meant to serve as a guide for Machine Learning/AI technical interviews.
['ai', 'deep-learning', 'interview', 'interview-practice', 'interview-preparation', 'interviews', 'machine-learning', 'machine-learning-algorithms', 'scalable-applications', 'system-design']
['ai', 'deep-learning', 'interview', 'interview-practice', 'interview-preparation', 'interviews', 'machine-learning', 'machine-learning-algorithms', 'scalable-applications', 'system-design']
2023-10-26
[('bentoml/bentoml', 0.657772958278656, 'ml-ops', 3), ('google-research/google-research', 0.6368386745452881, 'ml', 2), ('google-research/language', 0.6070800423622131, 'nlp', 1), ('amanchadha/coursera-deep-learning-specialization', 0.6021793484687805, 'study', 1), ('patchy631/machine-learning', 0.5960847735404968, 'ml', 0), ('googlecloudplatform/vertex-ai-samples', 0.5835177302360535, 'ml', 1), ('oegedijk/explainerdashboard', 0.5830463171005249, 'ml-interpretability', 0), ('xplainable/xplainable', 0.5782299637794495, 'ml-interpretability', 2), ('tensorflow/tensorflow', 0.5763082504272461, 'ml-dl', 2), ('microsoft/nni', 0.5761905312538147, 'ml', 3), ('onnx/onnx', 0.5712395906448364, 'ml', 2), ('tensorlayer/tensorlayer', 0.5669152140617371, 'ml-rl', 1), ('mlflow/mlflow', 0.5668816566467285, 'ml-ops', 2), ('tensorflow/tensor2tensor', 0.5649195909500122, 'ml', 2), ('polyaxon/polyaxon', 0.564633309841156, 'ml-ops', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5615020394325256, 'study', 2), ('firmai/industry-machine-learning', 0.5614524483680725, 'study', 1), ('wandb/client', 0.5583623051643372, 'ml', 2), ('explosion/thinc', 0.5558744668960571, 'ml-dl', 3), ('mindsdb/mindsdb', 0.5548688173294067, 'data', 2), ('feast-dev/feast', 0.5510007739067078, 'ml-ops', 1), ('netflix/metaflow', 0.5488802194595337, 'ml-ops', 2), ('aimhubio/aim', 0.5477184653282166, 'ml-ops', 2), ('doccano/doccano', 0.5449758768081665, 'nlp', 1), ('deepmind/dm_control', 0.5414921641349792, 'ml-rl', 2), ('nvidia/nemo', 0.5406086444854736, 'nlp', 1), ('lastmile-ai/aiconfig', 0.5404054522514343, 'util', 1), ('cheshire-cat-ai/core', 0.539746105670929, 'llm', 1), ('activeloopai/deeplake', 0.5346347689628601, 'ml-ops', 3), ('keras-team/keras', 0.5340282917022705, 'ml-dl', 2), ('winedarksea/autots', 0.5339345335960388, 'time-series', 2), ('cleanlab/cleanlab', 0.5334048867225647, 'ml', 0), ('determined-ai/determined', 0.5306956768035889, 'ml-ops', 2), ('ml-tooling/opyrator', 0.5304664969444275, 'viz', 1), ('antonosika/gpt-engineer', 0.527275800704956, 'llm', 1), ('avaiga/taipy', 0.5267717242240906, 'data', 0), ('gradio-app/gradio', 0.5261391401290894, 'viz', 2), ('keras-rl/keras-rl', 0.5244634747505188, 'ml-rl', 1), ('unity-technologies/ml-agents', 0.5230525732040405, 'ml-rl', 2), ('cerlymarco/medium_notebook', 0.5219733119010925, 'study', 2), ('polyaxon/datatile', 0.521611213684082, 'pandas', 0), ('csinva/imodels', 0.5202349424362183, 'ml', 2), ('sweepai/sweep', 0.5161364078521729, 'llm', 1), ('thilinarajapakse/simpletransformers', 0.5155435800552368, 'nlp', 0), ('iterative/dvc', 0.5138351917266846, 'ml-ops', 2), ('hpcaitech/colossalai', 0.5127544403076172, 'llm', 2), ('pytorchlightning/pytorch-lightning', 0.5122131109237671, 'ml-dl', 3), ('qdrant/qdrant', 0.5117506384849548, 'data', 1), ('automl/auto-sklearn', 0.5101978778839111, 'ml', 0), ('interpretml/interpret', 0.5096079707145691, 'ml-interpretability', 2), ('salesforce/logai', 0.5083866119384766, 'util', 2), ('nccr-itmo/fedot', 0.5080487728118896, 'ml-ops', 1), ('seldonio/alibi', 0.5047518014907837, 'ml-interpretability', 1), ('microsoft/onnxruntime', 0.5041807293891907, 'ml', 2), ('ourownstory/neural_prophet', 0.503267228603363, 'ml', 2), ('ddbourgin/numpy-ml', 0.5029667019844055, 'ml', 1), ('microsoft/generative-ai-for-beginners', 0.5020521283149719, 'study', 1), ('jindongwang/transferlearning', 0.5019001364707947, 'ml', 2), ('marqo-ai/marqo', 0.5009713768959045, 'ml', 2), ('oneil512/insight', 0.5009233355522156, 'ml', 1), ('kubeflow/pipelines', 0.5008544921875, 'ml-ops', 1), ('nvidia/deeplearningexamples', 0.5003179907798767, 'ml-dl', 1)]
7
4
null
1.33
1
0
36
3
0
0
0
1
0
90
0
37
704
pandas
https://github.com/jmcarpenter2/swifter
[]
null
[]
[]
null
null
null
jmcarpenter2/swifter
swifter
2,402
101
31
Python
null
A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner
jmcarpenter2
2024-01-12
2018-04-07
303
7.916196
null
A package which efficiently applies any function to a pandas dataframe or series in the fastest available manner
['dask', 'modin', 'pandas', 'pandas-dataframe', 'parallel-computing', 'parallelization']
['dask', 'modin', 'pandas', 'pandas-dataframe', 'parallel-computing', 'parallelization']
2023-07-31
[('nalepae/pandarallel', 0.7605847716331482, 'pandas', 1), ('ddelange/mapply', 0.6554047465324402, 'pandas', 0), ('modin-project/modin', 0.6068665385246277, 'perf', 2), ('dask/dask', 0.60169517993927, 'perf', 2), ('rapidsai/cudf', 0.5688180923461914, 'pandas', 2), ('mementum/bta-lib', 0.5637902021408081, 'finance', 0), ('blaze/blaze', 0.5631571412086487, 'pandas', 0), ('holoviz/spatialpandas', 0.562759518623352, 'pandas', 1), ('lux-org/lux', 0.5564085841178894, 'viz', 1), ('joblib/joblib', 0.5563712120056152, 'util', 1), ('eventual-inc/daft', 0.55370032787323, 'pandas', 0), ('adamerose/pandasgui', 0.5478309988975525, 'pandas', 1), ('vaexio/vaex', 0.5449737906455994, 'perf', 0), ('pandas-dev/pandas', 0.5424719452857971, 'pandas', 1), ('tkrabel/bamboolib', 0.5419985055923462, 'pandas', 1), ('twopirllc/pandas-ta', 0.539636492729187, 'finance', 1), ('fugue-project/fugue', 0.5381412506103516, 'pandas', 2), ('sfu-db/connector-x', 0.5345582962036133, 'data', 0), ('pola-rs/polars', 0.5324315428733826, 'pandas', 0), ('pytoolz/toolz', 0.5265946388244629, 'util', 0), ('klen/py-frameworks-bench', 0.519839346408844, 'perf', 0), ('pytables/pytables', 0.5137337446212769, 'data', 0), ('fastai/fastcore', 0.5132153034210205, 'util', 0), ('scikit-learn-contrib/sklearn-pandas', 0.5050438046455383, 'pandas', 0)]
17
4
null
0.33
5
0
70
6
0
14
14
5
2
90
0.4
37
956
ml-dl
https://github.com/danielegrattarola/spektral
[]
null
['2006.12138']
[]
null
null
null
danielegrattarola/spektral
spektral
2,314
337
44
Python
https://graphneural.network
Graph Neural Networks with Keras and Tensorflow 2.
danielegrattarola
2024-01-13
2019-01-17
262
8.808048
null
Graph Neural Networks with Keras and Tensorflow 2.
['deep-learning', 'graph-deep-learning', 'graph-neural-networks', 'keras', 'tensorflow', 'tensorflow2']
['deep-learning', 'graph-deep-learning', 'graph-neural-networks', 'keras', 'tensorflow', 'tensorflow2']
2023-06-01
[('pyg-team/pytorch_geometric', 0.7439136505126953, 'ml-dl', 2), ('dmlc/dgl', 0.6934017539024353, 'ml-dl', 2), ('stellargraph/stellargraph', 0.6824637055397034, 'graph', 2), ('chandlerbang/awesome-self-supervised-gnn', 0.6770707964897156, 'study', 2), ('nyandwi/modernconvnets', 0.6024564504623413, 'ml-dl', 2), ('rampasek/graphgps', 0.5940183997154236, 'graph', 0), ('keras-rl/keras-rl', 0.5715480446815491, 'ml-rl', 2), ('keras-team/keras', 0.5592799186706543, 'ml-dl', 2), ('benedekrozemberczki/tigerlily', 0.5574583411216736, 'ml-dl', 1), ('tensorflow/addons', 0.5564872026443481, 'ml', 2), ('hazyresearch/hgcn', 0.5537418723106384, 'ml', 0), ('a-r-j/graphein', 0.551216721534729, 'sim', 2), ('googlecloudplatform/vertex-ai-samples', 0.545731782913208, 'ml', 0), ('lutzroeder/netron', 0.5387458205223083, 'ml', 3), ('google-deepmind/materials_discovery', 0.5381258130073547, 'sim', 0), ('graphistry/pygraphistry', 0.5304725170135498, 'data', 0), ('onnx/onnx', 0.5261642932891846, 'ml', 3), ('tensorflow/tensorflow', 0.5244050025939941, 'ml-dl', 2), ('cvxgrp/pymde', 0.520326554775238, 'ml', 0), ('tensorlayer/tensorlayer', 0.5144057869911194, 'ml-rl', 2), ('keras-team/keras-nlp', 0.5112001299858093, 'nlp', 3), ('horovod/horovod', 0.5111513733863831, 'ml-ops', 3), ('ddbourgin/numpy-ml', 0.5083205699920654, 'ml', 0), ('xl0/lovely-tensors', 0.5056509375572205, 'ml-dl', 1), ('accenture/ampligraph', 0.5038337707519531, 'data', 0), ('tensorly/tensorly', 0.5032951831817627, 'ml-dl', 1)]
27
3
null
0.33
3
1
61
8
1
1
1
3
5
90
1.7
37
255
crypto
https://github.com/bmoscon/cryptofeed
[]
null
[]
[]
null
null
null
bmoscon/cryptofeed
cryptofeed
1,973
712
79
Python
null
Cryptocurrency Exchange Websocket Data Feed Handler
bmoscon
2024-01-13
2017-12-16
319
6.176655
null
Cryptocurrency Exchange Websocket Data Feed Handler
['asyncio', 'binance', 'bitcoin', 'btc', 'coinbase', 'coinbase-api', 'crypto', 'cryptocurrencies', 'cryptocurrency', 'ethereum', 'exchange', 'ftx-exchange', 'influxdb', 'market-data', 'trading', 'trading-platform', 'websocket', 'websockets']
['asyncio', 'binance', 'bitcoin', 'btc', 'coinbase', 'coinbase-api', 'crypto', 'cryptocurrencies', 'cryptocurrency', 'ethereum', 'exchange', 'ftx-exchange', 'influxdb', 'market-data', 'trading', 'trading-platform', 'websocket', 'websockets']
2024-01-07
[('ccxt/ccxt', 0.6092362999916077, 'crypto', 9), ('miguelgrinberg/python-socketio', 0.595906138420105, 'util', 2), ('freqtrade/freqtrade', 0.5561859011650085, 'crypto', 3), ('websocket-client/websocket-client', 0.5356486439704895, 'web', 2), ('pmaji/crypto-whale-watching-app', 0.5131617188453674, 'crypto', 3), ('gbeced/basana', 0.5091555118560791, 'finance', 3)]
112
0
null
0.71
16
11
74
0
2
12
2
16
13
90
0.8
37
1,684
util
https://github.com/landscapeio/prospector
['linting', 'styling']
null
[]
[]
null
null
null
landscapeio/prospector
prospector
1,882
176
35
Python
null
Inspects Python source files and provides information about type and location of classes, methods etc
landscapeio
2024-01-12
2013-08-05
547
3.439687
https://avatars.githubusercontent.com/u/4759094?v=4
Inspects Python source files and provides information about type and location of classes, methods etc
[]
['linting', 'styling']
2023-10-18
[('eugeneyan/python-collab-template', 0.6496816873550415, 'template', 1), ('google/pytype', 0.6452606916427612, 'typing', 0), ('pympler/pympler', 0.6098625659942627, 'perf', 0), ('hadialqattan/pycln', 0.6040316224098206, 'util', 0), ('nedbat/coveragepy', 0.6040084362030029, 'testing', 0), ('gaogaotiantian/viztracer', 0.6018545627593994, 'profiling', 0), ('pyutils/line_profiler', 0.5992322564125061, 'profiling', 0), ('mkdocstrings/griffe', 0.5961143970489502, 'util', 0), ('facebook/pyre-check', 0.5935577154159546, 'typing', 0), ('klen/pylama', 0.5915239453315735, 'util', 0), ('pytoolz/toolz', 0.5871560573577881, 'util', 0), ('urwid/urwid', 0.586963951587677, 'term', 0), ('python/cpython', 0.5828319787979126, 'util', 0), ('jiffyclub/snakeviz', 0.582079291343689, 'profiling', 0), ('hhatto/autopep8', 0.5784581303596497, 'util', 0), ('astral-sh/ruff', 0.5776445269584656, 'util', 0), ('eleutherai/pyfra', 0.5767074227333069, 'ml', 0), ('brandon-rhodes/python-patterns', 0.5751134157180786, 'util', 0), ('pycqa/isort', 0.574863851070404, 'util', 0), ('instagram/monkeytype', 0.5743587017059326, 'typing', 0), ('rubik/radon', 0.5695351362228394, 'util', 0), ('google/yapf', 0.5676681995391846, 'util', 0), ('python-rope/rope', 0.5660980939865112, 'util', 0), ('pycqa/pyflakes', 0.5659628510475159, 'util', 0), ('mitmproxy/pdoc', 0.5606246590614319, 'util', 0), ('tiangolo/typer', 0.558975100517273, 'term', 0), ('xrudelis/pytrait', 0.5579221248626709, 'util', 0), ('wesm/pydata-book', 0.5570473670959473, 'study', 0), ('grantjenks/blue', 0.5565185546875, 'util', 0), ('requests/toolbelt', 0.5488244891166687, 'util', 0), ('amaargiru/pyroad', 0.5477283596992493, 'study', 0), ('alexmojaki/snoop', 0.5469942688941956, 'debug', 0), ('pypi/warehouse', 0.545502245426178, 'util', 0), ('psf/black', 0.5413801670074463, 'util', 0), ('hoffstadt/dearpygui', 0.5395547747612, 'gui', 0), ('ta-lib/ta-lib-python', 0.5358104109764099, 'finance', 0), ('python/mypy', 0.5345390439033508, 'typing', 0), ('pypa/hatch', 0.5343112945556641, 'util', 0), ('samuelcolvin/python-devtools', 0.5334382057189941, 'debug', 0), ('microsoft/pyright', 0.5327200293540955, 'typing', 0), ('pypy/pypy', 0.5321429371833801, 'util', 0), ('pycqa/pycodestyle', 0.531697690486908, 'util', 0), ('pycqa/eradicate', 0.5313110947608948, 'util', 2), ('pythonprofilers/memory_profiler', 0.5307861566543579, 'profiling', 0), ('sourcery-ai/sourcery', 0.5299766659736633, 'util', 0), ('agronholm/typeguard', 0.528834879398346, 'typing', 0), ('pygments/pygments', 0.5254445672035217, 'util', 0), ('pycqa/flake8', 0.5223195552825928, 'util', 0), ('instagram/fixit', 0.5204662084579468, 'util', 0), ('erotemic/ubelt', 0.518781840801239, 'util', 0), ('beeware/toga', 0.517236590385437, 'gui', 0), ('google/python-fire', 0.5145845413208008, 'term', 0), ('googleapis/google-api-python-client', 0.5145336389541626, 'util', 0), ('python-attrs/attrs', 0.5136226415634155, 'typing', 0), ('facebookincubator/bowler', 0.5116630792617798, 'util', 0), ('python/typeshed', 0.509270191192627, 'typing', 0), ('dosisod/refurb', 0.5087876915931702, 'util', 0), ('pycqa/pylint-django', 0.5079518556594849, 'util', 0), ('roniemartinez/dude', 0.5066967606544495, 'util', 0), ('willmcgugan/textual', 0.5064331889152527, 'term', 0), ('pyglet/pyglet', 0.5031312108039856, 'gamedev', 0)]
90
3
null
0.88
15
2
127
3
4
10
4
15
23
90
1.5
37
298
util
https://github.com/julienpalard/pipe
[]
null
[]
[]
null
null
null
julienpalard/pipe
Pipe
1,797
111
26
Python
null
A Python library to use infix notation in Python
julienpalard
2024-01-13
2010-04-08
720
2.49336
null
A Python library to use infix notation in Python
[]
[]
2024-01-07
[('google/latexify_py', 0.5925378799438477, 'util', 0), ('pytoolz/toolz', 0.5835241079330444, 'util', 0), ('connorferster/handcalcs', 0.5392968058586121, 'jupyter', 0), ('pyston/pyston', 0.5197369456291199, 'util', 0), ('sympy/sympy', 0.5134634971618652, 'math', 0), ('pmorissette/ffn', 0.5104817748069763, 'finance', 0), ('geospatialpython/pyshp', 0.5082536935806274, 'gis', 0)]
29
4
null
0.17
9
6
168
0
0
1
1
9
22
90
2.4
37
591
data
https://github.com/uber/petastorm
[]
null
[]
[]
null
null
null
uber/petastorm
petastorm
1,711
280
41
Python
null
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
uber
2024-01-12
2018-06-15
293
5.828224
https://avatars.githubusercontent.com/u/538264?v=4
Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code.
['deep-learning', 'machine-learning', 'parquet', 'parquet-files', 'pyarrow', 'pyspark', 'pytorch', 'sysml', 'tensorflow']
['deep-learning', 'machine-learning', 'parquet', 'parquet-files', 'pyarrow', 'pyspark', 'pytorch', 'sysml', 'tensorflow']
2023-12-02
[('microsoft/deepspeed', 0.6462931632995605, 'ml-dl', 3), ('horovod/horovod', 0.6362690329551697, 'ml-ops', 4), ('determined-ai/determined', 0.6062763929367065, 'ml-ops', 4), ('ageron/handson-ml2', 0.5999022126197815, 'ml', 0), ('gradio-app/gradio', 0.5904715061187744, 'viz', 2), ('pytorch/ignite', 0.5855341553688049, 'ml-dl', 3), ('tensorflow/tensorflow', 0.5829108953475952, 'ml-dl', 3), ('merantix-momentum/squirrel-core', 0.5779027938842773, 'ml', 4), ('tensorflow/tensor2tensor', 0.5750295519828796, 'ml', 2), ('ashleve/lightning-hydra-template', 0.5747993588447571, 'util', 2), ('aws/sagemaker-python-sdk', 0.5683594346046448, 'ml', 3), ('rasbt/machine-learning-book', 0.5682684183120728, 'study', 3), ('paddlepaddle/paddle', 0.5659868717193604, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.5632723569869995, 'perf', 3), ('fchollet/deep-learning-with-python-notebooks', 0.5607595443725586, 'study', 0), ('mlflow/mlflow', 0.559465765953064, 'ml-ops', 1), ('huggingface/huggingface_hub', 0.5579898357391357, 'ml', 3), ('nvidia/deeplearningexamples', 0.5578290820121765, 'ml-dl', 3), ('eventual-inc/daft', 0.557521641254425, 'pandas', 2), ('deepmind/dm-haiku', 0.557473361492157, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5541288256645203, 'ml-dl', 2), ('karpathy/micrograd', 0.5534528493881226, 'study', 0), ('huggingface/transformers', 0.5520153641700745, 'nlp', 4), ('oml-team/open-metric-learning', 0.5485543012619019, 'ml', 2), ('skorch-dev/skorch', 0.5473853945732117, 'ml-dl', 2), ('ggerganov/ggml', 0.5469512939453125, 'ml', 1), ('aiqc/aiqc', 0.5461896061897278, 'ml-ops', 0), ('dmlc/xgboost', 0.5380932688713074, 'ml', 1), ('firmai/industry-machine-learning', 0.5362139940261841, 'study', 1), ('microsoft/flaml', 0.5358170866966248, 'ml', 2), ('huggingface/datasets', 0.5324203372001648, 'nlp', 4), ('keras-team/autokeras', 0.5320855975151062, 'ml-dl', 3), ('deepmodeling/deepmd-kit', 0.5317656397819519, 'sim', 2), ('alpa-projects/alpa', 0.5310642719268799, 'ml-dl', 2), ('ray-project/ray', 0.5304347276687622, 'ml-ops', 4), ('kubeflow/fairing', 0.529427170753479, 'ml-ops', 0), ('aistream-peelout/flow-forecast', 0.5273684859275818, 'time-series', 2), ('microsoft/jarvis', 0.5265276432037354, 'llm', 2), ('apache/incubator-mxnet', 0.5250005722045898, 'ml-dl', 0), ('adap/flower', 0.5249413847923279, 'ml-ops', 4), ('towhee-io/towhee', 0.5247065424919128, 'ml-ops', 1), ('mrdbourke/pytorch-deep-learning', 0.5223989486694336, 'study', 3), ('lightly-ai/lightly', 0.5194175243377686, 'ml', 3), ('keras-team/keras', 0.5165746808052063, 'ml-dl', 4), ('explosion/thinc', 0.5144953727722168, 'ml-dl', 4), ('facebookresearch/pytorch3d', 0.5134731531143188, 'ml-dl', 0), ('deepchecks/deepchecks', 0.5133116245269775, 'data', 3), ('pytorch/torchrec', 0.5117344260215759, 'ml-dl', 2), ('google/trax', 0.5106483101844788, 'ml-dl', 2), ('ml-tooling/opyrator', 0.5089090466499329, 'viz', 1), ('dmlc/dgl', 0.5088360905647278, 'ml-dl', 1), ('microsoft/nni', 0.508219301700592, 'ml', 4), ('pytorch/data', 0.5076653361320496, 'data', 0), ('kevinmusgrave/pytorch-metric-learning', 0.5072482824325562, 'ml', 3), ('tensorlayer/tensorlayer', 0.5072025060653687, 'ml-rl', 2), ('arogozhnikov/einops', 0.5071843862533569, 'ml-dl', 3), ('dylanhogg/awesome-python', 0.5067077875137329, 'study', 2), ('titanml/takeoff', 0.5053594708442688, 'llm', 0), ('nvidia/apex', 0.5052030086517334, 'ml-dl', 0), ('mosaicml/composer', 0.5039240121841431, 'ml-dl', 3), ('fastai/fastcore', 0.5022857189178467, 'util', 0), ('google/tf-quant-finance', 0.5018066167831421, 'finance', 1), ('pyg-team/pytorch_geometric', 0.5014254450798035, 'ml-dl', 2), ('catboost/catboost', 0.5008516311645508, 'ml', 1), ('vaexio/vaex', 0.500319242477417, 'perf', 2), ('pycaret/pycaret', 0.5002906322479248, 'ml', 1)]
50
4
null
0.06
4
2
68
1
1
20
1
4
4
90
1
37
1,004
finance
https://github.com/pmorissette/ffn
[]
null
[]
[]
null
null
null
pmorissette/ffn
ffn
1,697
283
59
Python
pmorissette.github.io/ffn
ffn - a financial function library for Python
pmorissette
2024-01-13
2014-06-19
501
3.382403
null
ffn - a financial function library for Python
[]
[]
2023-12-31
[('pytoolz/toolz', 0.6924606561660767, 'util', 0), ('domokane/financepy', 0.6907992959022522, 'finance', 0), ('goldmansachs/gs-quant', 0.6325653195381165, 'finance', 0), ('gbeced/pyalgotrade', 0.628166913986206, 'finance', 0), ('ta-lib/ta-lib-python', 0.5941312909126282, 'finance', 0), ('fredrik-johansson/mpmath', 0.58493971824646, 'math', 0), ('daxm/fmpsdk', 0.5664402842521667, 'finance', 0), ('hydrosquall/tiingo-python', 0.5629584789276123, 'finance', 0), ('quantecon/quantecon.py', 0.559691309928894, 'sim', 0), ('ethtx/ethtx', 0.5535359978675842, 'crypto', 0), ('cuemacro/finmarketpy', 0.5505915284156799, 'finance', 0), ('firmai/atspy', 0.5481270551681519, 'time-series', 0), ('robcarver17/pysystemtrade', 0.5440186262130737, 'finance', 0), ('quantopian/pyfolio', 0.5423455834388733, 'finance', 0), ('connorferster/handcalcs', 0.5378669500350952, 'jupyter', 0), ('eleutherai/pyfra', 0.5368715524673462, 'ml', 0), ('alkaline-ml/pmdarima', 0.5328418612480164, 'time-series', 0), ('pandas-dev/pandas', 0.5297597050666809, 'pandas', 0), ('numpy/numpy', 0.5275481343269348, 'math', 0), ('stan-dev/pystan', 0.5250624418258667, 'ml', 0), ('quantopian/zipline', 0.5246074199676514, 'finance', 0), ('mementum/backtrader', 0.5245431661605835, 'finance', 0), ('primal100/pybitcointools', 0.5242424607276917, 'crypto', 0), ('1200wd/bitcoinlib', 0.5135668516159058, 'crypto', 0), ('cuemacro/findatapy', 0.5108827948570251, 'finance', 0), ('julienpalard/pipe', 0.5104817748069763, 'util', 0), ('google/latexify_py', 0.5060634016990662, 'util', 0), ('scipy/scipy', 0.502606987953186, 'math', 0), ('bashtage/arch', 0.5025431513786316, 'time-series', 0), ('pypy/pypy', 0.5018722414970398, 'util', 0), ('rjt1990/pyflux', 0.5010930895805359, 'time-series', 0)]
32
3
null
0.44
22
18
117
0
4
1
4
22
15
90
0.7
37
629
debug
https://github.com/alexmojaki/birdseye
[]
null
[]
[]
null
null
null
alexmojaki/birdseye
birdseye
1,593
75
42
JavaScript
https://birdseye.readthedocs.io
Graphical Python debugger which lets you easily view the values of all evaluated expressions
alexmojaki
2024-01-13
2017-07-22
340
4.679396
null
Graphical Python debugger which lets you easily view the values of all evaluated expressions
['ast', 'birdseye', 'debugger', 'debugging', 'python-debugger']
['ast', 'birdseye', 'debugger', 'debugging', 'python-debugger']
2023-10-16
[('alexmojaki/snoop', 0.6003603935241699, 'debug', 2), ('alexmojaki/heartrate', 0.5575025081634521, 'debug', 1), ('gaogaotiantian/viztracer', 0.5461402535438538, 'profiling', 1), ('samuelcolvin/python-devtools', 0.5242282748222351, 'debug', 0), ('google/pytype', 0.5039346218109131, 'typing', 0)]
10
4
null
0.02
2
2
79
3
0
1
1
2
9
90
4.5
37
179
nlp
https://github.com/explosion/spacy-models
[]
null
[]
[]
null
null
null
explosion/spacy-models
spacy-models
1,465
301
47
Python
https://spacy.io
πŸ’« Models for the spaCy Natural Language Processing (NLP) library
explosion
2024-01-12
2017-03-14
359
4.08078
https://avatars.githubusercontent.com/u/20011530?v=4
πŸ’« Models for the spaCy Natural Language Processing (NLP) library
['machine-learning', 'machine-learning-models', 'models', 'natural-language-processing', 'nlp', 'spacy', 'spacy-models', 'statistical-models']
['machine-learning', 'machine-learning-models', 'models', 'natural-language-processing', 'nlp', 'spacy', 'spacy-models', 'statistical-models']
2023-11-22
[('explosion/spacy-stanza', 0.7454922199249268, 'nlp', 4), ('nltk/nltk', 0.6720556020736694, 'nlp', 3), ('huggingface/neuralcoref', 0.6682751774787903, 'nlp', 3), ('explosion/spacy-transformers', 0.6662450432777405, 'llm', 4), ('explosion/spacy-streamlit', 0.6529020071029663, 'nlp', 4), ('flairnlp/flair', 0.6428545117378235, 'nlp', 3), ('explosion/spacy', 0.6409233212471008, 'nlp', 4), ('allenai/allennlp', 0.6203604340553284, 'nlp', 2), ('iclrandd/blackstone', 0.612856388092041, 'nlp', 2), ('norskregnesentral/skweak', 0.608527660369873, 'nlp', 2), ('paddlepaddle/paddlenlp', 0.5910124182701111, 'llm', 1), ('explosion/spacy-llm', 0.5904589295387268, 'llm', 4), ('sloria/textblob', 0.5832897424697876, 'nlp', 2), ('freedomintelligence/llmzoo', 0.5769272446632385, 'llm', 0), ('lm-sys/fastchat', 0.5767900943756104, 'llm', 0), ('rasahq/rasa', 0.5728164315223694, 'llm', 4), ('lianjiatech/belle', 0.5633299946784973, 'llm', 0), ('llmware-ai/llmware', 0.5522136092185974, 'llm', 2), ('hannibal046/awesome-llm', 0.5515271425247192, 'study', 0), ('deepset-ai/farm', 0.5511075854301453, 'nlp', 1), ('infinitylogesh/mutate', 0.5492627620697021, 'nlp', 0), ('yueyu1030/attrprompt', 0.5483715534210205, 'llm', 1), ('alibaba/easynlp', 0.5481346845626831, 'nlp', 2), ('qanastek/drbert', 0.5431317090988159, 'llm', 2), ('mooler0410/llmspracticalguide', 0.5413009524345398, 'study', 2), ('lexpredict/lexpredict-lexnlp', 0.5394803285598755, 'nlp', 1), ('huggingface/transformers', 0.5389872193336487, 'nlp', 3), ('keras-team/keras-nlp', 0.5345762372016907, 'nlp', 3), ('makcedward/nlpaug', 0.5314129590988159, 'nlp', 3), ('jonasgeiping/cramming', 0.5299116373062134, 'nlp', 1), ('juncongmoo/pyllama', 0.5298112630844116, 'llm', 0), ('graykode/nlp-tutorial', 0.5290482044219971, 'study', 2), ('thilinarajapakse/simpletransformers', 0.5240768790245056, 'nlp', 0), ('eleutherai/lm-evaluation-harness', 0.5173574686050415, 'llm', 0), ('koaning/whatlies', 0.5144206881523132, 'nlp', 1), ('jalammar/ecco', 0.513950765132904, 'ml-interpretability', 2), ('neuralmagic/sparseml', 0.5111375451087952, 'ml-dl', 1), ('explosion/thinc', 0.5104645490646362, 'ml-dl', 4), ('ai21labs/lm-evaluation', 0.5086509585380554, 'llm', 0), ('pemistahl/lingua-py', 0.5069782137870789, 'nlp', 2), ('extreme-bert/extreme-bert', 0.5058228969573975, 'llm', 3), ('gunthercox/chatterbot-corpus', 0.5032789707183838, 'nlp', 0), ('tatsu-lab/stanford_alpaca', 0.5031586289405823, 'llm', 0), ('baichuan-inc/baichuan-13b', 0.5027161836624146, 'llm', 1), ('paddlepaddle/rocketqa', 0.5023024678230286, 'nlp', 1), ('openai/gpt-2', 0.5017908215522766, 'llm', 0), ('reasoning-machines/pal', 0.5003161430358887, 'llm', 0)]
14
7
null
4.5
3
3
83
2
199
149
199
3
0
90
0
37
1,617
util
https://github.com/samuelcolvin/watchfiles
[]
null
[]
[]
null
null
null
samuelcolvin/watchfiles
watchfiles
1,435
99
18
Python
https://watchfiles.helpmanual.io
Simple, modern and fast file watching and code reload in python.
samuelcolvin
2024-01-14
2017-10-13
328
4.367391
null
Simple, modern and fast file watching and code reload in python.
['asyncio', 'filesystem', 'inotify', 'inotifywatch', 'notify', 'uvicorn']
['asyncio', 'filesystem', 'inotify', 'inotifywatch', 'notify', 'uvicorn']
2023-11-25
[('airtai/faststream', 0.5354728698730469, 'perf', 1), ('tox-dev/py-filelock', 0.5285630822181702, 'util', 0), ('magicstack/uvloop', 0.5178032517433167, 'util', 1), ('timofurrer/awesome-asyncio', 0.5153577327728271, 'study', 1), ('erotemic/ubelt', 0.5087971091270447, 'util', 0), ('sumerc/yappi', 0.5043572187423706, 'profiling', 1), ('python-trio/trio', 0.5042653679847717, 'perf', 0), ('grantjenks/python-diskcache', 0.5041387677192688, 'util', 1), ('samuelcolvin/arq', 0.5021094679832458, 'data', 1)]
40
3
null
0.25
10
4
76
2
3
5
3
10
15
90
1.5
37
645
profiling
https://github.com/p403n1x87/austin
[]
null
[]
[]
null
null
null
p403n1x87/austin
austin
1,311
40
17
C
https://pypi.org/project/austin-dist/
Python frame stack sampler for CPython
p403n1x87
2024-01-12
2018-09-20
279
4.686925
null
Python frame stack sampler for CPython
['debugging-tools', 'performance', 'profiling']
['debugging-tools', 'performance', 'profiling']
2023-10-04
[('faster-cpython/tools', 0.6291638612747192, 'perf', 0), ('faster-cpython/ideas', 0.6115438938140869, 'perf', 0), ('benfred/py-spy', 0.5970548987388611, 'profiling', 1), ('brandtbucher/specialist', 0.5802419185638428, 'perf', 0), ('gotcha/ipdb', 0.5680873394012451, 'debug', 0), ('pympler/pympler', 0.5645143389701843, 'perf', 0), ('klen/py-frameworks-bench', 0.5635471343994141, 'perf', 0), ('python/cpython', 0.5600637197494507, 'util', 0), ('markshannon/faster-cpython', 0.5521705150604248, 'perf', 0), ('pyutils/line_profiler', 0.5507018566131592, 'profiling', 0), ('inducer/pudb', 0.5496501326560974, 'debug', 0), ('ipython/ipyparallel', 0.5462062954902649, 'perf', 0), ('alexmojaki/snoop', 0.5450026392936707, 'debug', 1), ('alexmojaki/heartrate', 0.5422681570053101, 'debug', 0), ('ionelmc/pytest-benchmark', 0.540304958820343, 'testing', 1), ('pytorch/data', 0.5269789695739746, 'data', 0), ('samuelcolvin/python-devtools', 0.523003876209259, 'debug', 0), ('sumerc/yappi', 0.5229708552360535, 'profiling', 1), ('pypy/pypy', 0.5207717418670654, 'util', 0), ('cython/cython', 0.5145069360733032, 'util', 1), ('lcompilers/lpython', 0.5144882798194885, 'util', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5097584128379822, 'study', 0), ('pythonspeed/filprofiler', 0.5042270421981812, 'profiling', 0), ('facebookincubator/cinder', 0.5041605830192566, 'perf', 0), ('asweigart/pyperclip', 0.5013977885246277, 'util', 0)]
7
4
null
1.19
2
0
65
3
2
5
2
2
7
90
3.5
37
612
testing
https://github.com/pytest-dev/pytest-bdd
[]
null
[]
[]
null
null
null
pytest-dev/pytest-bdd
pytest-bdd
1,239
210
57
Python
https://pytest-bdd.readthedocs.io/en/latest/
BDD library for the py.test runner
pytest-dev
2024-01-13
2013-03-29
565
2.190705
https://avatars.githubusercontent.com/u/8897583?v=4
BDD library for the py.test runner
[]
[]
2023-12-02
[('behave/behave', 0.6536642909049988, 'testing', 0), ('nedbat/coveragepy', 0.6206257939338684, 'testing', 0), ('pmorissette/bt', 0.5979208946228027, 'finance', 0), ('ionelmc/pytest-benchmark', 0.5788668394088745, 'testing', 0), ('wolever/parameterized', 0.5707379579544067, 'testing', 0), ('libtcod/python-tcod', 0.5265241265296936, 'gamedev', 0), ('microsoft/playwright-python', 0.5180904865264893, 'testing', 0), ('pytoolz/toolz', 0.5150437355041504, 'util', 0), ('teemu/pytest-sugar', 0.5115352869033813, 'testing', 0), ('pyodide/pyodide', 0.5067077279090881, 'util', 0), ('alexmojaki/snoop', 0.5047500133514404, 'debug', 0)]
60
3
null
1.1
33
14
131
1
0
9
9
33
37
90
1.1
37
791
data
https://github.com/jsonpickle/jsonpickle
[]
null
[]
[]
null
null
null
jsonpickle/jsonpickle
jsonpickle
1,180
163
34
Python
https://jsonpickle.readthedocs.io/en/latest/
Python library for serializing any arbitrary object graph into JSON. It can take almost any Python object and turn the object into JSON. Additionally, it can reconstitute the object back into Python.
jsonpickle
2024-01-13
2009-12-10
737
1.599535
https://avatars.githubusercontent.com/u/165337?v=4
Python library for serializing any arbitrary object graph into JSON. It can take almost any Python object and turn the object into JSON. Additionally, it can reconstitute the object back into Python.
['bsd-3-clause', 'deserialization', 'json', 'objectstorage', 'pickle', 'serialization']
['bsd-3-clause', 'deserialization', 'json', 'objectstorage', 'pickle', 'serialization']
2023-12-03
[('marshmallow-code/marshmallow', 0.6203814744949341, 'util', 2), ('python-odin/odin', 0.6082868576049805, 'util', 1), ('uqfoundation/dill', 0.601097047328949, 'data', 0), ('brokenloop/jsontopydantic', 0.5869114398956299, 'util', 0), ('yukinarit/pyserde', 0.5483598113059998, 'util', 2), ('strawberry-graphql/strawberry', 0.5452963709831238, 'web', 0), ('graphistry/pygraphistry', 0.535290539264679, 'data', 0), ('tiangolo/sqlmodel', 0.5255077481269836, 'data', 1), ('lidatong/dataclasses-json', 0.5186536908149719, 'util', 1), ('plotly/plotly.py', 0.5167441964149475, 'viz', 0), ('lk-geimfari/mimesis', 0.5048171281814575, 'data', 1), ('scikit-hep/awkward-1.0', 0.500355064868927, 'data', 1)]
73
6
null
0.67
11
5
172
1
0
3
3
11
24
90
2.2
37
1,222
testing
https://github.com/ionelmc/pytest-benchmark
[]
null
[]
[]
null
null
null
ionelmc/pytest-benchmark
pytest-benchmark
1,158
115
19
Python
null
py.test fixture for benchmarking code
ionelmc
2024-01-12
2014-10-10
485
2.384819
null
py.test fixture for benchmarking code
['benchmark', 'benchmarking', 'performance', 'pytest']
['benchmark', 'benchmarking', 'performance', 'pytest']
2023-12-15
[('klen/py-frameworks-bench', 0.6951150298118591, 'perf', 1), ('pytest-dev/pytest', 0.6786613464355469, 'testing', 0), ('samuelcolvin/dirty-equals', 0.6507035493850708, 'util', 1), ('locustio/locust', 0.6405083537101746, 'testing', 2), ('teemu/pytest-sugar', 0.6360356211662292, 'testing', 1), ('pytest-dev/pytest-mock', 0.6237248182296753, 'testing', 1), ('nedbat/coveragepy', 0.6183704733848572, 'testing', 0), ('pytest-dev/pytest-xdist', 0.613385796546936, 'testing', 1), ('pmorissette/bt', 0.6115341186523438, 'finance', 0), ('computationalmodelling/nbval', 0.6038401126861572, 'jupyter', 1), ('wolever/parameterized', 0.6030191779136658, 'testing', 0), ('taverntesting/tavern', 0.5957930684089661, 'testing', 1), ('pytest-dev/pytest-bdd', 0.5788668394088745, 'testing', 0), ('pytest-dev/pytest-asyncio', 0.5777239203453064, 'testing', 0), ('pympler/pympler', 0.5586925148963928, 'perf', 0), ('rubik/radon', 0.554404079914093, 'util', 0), ('pyutils/line_profiler', 0.5505008101463318, 'profiling', 0), ('nteract/testbook', 0.5495516061782837, 'jupyter', 1), ('pypy/pypy', 0.5463877320289612, 'util', 0), ('samuelcolvin/pytest-pretty', 0.5456304550170898, 'testing', 1), ('spulec/freezegun', 0.5428466200828552, 'testing', 0), ('p403n1x87/austin', 0.540304958820343, 'profiling', 1), ('mrdbourke/m1-machine-learning-test', 0.5336135625839233, 'ml', 0), ('kiwicom/pytest-recording', 0.5216888785362244, 'testing', 1), ('alexmojaki/snoop', 0.5151593685150146, 'debug', 0), ('eugeneyan/python-collab-template', 0.5136798024177551, 'template', 0), ('getsentry/responses', 0.5085520148277283, 'testing', 0), ('pytest-dev/pytest-cov', 0.5074380040168762, 'testing', 1), ('benfred/py-spy', 0.5037754774093628, 'profiling', 0)]
41
6
null
0.29
11
6
113
1
0
2
2
11
20
90
1.8
37
442
gis
https://github.com/toblerity/fiona
[]
null
[]
[]
null
null
null
toblerity/fiona
Fiona
1,096
209
47
Python
https://fiona.readthedocs.io/
Fiona reads and writes geographic data files
toblerity
2024-01-10
2011-12-31
630
1.7385
https://avatars.githubusercontent.com/u/859968?v=4
Fiona reads and writes geographic data files
['cli', 'cython', 'gdal', 'gis', 'ogr', 'vector']
['cli', 'cython', 'gdal', 'gis', 'ogr', 'vector']
2023-12-17
[('rasterio/rasterio', 0.5375838279724121, 'gis', 4)]
72
3
null
2.04
23
18
147
1
8
10
8
23
33
90
1.4
37
1,467
term
https://github.com/1j01/textual-paint
[]
null
[]
[]
null
null
null
1j01/textual-paint
textual-paint
861
10
4
Python
https://pypi.org/project/textual-paint/
:art: MS Paint in your terminal.
1j01
2024-01-12
2023-04-10
42
20.430508
null
:art: MS Paint in your terminal.
['ansi-art', 'ansi-editor', 'artscene', 'ascii-art', 'bbs', 'drawing', 'image', 'image-editor', 'irc', 'mirc', 'mspaint', 'paint', 'pixel-art', 'pixel-editor', 'terminal', 'text-art', 'textual', 'tui']
['ansi-art', 'ansi-editor', 'artscene', 'ascii-art', 'bbs', 'drawing', 'image', 'image-editor', 'irc', 'mirc', 'mspaint', 'paint', 'pixel-art', 'pixel-editor', 'terminal', 'text-art', 'textual', 'tui']
2024-01-12
[('borisdayma/dalle-mini', 0.510983943939209, 'diffusion', 0)]
1
0
null
28.81
0
0
9
0
0
5
5
0
0
90
0
37
1,735
viz
https://github.com/pygraphviz/pygraphviz
[]
null
[]
[]
null
null
null
pygraphviz/pygraphviz
pygraphviz
717
200
36
C
https://pygraphviz.github.io/
Python interface to Graphviz graph drawing package
pygraphviz
2024-01-08
2013-08-02
547
1.309418
https://avatars.githubusercontent.com/u/5148488?v=4
Python interface to Graphviz graph drawing package
['complex-networks', 'graph-visualization', 'spec-0']
['complex-networks', 'graph-visualization', 'spec-0']
2024-01-08
[('westhealth/pyvis', 0.7577512264251709, 'graph', 0), ('pydot/pydot', 0.7296152114868164, 'viz', 0), ('networkx/networkx', 0.6983128786087036, 'graph', 3), ('graphistry/pygraphistry', 0.678774356842041, 'data', 1), ('plotly/plotly.py', 0.6489458680152893, 'viz', 0), ('artelys/geonetworkx', 0.5921590328216553, 'gis', 0), ('dmlc/dgl', 0.5841652154922485, 'ml-dl', 0), ('h4kor/graph-force', 0.571456253528595, 'graph', 0), ('graphql-python/graphene', 0.5481510162353516, 'web', 0), ('matplotlib/matplotlib', 0.5422382354736328, 'viz', 0), ('holoviz/hvplot', 0.5362616181373596, 'pandas', 0), ('vizzuhq/ipyvizzu', 0.5348131060600281, 'jupyter', 0), ('holoviz/holoviz', 0.5206543207168579, 'viz', 0), ('has2k1/plotnine', 0.5177363753318787, 'viz', 0), ('holoviz/panel', 0.5157747268676758, 'viz', 0), ('cuemacro/chartpy', 0.5139192342758179, 'viz', 0), ('bokeh/bokeh', 0.5085844993591309, 'viz', 0), ('altair-viz/altair', 0.5070845484733582, 'viz', 0), ('pyg-team/pytorch_geometric', 0.502930760383606, 'ml-dl', 0), ('stellargraph/stellargraph', 0.5024316310882568, 'graph', 0), ('kuanb/peartree', 0.5017895698547363, 'gis', 0), ('pyvista/pyvista', 0.5015963315963745, 'viz', 0), ('vmiklos/ged2dot', 0.5002699494361877, 'data', 0)]
53
5
null
1.04
34
23
127
0
3
2
3
34
59
90
1.7
37
1,704
util
https://github.com/mtkennerly/poetry-dynamic-versioning
['poetry']
null
[]
[]
null
null
null
mtkennerly/poetry-dynamic-versioning
poetry-dynamic-versioning
530
33
4
Python
null
Plugin for Poetry to enable dynamic versioning based on VCS tags
mtkennerly
2024-01-13
2019-06-06
242
2.183637
null
Plugin for Poetry to enable dynamic versioning based on VCS tags
['bazaar', 'darcs', 'dynamic-version', 'fossil', 'fossil-scm', 'git', 'mercurial', 'pijul', 'plugin', 'poetry', 'semantic-versioning', 'subversion', 'versioning']
['bazaar', 'darcs', 'dynamic-version', 'fossil', 'fossil-scm', 'git', 'mercurial', 'pijul', 'plugin', 'poetry', 'semantic-versioning', 'subversion', 'versioning']
2024-01-03
[('mtkennerly/dunamai', 0.7415024042129517, 'util', 11), ('tiangolo/poetry-version-plugin', 0.6403163075447083, 'util', 0), ('pypa/setuptools_scm', 0.6003091931343079, 'util', 2), ('python-versioneer/python-versioneer', 0.5653854012489319, 'util', 0), ('callowayproject/bump-my-version', 0.5595990419387817, 'util', 1), ('python-poetry/install.python-poetry.org', 0.5113168358802795, 'util', 1)]
13
3
null
1.1
13
12
56
0
11
13
11
13
34
90
2.6
37
1,861
sim
https://github.com/nvidia-omniverse/omniisaacgymenvs
['robot-learning']
null
[]
[]
null
null
null
nvidia-omniverse/omniisaacgymenvs
OmniIsaacGymEnvs
518
141
16
Python
null
Reinforcement Learning Environments for Omniverse Isaac Gym
nvidia-omniverse
2024-01-14
2022-06-01
86
5.963816
https://avatars.githubusercontent.com/u/57824658?v=4
Reinforcement Learning Environments for Omniverse Isaac Gym
[]
['robot-learning']
2023-12-08
[('nvidia-omniverse/isaacgymenvs', 0.8064512610435486, 'sim', 0), ('nvidia-omniverse/orbit', 0.6811214685440063, 'sim', 1), ('humancompatibleai/imitation', 0.6052762866020203, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.6047082543373108, 'ml-rl', 0), ('arise-initiative/robosuite', 0.5800082087516785, 'ml-rl', 1), ('openai/baselines', 0.5605931282043457, 'ml-rl', 0), ('inspirai/timechamber', 0.5575793981552124, 'sim', 0), ('pettingzoo-team/pettingzoo', 0.5554696917533875, 'ml-rl', 0), ('pytorch/rl', 0.5446157455444336, 'ml-rl', 0), ('unity-technologies/ml-agents', 0.5333084464073181, 'ml-rl', 0), ('kzl/decision-transformer', 0.5326739549636841, 'ml-rl', 0), ('thu-ml/tianshou', 0.5271867513656616, 'ml-rl', 0), ('shangtongzhang/reinforcement-learning-an-introduction', 0.5251854062080383, 'study', 0), ('facebookresearch/habitat-lab', 0.5088497400283813, 'sim', 0), ('google/dopamine', 0.5081252455711365, 'ml-rl', 0)]
6
1
null
1.4
59
17
20
1
0
4
4
59
151
90
2.6
37
1,527
llm
https://github.com/vahe1994/spqr
['falcon', 'llama', 'quantization', 'compression']
Quantization algorithm and the model evaluation code for SpQR method for LLM compression
[]
[]
null
null
null
vahe1994/spqr
SpQR
475
39
22
Python
null
null
vahe1994
2024-01-12
2023-06-05
34
13.912134
null
Quantization algorithm and the model evaluation code for SpQR method for LLM compression
[]
['compression', 'falcon', 'llama', 'quantization']
2023-11-13
[('opengvlab/omniquant', 0.6055932641029358, 'llm', 1), ('artidoro/qlora', 0.5260251760482788, 'llm', 0)]
8
5
null
0.52
8
4
7
2
0
0
0
8
5
90
0.6
37
556
gis
https://github.com/corteva/rioxarray
[]
null
[]
[]
null
null
null
corteva/rioxarray
rioxarray
455
69
16
Python
https://corteva.github.io/rioxarray
geospatial xarray extension powered by rasterio
corteva
2024-01-09
2019-04-16
250
1.82
https://avatars.githubusercontent.com/u/39543515?v=4
geospatial xarray extension powered by rasterio
['gdal', 'geospatial', 'gis', 'netcdf', 'raster', 'rasterio', 'xarray']
['gdal', 'geospatial', 'gis', 'netcdf', 'raster', 'rasterio', 'xarray']
2023-12-29
[('osgeo/gdal', 0.5278557538986206, 'gis', 1), ('rasterio/rasterio', 0.5225644707679749, 'gis', 3), ('makepath/xarray-spatial', 0.511622428894043, 'gis', 1), ('cogeotiff/rio-tiler', 0.5002418756484985, 'gis', 3)]
33
7
null
1
30
12
58
0
4
14
4
30
37
90
1.2
37
1,700
template
https://github.com/asacristani/fastapi-rocket-boilerplate
[]
null
[]
[]
null
null
null
asacristani/fastapi-rocket-boilerplate
fastapi-rocket-boilerplate
370
56
6
Python
null
πŸπŸ’¨ FastAPI Rocket Boilerplate to build an API based in Python with its most modern technologies!
asacristani
2024-01-10
2023-09-20
18
19.621212
null
πŸπŸ’¨ FastAPI Rocket Boilerplate to build an API based in Python with its most modern technologies!
['boilerplate', 'boilerplate-backend', 'fastapi']
['boilerplate', 'boilerplate-backend', 'fastapi']
2023-10-16
[('tiangolo/fastapi', 0.7025260925292969, 'web', 1), ('fastai/fastcore', 0.6752527952194214, 'util', 0), ('rawheel/fastapi-boilerplate', 0.6740272045135498, 'web', 2), ('s3rius/fastapi-template', 0.6634681224822998, 'web', 1), ('vitalik/django-ninja', 0.6605289578437805, 'web', 0), ('dmontagu/fastapi_client', 0.6545476913452148, 'web', 0), ('koxudaxi/fastapi-code-generator', 0.607068657875061, 'web', 1), ('starlite-api/starlite', 0.5981463193893433, 'web', 0), ('hugapi/hug', 0.5935749411582947, 'util', 0), ('python-restx/flask-restx', 0.5854663848876953, 'web', 0), ('tiangolo/full-stack-fastapi-postgresql', 0.5566263198852539, 'template', 1), ('falconry/falcon', 0.5512214303016663, 'web', 0), ('lk-geimfari/mimesis', 0.5495461225509644, 'data', 0), ('janetech-inc/fast-api-admin-template', 0.5484818816184998, 'template', 0), ('awtkns/fastapi-crudrouter', 0.5432131886482239, 'web', 1), ('fastapi-users/fastapi-users', 0.5379810333251953, 'web', 1), ('willmcgugan/textual', 0.5363441109657288, 'term', 0), ('pyston/pyston', 0.5267325639724731, 'util', 0), ('kubeflow/fairing', 0.5263985991477966, 'ml-ops', 0), ('ml-tooling/opyrator', 0.5223199725151062, 'viz', 1), ('zhanymkanov/fastapi-best-practices', 0.5217467546463013, 'study', 1), ('alirn76/panther', 0.5177244544029236, 'web', 0), ('pypy/pypy', 0.508145809173584, 'util', 0), ('airtai/faststream', 0.5075085759162903, 'perf', 0), ('urwid/urwid', 0.5037996172904968, 'term', 0), ('pdoc3/pdoc', 0.502884566783905, 'util', 0), ('pytoolz/toolz', 0.5019211769104004, 'util', 0), ('martinheinz/python-project-blueprint', 0.5014850497245789, 'template', 1)]
5
2
null
0.83
4
1
4
3
1
3
1
4
3
90
0.8
37
1,455
util
https://github.com/conda/conda-build
['conda']
null
[]
[]
null
null
null
conda/conda-build
conda-build
356
403
51
Python
https://docs.conda.io/projects/conda-build/
Commands and tools for building conda packages
conda
2024-01-14
2014-01-17
523
0.679945
https://avatars.githubusercontent.com/u/6392739?v=4
Commands and tools for building conda packages
['conda', 'conda-build', 'package-management']
['conda', 'conda-build', 'package-management']
2024-01-10
[('conda/constructor', 0.8005626201629639, 'util', 1), ('mamba-org/boa', 0.7872036695480347, 'util', 1), ('mamba-org/quetz', 0.7619379758834839, 'util', 1), ('conda/conda-pack', 0.7299324870109558, 'util', 1), ('mamba-org/mamba', 0.6777679920196533, 'util', 1), ('mamba-org/gator', 0.6426661014556885, 'jupyter', 1), ('pypa/hatch', 0.5962553024291992, 'util', 0), ('conda/conda', 0.5913727283477783, 'util', 2), ('pomponchik/instld', 0.5880274772644043, 'util', 0), ('mamba-org/micromamba-docker', 0.5653933882713318, 'util', 1), ('conda-forge/feedstocks', 0.5539048314094543, 'util', 1), ('conda-forge/conda-smithy', 0.5523984432220459, 'util', 0), ('indygreg/pyoxidizer', 0.5000386834144592, 'util', 0)]
244
3
null
4.15
391
335
122
0
9
25
9
390
208
90
0.5
37
1,761
data
https://github.com/tconbeer/sqlfmt
['code-quality']
null
[]
[]
1
null
null
tconbeer/sqlfmt
sqlfmt
307
11
3
Python
https://sqlfmt.com
sqlfmt formats your dbt SQL files so you don't have to
tconbeer
2024-01-11
2021-07-19
132
2.323243
null
sqlfmt formats your dbt SQL files so you don't have to
['dbt', 'formatter', 'sql']
['code-quality', 'dbt', 'formatter', 'sql']
2024-01-12
[('tconbeer/harlequin', 0.569164514541626, 'term', 1), ('databricks/dbt-databricks', 0.5048282146453857, 'data', 2)]
12
5
null
2.1
56
41
30
0
16
19
16
56
49
90
0.9
37
1,357
gis
https://github.com/raphaelquast/eomaps
[]
null
[]
[]
null
null
null
raphaelquast/eomaps
EOmaps
284
20
5
Python
https://eomaps.readthedocs.io/
A library to create interactive maps of geographical datasets
raphaelquast
2024-01-13
2021-09-27
122
2.325146
null
A library to create interactive maps of geographical datasets
['cartopy', 'earth-observation', 'geospatial', 'gis', 'interactive-maps', 'interactive-visualization', 'mapping', 'matplotlib', 'plotting', 'visualization']
['cartopy', 'earth-observation', 'geospatial', 'gis', 'interactive-maps', 'interactive-visualization', 'mapping', 'matplotlib', 'plotting', 'visualization']
2023-12-20
[('residentmario/geoplot', 0.707546055316925, 'gis', 1), ('scitools/cartopy', 0.6839972138404846, 'gis', 2), ('opengeos/leafmap', 0.6778762936592102, 'gis', 3), ('holoviz/geoviews', 0.6664366126060486, 'gis', 2), ('giswqs/geemap', 0.6554696559906006, 'gis', 3), ('gregorhd/mapcompare', 0.625028669834137, 'gis', 0), ('geopandas/geopandas', 0.6084570288658142, 'gis', 2), ('marceloprates/prettymaps', 0.6013832688331604, 'viz', 1), ('visgl/deck.gl', 0.6003251075744629, 'viz', 1), ('artelys/geonetworkx', 0.585459291934967, 'gis', 0), ('bokeh/bokeh', 0.5836126804351807, 'viz', 2), ('plotly/plotly.py', 0.581186056137085, 'viz', 1), ('earthlab/earthpy', 0.5780810713768005, 'gis', 0), ('pyproj4/pyproj', 0.5670640468597412, 'gis', 1), ('domlysz/blendergis', 0.5599436163902283, 'gis', 2), ('scitools/iris', 0.5512466430664062, 'gis', 0), ('hazyresearch/meerkat', 0.543424129486084, 'viz', 0), ('python-visualization/folium', 0.5424359440803528, 'gis', 0), ('holoviz/holoviz', 0.5355204343795776, 'viz', 0), ('mwaskom/seaborn', 0.531478226184845, 'viz', 1), ('altair-viz/altair', 0.5242673754692078, 'viz', 1), ('nomic-ai/deepscatter', 0.5207083225250244, 'viz', 1), ('man-group/dtale', 0.5189169049263, 'viz', 1), ('imageio/imageio', 0.514751672744751, 'util', 0), ('pandas-dev/pandas', 0.5139701962471008, 'pandas', 0), ('isl-org/open3d', 0.5115019679069519, 'sim', 1), ('holoviz/panel', 0.5107569098472595, 'viz', 1), ('matplotlib/matplotlib', 0.5100708603858948, 'viz', 2), ('darribas/gds_env', 0.5032002329826355, 'gis', 0), ('fatiando/verde', 0.5024335384368896, 'gis', 1), ('holoviz/hvplot', 0.5002750754356384, 'pandas', 1)]
6
3
null
22.73
37
27
28
1
25
33
25
37
61
90
1.6
37
582
ml
https://github.com/merantix-momentum/squirrel-core
[]
null
[]
[]
null
null
null
merantix-momentum/squirrel-core
squirrel-core
271
8
14
Python
https://squirrel-core.readthedocs.io/
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:
merantix-momentum
2024-01-05
2022-02-11
102
2.642061
https://avatars.githubusercontent.com/u/98414099?v=4
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way 🌰
['ai', 'cloud-computing', 'collaboration', 'computer-vision', 'cv', 'data-ingestion', 'data-mesh', 'data-science', 'dataops', 'datasets', 'deep-learning', 'distributed', 'jax', 'machine-learning', 'ml', 'natural-language-processing', 'nlp', 'pytorch', 'tensorflow']
['ai', 'cloud-computing', 'collaboration', 'computer-vision', 'cv', 'data-ingestion', 'data-mesh', 'data-science', 'dataops', 'datasets', 'deep-learning', 'distributed', 'jax', 'machine-learning', 'ml', 'natural-language-processing', 'nlp', 'pytorch', 'tensorflow']
2024-01-04
[('eventual-inc/daft', 0.6807416081428528, 'pandas', 3), ('huggingface/datasets', 0.6653859615325928, 'nlp', 8), ('gradio-app/gradio', 0.6419711709022522, 'viz', 3), ('tensorflow/tensorflow', 0.6386204957962036, 'ml-dl', 5), ('mlflow/mlflow', 0.63669753074646, 'ml-ops', 3), ('kubeflow/fairing', 0.6223782300949097, 'ml-ops', 0), ('dylanhogg/awesome-python', 0.6165292263031006, 'study', 5), ('ray-project/ray', 0.6162523627281189, 'ml-ops', 6), ('polyaxon/polyaxon', 0.6144108772277832, 'ml-ops', 6), ('horovod/horovod', 0.6060230135917664, 'ml-ops', 4), ('wandb/client', 0.5987028479576111, 'ml', 7), ('featurelabs/featuretools', 0.5986401438713074, 'ml', 2), ('determined-ai/determined', 0.5961888432502747, 'ml-ops', 5), ('aws/sagemaker-python-sdk', 0.5961750149726868, 'ml', 3), ('polyaxon/datatile', 0.5911334156990051, 'pandas', 4), ('dagworks-inc/hamilton', 0.5907508730888367, 'ml-ops', 2), ('fmind/mlops-python-package', 0.5865539312362671, 'template', 2), ('huggingface/transformers', 0.5804790258407593, 'nlp', 7), ('uber/petastorm', 0.5779027938842773, 'data', 4), ('backtick-se/cowait', 0.5777786374092102, 'util', 1), ('fastai/fastcore', 0.572002649307251, 'util', 0), ('pycaret/pycaret', 0.5700594782829285, 'ml', 3), ('huggingface/huggingface_hub', 0.5627287030220032, 'ml', 4), ('krzjoa/awesome-python-data-science', 0.5624656081199646, 'study', 3), ('tensorlayer/tensorlayer', 0.5620189905166626, 'ml-rl', 2), ('onnx/onnx', 0.5616537928581238, 'ml', 5), ('googlecloudplatform/vertex-ai-samples', 0.5609938502311707, 'ml', 3), ('nevronai/metisfl', 0.560804009437561, 'ml', 2), ('firmai/industry-machine-learning', 0.5604248642921448, 'study', 2), ('netflix/metaflow', 0.560415506362915, 'ml-ops', 4), ('explosion/thinc', 0.5592201352119446, 'ml-dl', 8), ('ml-tooling/opyrator', 0.5560594797134399, 'viz', 1), ('rasbt/mlxtend', 0.5547300577163696, 'ml', 2), ('activeloopai/deeplake', 0.5520520210266113, 'ml-ops', 10), ('microsoft/nni', 0.5516149401664734, 'ml', 6), ('online-ml/river', 0.5505257248878479, 'ml', 2), ('adap/flower', 0.5503032803535461, 'ml-ops', 5), ('uber/fiber', 0.5499705672264099, 'data', 1), ('tensorflow/tensor2tensor', 0.5476986765861511, 'ml', 2), ('orchest/orchest', 0.5455144643783569, 'ml-ops', 2), ('bentoml/bentoml', 0.5453324913978577, 'ml-ops', 3), ('whylabs/whylogs', 0.5451236367225647, 'util', 3), ('microsoft/onnxruntime', 0.5414808392524719, 'ml', 4), ('keras-team/keras', 0.5407350659370422, 'ml-dl', 6), ('fugue-project/fugue', 0.5387210845947266, 'pandas', 2), ('eleutherai/pyfra', 0.53780198097229, 'ml', 0), ('airbnb/knowledge-repo', 0.537761390209198, 'data', 1), ('nvidia/deeplearningexamples', 0.5371223092079163, 'ml-dl', 5), ('epistasislab/tpot', 0.5355274081230164, 'ml', 2), ('ploomber/ploomber', 0.5347124338150024, 'ml-ops', 2), ('mage-ai/mage-ai', 0.5338592529296875, 'ml-ops', 2), ('falconry/falcon', 0.5313084721565247, 'web', 0), ('explosion/spacy', 0.5305957198143005, 'nlp', 6), ('pandas-dev/pandas', 0.5296874046325684, 'pandas', 1), ('flyteorg/flyte', 0.5294408798217773, 'ml-ops', 3), ('pytorch/rl', 0.527829647064209, 'ml-rl', 3), ('intel/intel-extension-for-pytorch', 0.5278235077857971, 'perf', 3), ('avaiga/taipy', 0.5268411636352539, 'data', 0), ('kestra-io/kestra', 0.5266260504722595, 'ml-ops', 0), ('lightly-ai/lightly', 0.5261020660400391, 'ml', 4), ('google-research/language', 0.5260434150695801, 'nlp', 2), ('jina-ai/jina', 0.5257314443588257, 'ml', 2), ('streamlit/streamlit', 0.5240601897239685, 'viz', 3), ('rasbt/machine-learning-book', 0.5238132476806641, 'study', 3), ('ashleve/lightning-hydra-template', 0.5204800367355347, 'util', 2), ('rasahq/rasa', 0.5163630247116089, 'llm', 3), ('kubeflow-kale/kale', 0.5156881809234619, 'ml-ops', 1), ('aimhubio/aim', 0.5153231024742126, 'ml-ops', 6), ('airbytehq/airbyte', 0.5148383975028992, 'data', 0), ('keras-team/autokeras', 0.5147408246994019, 'ml-dl', 3), ('dagster-io/dagster', 0.5139255523681641, 'ml-ops', 1), ('scikit-learn-contrib/imbalanced-learn', 0.5136831998825073, 'ml', 2), ('scikit-learn/scikit-learn', 0.5131182670593262, 'ml', 2), ('superduperdb/superduperdb', 0.5102357268333435, 'data', 3), ('keras-team/keras-nlp', 0.5084515810012817, 'nlp', 5), ('google/mediapipe', 0.5076141953468323, 'ml', 3), ('databrickslabs/dolly', 0.5068414807319641, 'llm', 0), ('google/tf-quant-finance', 0.5065999031066895, 'finance', 1), ('meltano/meltano', 0.506161093711853, 'ml-ops', 1), ('drivendata/cookiecutter-data-science', 0.5045228004455566, 'template', 3), ('willmcgugan/textual', 0.50379478931427, 'term', 0), ('agronholm/apscheduler', 0.5034119486808777, 'util', 0), ('tensorly/tensorly', 0.5030725002288818, 'ml-dl', 4), ('jovianml/opendatasets', 0.5021243095397949, 'data', 3), ('microsoft/deepspeed', 0.5016716122627258, 'ml-dl', 3), ('pytables/pytables', 0.5015002489089966, 'data', 0), ('apache/incubator-mxnet', 0.500947892665863, 'ml-dl', 0), ('reloadware/reloadium', 0.5004510283470154, 'profiling', 1), ('microsoft/flaml', 0.5003235340118408, 'ml', 4)]
16
6
null
0.4
33
30
23
0
7
10
7
33
42
90
1.3
37
1,458
util
https://github.com/mamba-org/micromamba-docker
[]
null
[]
[]
null
null
null
mamba-org/micromamba-docker
micromamba-docker
232
41
11
Shell
null
Rapid builds of small Conda-based containers using micromamba.
mamba-org
2024-01-13
2021-01-22
157
1.472348
https://avatars.githubusercontent.com/u/66118895?v=4
Rapid builds of small Conda-based containers using micromamba.
['build', 'ci', 'conda', 'container', 'docker', 'dockerfile', 'environment', 'mamba', 'micromamba']
['build', 'ci', 'conda', 'container', 'docker', 'dockerfile', 'environment', 'mamba', 'micromamba']
2024-01-11
[('mamba-org/boa', 0.6690220236778259, 'util', 2), ('conda/conda-build', 0.5653933882713318, 'util', 1), ('darribas/gds_env', 0.5356658697128296, 'gis', 1), ('mamba-org/quetz', 0.5259016752243042, 'util', 1)]
18
7
null
2.67
34
33
36
0
18
11
18
34
42
90
1.2
37
1,614
llm
https://github.com/tiger-ai-lab/mammoth
['instruction-tuning']
null
[]
[]
null
null
null
tiger-ai-lab/mammoth
MAmmoTH
221
23
11
Jupyter Notebook
null
This repo contains the code and data for "MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning"
tiger-ai-lab
2024-01-12
2023-09-06
20
10.59589
https://avatars.githubusercontent.com/u/144196744?v=4
This repo contains the code and data for "MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning"
[]
['instruction-tuning']
2024-01-13
[('declare-lab/instruct-eval', 0.6364500522613525, 'llm', 0), ('yizhongw/self-instruct', 0.5941129922866821, 'llm', 1), ('tatsu-lab/stanford_alpaca', 0.5743323564529419, 'llm', 0), ('instruction-tuning-with-gpt-4/gpt-4-llm', 0.5739008784294128, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5284292697906494, 'llm', 1), ('hiyouga/llama-factory', 0.5284292697906494, 'llm', 1)]
4
3
null
0.98
18
13
4
0
0
0
0
18
25
90
1.4
37
1,453
util
https://github.com/conda-forge/conda-smithy
[]
null
[]
[]
null
null
null
conda-forge/conda-smithy
conda-smithy
140
173
25
Python
https://conda-forge.org/
The tool for managing conda-forge feedstocks.
conda-forge
2024-01-05
2015-04-11
459
0.304726
https://avatars.githubusercontent.com/u/11897326?v=4
The tool for managing conda-forge feedstocks.
['continuous-integration']
['continuous-integration']
2024-01-11
[('conda-forge/feedstocks', 0.8073468208312988, 'util', 0), ('conda/conda-build', 0.5523984432220459, 'util', 0), ('conda/conda-pack', 0.5372809767723083, 'util', 0), ('mamba-org/quetz', 0.5191918015480042, 'util', 0), ('mamba-org/mamba', 0.5094754695892334, 'util', 0)]
112
3
null
6.65
61
48
107
0
19
24
19
61
174
90
2.9
37
101
nlp
https://github.com/clips/pattern
[]
null
[]
[]
null
null
null
clips/pattern
pattern
8,609
1,600
544
Python
https://github.com/clips/pattern/wiki
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
clips
2024-01-13
2011-05-03
665
12.945865
https://avatars.githubusercontent.com/u/765924?v=4
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
['machine-learning', 'natural-language-processing', 'network-analysis', 'sentiment-analysis', 'web-mining', 'wordnet']
['machine-learning', 'natural-language-processing', 'network-analysis', 'sentiment-analysis', 'web-mining', 'wordnet']
2020-04-25
[('alirezamika/autoscraper', 0.7112637758255005, 'data', 1), ('scrapy/scrapy', 0.667265772819519, 'data', 0), ('webpy/webpy', 0.6514905095100403, 'web', 0), ('rasbt/mlxtend', 0.6350256204605103, 'ml', 1), ('roniemartinez/dude', 0.6342862844467163, 'util', 0), ('sloria/textblob', 0.6183449029922485, 'nlp', 1), ('masoniteframework/masonite', 0.6094305515289307, 'web', 0), ('plotly/dash', 0.5705082416534424, 'viz', 0), ('nv7-github/googlesearch', 0.5700188279151917, 'util', 0), ('holoviz/panel', 0.5649107098579407, 'viz', 0), ('gradio-app/gradio', 0.5603600144386292, 'viz', 1), ('pallets/flask', 0.5583645105361938, 'web', 0), ('requests/toolbelt', 0.5543271899223328, 'util', 0), ('eleutherai/pyfra', 0.5541388988494873, 'ml', 0), ('explosion/spacy', 0.5512140989303589, 'nlp', 2), ('dylanhogg/awesome-python', 0.5490561723709106, 'study', 2), ('reflex-dev/reflex', 0.547705352306366, 'web', 0), ('1200wd/bitcoinlib', 0.5464682579040527, 'crypto', 0), ('ranaroussi/quantstats', 0.5454891324043274, 'finance', 0), ('binux/pyspider', 0.5396731495857239, 'data', 0), ('falconry/falcon', 0.5375832915306091, 'web', 0), ('googleapis/google-api-python-client', 0.5339103937149048, 'util', 0), ('online-ml/river', 0.5316668152809143, 'ml', 1), ('seleniumbase/seleniumbase', 0.5308951735496521, 'testing', 0), ('bottlepy/bottle', 0.5306470990180969, 'web', 0), ('eliasdabbas/advertools', 0.5270535349845886, 'data', 0), ('willmcgugan/textual', 0.5270101428031921, 'term', 0), ('scikit-learn/scikit-learn', 0.524055540561676, 'ml', 1), ('pemistahl/lingua-py', 0.5218809247016907, 'nlp', 1), ('krzjoa/awesome-python-data-science', 0.5186637043952942, 'study', 1), ('polyaxon/datatile', 0.5179307460784912, 'pandas', 0), ('gbeced/pyalgotrade', 0.5164464712142944, 'finance', 0), ('uberi/speech_recognition', 0.5162601470947266, 'ml', 0), ('goldmansachs/gs-quant', 0.5158860087394714, 'finance', 0), ('pylons/pyramid', 0.5145288705825806, 'web', 0), ('wesm/pydata-book', 0.5136392116546631, 'study', 0), ('klen/muffin', 0.5102404356002808, 'web', 0), ('quantconnect/lean', 0.5098506808280945, 'finance', 0), ('pytoolz/toolz', 0.5079754590988159, 'util', 0), ('pyodide/pyodide', 0.5079214572906494, 'util', 0), ('ta-lib/ta-lib-python', 0.5062140226364136, 'finance', 0), ('r0x0r/pywebview', 0.5047861933708191, 'gui', 0), ('pallets/werkzeug', 0.5018793344497681, 'web', 0), ('pandas-dev/pandas', 0.5012263655662537, 'pandas', 0), ('cherrypy/cherrypy', 0.500634491443634, 'web', 0), ('probml/pyprobml', 0.5005698204040527, 'ml', 1)]
30
6
null
0
2
0
155
45
0
0
0
2
1
90
0.5
36
137
nlp
https://github.com/ddangelov/top2vec
[]
null
[]
[]
null
null
null
ddangelov/top2vec
Top2Vec
2,768
363
40
Python
null
Top2Vec learns jointly embedded topic, document and word vectors.
ddangelov
2024-01-13
2020-03-20
201
13.732105
null
Top2Vec learns jointly embedded topic, document and word vectors.
['bert', 'document-embedding', 'pre-trained-language-models', 'semantic-search', 'sentence-encoder', 'sentence-transformers', 'text-search', 'text-semantic-similarity', 'top2vec', 'topic-modeling', 'topic-modelling', 'topic-search', 'topic-vector', 'word-embeddings']
['bert', 'document-embedding', 'pre-trained-language-models', 'semantic-search', 'sentence-encoder', 'sentence-transformers', 'text-search', 'text-semantic-similarity', 'top2vec', 'topic-modeling', 'topic-modelling', 'topic-search', 'topic-vector', 'word-embeddings']
2023-11-16
[('sebischair/lbl2vec', 0.8003798723220825, 'nlp', 1), ('paddlepaddle/paddlenlp', 0.6133404970169067, 'llm', 1), ('neuml/txtai', 0.608359694480896, 'nlp', 1), ('maartengr/bertopic', 0.6046782732009888, 'nlp', 3), ('rare-technologies/gensim', 0.59908527135849, 'nlp', 2), ('muennighoff/sgpt', 0.5922024846076965, 'llm', 1), ('llmware-ai/llmware', 0.5913721323013306, 'llm', 2), ('jina-ai/clip-as-service', 0.5902553796768188, 'nlp', 1), ('jina-ai/finetuner', 0.587577760219574, 'ml', 1), ('plasticityai/magnitude', 0.584179162979126, 'nlp', 1), ('koaning/whatlies', 0.5833550095558167, 'nlp', 0), ('ukplab/sentence-transformers', 0.5732832551002502, 'nlp', 1), ('alibaba/easynlp', 0.5686218738555908, 'nlp', 1), ('amansrivastava17/embedding-as-service', 0.5621562600135803, 'nlp', 1), ('graykode/nlp-tutorial', 0.5482358932495117, 'study', 1), ('jonasgeiping/cramming', 0.5433996915817261, 'nlp', 0), ('extreme-bert/extreme-bert', 0.5432024598121643, 'llm', 1), ('jina-ai/vectordb', 0.5428557395935059, 'data', 0), ('deepset-ai/farm', 0.5399625897407532, 'nlp', 1), ('chroma-core/chroma', 0.5397540330886841, 'data', 0), ('intellabs/fastrag', 0.527250349521637, 'nlp', 2), ('ai21labs/in-context-ralm', 0.5187664031982422, 'llm', 0), ('qdrant/fastembed', 0.5031333565711975, 'ml', 0)]
2
0
null
0.54
11
3
46
2
7
7
7
11
7
90
0.6
36
685
ml-dl
https://github.com/nerdyrodent/vqgan-clip
[]
null
[]
[]
null
null
null
nerdyrodent/vqgan-clip
VQGAN-CLIP
2,537
423
53
Python
null
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.
nerdyrodent
2024-01-12
2021-07-02
134
18.852442
null
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.
['text-to-image', 'text2image']
['text-to-image', 'text2image']
2022-10-02
[]
7
2
null
0
5
2
31
16
0
0
0
5
4
90
0.8
36
725
study
https://github.com/amanchadha/coursera-deep-learning-specialization
[]
null
[]
[]
null
null
null
amanchadha/coursera-deep-learning-specialization
coursera-deep-learning-specialization
2,459
1,925
25
Jupyter Notebook
null
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models
amanchadha
2024-01-13
2020-06-24
187
13.089734
null
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks and Deep Learning; (ii) Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization; (iii) Structuring Machine Learning Projects; (iv) Convolutional Neural Networks; (v) Sequence Models
['andrew-ng', 'andrew-ng-course', 'cnns', 'convolutional-neural-network', 'convolutional-neural-networks', 'coursera', 'coursera-assignment', 'coursera-machine-learning', 'coursera-specialization', 'deep-learning', 'hyperparameter-optimization', 'hyperparameter-tuning', 'neural-machine-translation', 'neural-network', 'neural-networks', 'neural-style-transfer', 'recurrent-neural-network', 'recurrent-neural-networks', 'regularization', 'rnns']
['andrew-ng', 'andrew-ng-course', 'cnns', 'convolutional-neural-network', 'convolutional-neural-networks', 'coursera', 'coursera-assignment', 'coursera-machine-learning', 'coursera-specialization', 'deep-learning', 'hyperparameter-optimization', 'hyperparameter-tuning', 'neural-machine-translation', 'neural-network', 'neural-networks', 'neural-style-transfer', 'recurrent-neural-network', 'recurrent-neural-networks', 'regularization', 'rnns']
2024-01-12
[('udacity/deep-learning-v2-pytorch', 0.6206496357917786, 'study', 2), ('alirezadir/machine-learning-interview-enlightener', 0.6021793484687805, 'study', 1), ('mrdbourke/tensorflow-deep-learning', 0.592336118221283, 'study', 1), ('mosaicml/composer', 0.5713127255439758, 'ml-dl', 3), ('explosion/thinc', 0.5682108998298645, 'ml-dl', 1), ('onnx/onnx', 0.5587916970252991, 'ml', 2), ('mrdbourke/zero-to-mastery-ml', 0.5553426742553711, 'study', 1), ('jindongwang/transferlearning', 0.5513812899589539, 'ml', 1), ('keras-team/keras', 0.5479432940483093, 'ml-dl', 2), ('rwightman/pytorch-image-models', 0.5459620952606201, 'ml-dl', 0), ('ddbourgin/numpy-ml', 0.5457329154014587, 'ml', 1), ('bentoml/bentoml', 0.540047824382782, 'ml-ops', 1), ('mrdbourke/pytorch-deep-learning', 0.5357545614242554, 'study', 1), ('nyandwi/modernconvnets', 0.5350536704063416, 'ml-dl', 3), ('christoschristofidis/awesome-deep-learning', 0.5327649116516113, 'study', 2), ('tensorlayer/tensorlayer', 0.5279957056045532, 'ml-rl', 2), ('keras-rl/keras-rl', 0.5269455909729004, 'ml-rl', 1), ('nvidia/deeplearningexamples', 0.5228648781776428, 'ml-dl', 1), ('alpa-projects/alpa', 0.5197420120239258, 'ml-dl', 1), ('thilinarajapakse/simpletransformers', 0.5146978497505188, 'nlp', 0), ('milvus-io/bootcamp', 0.5138573050498962, 'data', 1), ('lutzroeder/netron', 0.5117756128311157, 'ml', 2), ('tensorflow/tensorflow', 0.5084401369094849, 'ml-dl', 2), ('tensorflow/tensor2tensor', 0.5060564875602722, 'ml', 1), ('graykode/nlp-tutorial', 0.5051466226577759, 'study', 0), ('keras-team/autokeras', 0.5036728382110596, 'ml-dl', 1), ('huggingface/autotrain-advanced', 0.500561535358429, 'ml', 1)]
8
2
null
0.04
4
1
43
0
0
0
0
4
0
90
0
36
235
nlp
https://github.com/salesforce/codet5
[]
null
[]
[]
null
null
null
salesforce/codet5
CodeT5
2,438
381
40
Python
https://arxiv.org/abs/2305.07922
Home of CodeT5: Open Code LLMs for Code Understanding and Generation
salesforce
2024-01-14
2021-08-16
128
19.025641
https://avatars.githubusercontent.com/u/453694?v=4
Home of CodeT5: Open Code LLMs for Code Understanding and Generation
['code-generation', 'code-intelligence', 'code-understanding', 'language-model', 'large-language-models']
['code-generation', 'code-intelligence', 'code-understanding', 'language-model', 'large-language-models']
2023-07-21
[('thudm/codegeex', 0.6897627115249634, 'llm', 1), ('salesforce/codegen', 0.6593608856201172, 'nlp', 0), ('ludwig-ai/ludwig', 0.6258037686347961, 'ml-ops', 0), ('alpha-vllm/llama2-accessory', 0.6213086843490601, 'llm', 0), ('salesforce/xgen', 0.6172817945480347, 'llm', 2), ('eugeneyan/open-llms', 0.6007983088493347, 'study', 1), ('nomic-ai/gpt4all', 0.5974037051200867, 'llm', 1), ('young-geng/easylm', 0.591428816318512, 'llm', 2), ('bigcode-project/starcoder', 0.5859589576721191, 'llm', 1), ('conceptofmind/toolformer', 0.5832077264785767, 'llm', 1), ('tigerlab-ai/tiger', 0.5818438529968262, 'llm', 1), ('hegelai/prompttools', 0.580586850643158, 'llm', 1), ('mooler0410/llmspracticalguide', 0.5782813429832458, 'study', 1), ('h2oai/h2o-llmstudio', 0.5726329684257507, 'llm', 0), ('argilla-io/argilla', 0.5648234486579895, 'nlp', 0), ('dylanhogg/llmgraph', 0.563266396522522, 'ml', 0), ('hwchase17/langchain', 0.5549836158752441, 'llm', 1), ('hiyouga/llama-factory', 0.5533753633499146, 'llm', 2), ('hiyouga/llama-efficient-tuning', 0.5533753037452698, 'llm', 2), ('lupantech/chameleon-llm', 0.551190972328186, 'llm', 1), ('citadel-ai/langcheck', 0.5499178171157837, 'llm', 1), ('eth-sri/lmql', 0.5481631755828857, 'llm', 1), ('nat/openplayground', 0.5432443022727966, 'llm', 1), ('microsoft/promptflow', 0.5427641868591309, 'llm', 0), ('bobazooba/xllm', 0.5426592826843262, 'llm', 1), ('agenta-ai/agenta', 0.5426530241966248, 'llm', 1), ('nebuly-ai/nebullvm', 0.5400938987731934, 'perf', 1), ('eleutherai/the-pile', 0.5400211811065674, 'data', 0), ('llmware-ai/llmware', 0.5333616733551025, 'llm', 1), ('shishirpatil/gorilla', 0.5298489332199097, 'llm', 0), ('juncongmoo/pyllama', 0.5293552875518799, 'llm', 0), ('bentoml/openllm', 0.5279268622398376, 'ml-ops', 0), ('next-gpt/next-gpt', 0.5271520614624023, 'llm', 1), ('intel/intel-extension-for-transformers', 0.5260124802589417, 'perf', 0), ('night-chen/toolqa', 0.525848388671875, 'llm', 1), ('thudm/chatglm2-6b', 0.524960994720459, 'llm', 1), ('facebookresearch/codellama', 0.5207399725914001, 'llm', 1), ('lianjiatech/belle', 0.5200687050819397, 'llm', 0), ('ibm/dromedary', 0.5191128253936768, 'llm', 1), ('modularml/mojo', 0.518414318561554, 'util', 0), ('confident-ai/deepeval', 0.5176749229431152, 'testing', 1), ('bigscience-workshop/petals', 0.5150795578956604, 'data', 1), ('embedchain/embedchain', 0.5125962495803833, 'llm', 0), ('ravenscroftj/turbopilot', 0.5119407773017883, 'llm', 1), ('numba/llvmlite', 0.5081905126571655, 'util', 0), ('openbmb/toolbench', 0.5070496201515198, 'llm', 0), ('openai/evals', 0.503447949886322, 'llm', 1), ('run-llama/llama-lab', 0.5031118392944336, 'llm', 1), ('li-plus/chatglm.cpp', 0.5017570853233337, 'llm', 1), ('lastmile-ai/aiconfig', 0.500541627407074, 'util', 0)]
3
1
null
0.44
14
3
29
6
0
0
0
14
9
90
0.6
36
1,326
util
https://github.com/scrapinghub/dateparser
['date', 'datetime', 'parsing']
null
[]
[]
null
null
null
scrapinghub/dateparser
dateparser
2,408
462
134
Python
null
python parser for human readable dates
scrapinghub
2024-01-13
2014-11-24
479
5.025641
https://avatars.githubusercontent.com/u/699596?v=4
python parser for human readable dates
[]
['date', 'datetime', 'parsing']
2023-12-21
[('dateutil/dateutil', 0.7123557329177856, 'util', 2), ('sdispater/pendulum', 0.6702179908752441, 'util', 2), ('arrow-py/arrow', 0.5817139744758606, 'util', 2)]
133
0
null
0.62
30
15
111
1
3
3
3
30
33
90
1.1
36
1,815
study
https://github.com/mrdbourke/zero-to-mastery-ml
[]
null
[]
[]
null
null
null
mrdbourke/zero-to-mastery-ml
zero-to-mastery-ml
2,378
3,146
124
Jupyter Notebook
https://dbourke.link/ZTMmlcourse
All course materials for the Zero to Mastery Machine Learning and Data Science course.
mrdbourke
2024-01-13
2019-09-23
227
10.469182
null
All course materials for the Zero to Mastery Machine Learning and Data Science course.
['data-science', 'deep-learning', 'machine-learning']
['data-science', 'deep-learning', 'machine-learning']
2023-11-16
[('mrdbourke/tensorflow-deep-learning', 0.7862590551376343, 'study', 1), ('mrdbourke/pytorch-deep-learning', 0.676668107509613, 'study', 2), ('firmai/industry-machine-learning', 0.5863468647003174, 'study', 2), ('patchy631/machine-learning', 0.5848323106765747, 'ml', 0), ('amanchadha/coursera-deep-learning-specialization', 0.5553426742553711, 'study', 1), ('udacity/deep-learning-v2-pytorch', 0.5445974469184875, 'study', 1), ('tensorlayer/tensorlayer', 0.5104413628578186, 'ml-rl', 1), ('d2l-ai/d2l-en', 0.5092582702636719, 'study', 3), ('tensorflow/tensorflow', 0.5074943900108337, 'ml-dl', 2), ('onnx/onnx', 0.5012384057044983, 'ml', 2)]
25
1
null
1.21
6
2
52
2
0
0
0
6
5
90
0.8
36
1,627
math
https://github.com/mckinsey/causalnex
['causation']
null
[]
[]
null
null
null
mckinsey/causalnex
causalnex
2,070
242
46
Python
http://causalnex.readthedocs.io/
A Python library that helps data scientists to infer causation rather than observing correlation.
mckinsey
2024-01-12
2019-12-12
215
9.596026
https://avatars.githubusercontent.com/u/4265350?v=4
A Python library that helps data scientists to infer causation rather than observing correlation.
['bayesian-inference', 'bayesian-networks', 'causal-inference', 'causal-models', 'causal-networks', 'causalnex', 'data-science', 'machine-learning']
['bayesian-inference', 'bayesian-networks', 'causal-inference', 'causal-models', 'causal-networks', 'causalnex', 'causation', 'data-science', 'machine-learning']
2023-07-11
[('py-why/dowhy', 0.7358757853507996, 'ml', 5), ('willianfuks/tfcausalimpact', 0.6074860692024231, 'math', 1), ('py-why/econml', 0.5422161221504211, 'ml', 2), ('rasbt/mlxtend', 0.5194756984710693, 'ml', 2), ('carla-recourse/carla', 0.5116320252418518, 'ml', 1), ('teamhg-memex/eli5', 0.5101348161697388, 'ml', 2)]
35
3
null
0.37
7
0
50
6
4
5
4
7
1
90
0.1
36
1,505
study
https://github.com/cgpotts/cs224u
['nlp', 'nlu']
Code for CS224u: Natural Language Understanding
[]
[]
null
null
null
cgpotts/cs224u
cs224u
2,020
861
85
Jupyter Notebook
null
Code for Stanford CS224u
cgpotts
2024-01-12
2015-01-30
469
4.301795
null
Code for Stanford CS224u
[]
['nlp', 'nlu']
2023-12-14
[('tatsu-lab/stanford_alpaca', 0.5506641268730164, 'llm', 0), ('lexpredict/lexpredict-lexnlp', 0.5473800897598267, 'nlp', 1), ('allenai/allennlp', 0.5052735805511475, 'nlp', 1)]
30
6
null
0.44
2
2
109
1
0
0
0
2
2
90
1
36
301
template
https://github.com/pyscaffold/pyscaffold
[]
null
[]
[]
null
null
null
pyscaffold/pyscaffold
pyscaffold
1,941
177
39
Python
https://pyscaffold.org
πŸ›  Python project template generator with batteries included
pyscaffold
2024-01-13
2014-04-02
512
3.78468
https://avatars.githubusercontent.com/u/34571116?v=4
πŸ›  Python project template generator with batteries included
['distribution', 'git', 'package', 'package-creation', 'project-template', 'release-automation', 'template-project']
['distribution', 'git', 'package', 'package-creation', 'project-template', 'release-automation', 'template-project']
2023-06-20
[('eugeneyan/python-collab-template', 0.6021620631217957, 'template', 0), ('martinheinz/python-project-blueprint', 0.5791087746620178, 'template', 0), ('sqlalchemy/mako', 0.5707492828369141, 'template', 0), ('pypa/hatch', 0.5699118971824646, 'util', 0), ('tezromach/python-package-template', 0.553695797920227, 'template', 0), ('pdoc3/pdoc', 0.5431029796600342, 'util', 0), ('python-poetry/poetry', 0.5353856682777405, 'util', 0), ('pdm-project/pdm', 0.531360924243927, 'util', 0), ('pypa/flit', 0.5155603885650635, 'util', 0), ('indygreg/pyoxidizer', 0.5098890662193298, 'util', 0)]
58
6
null
1.12
6
0
119
7
3
20
3
6
6
90
1
36
382
llm
https://github.com/minimaxir/aitextgen
[]
null
[]
[]
null
null
null
minimaxir/aitextgen
aitextgen
1,824
220
42
Python
https://docs.aitextgen.io
A robust Python tool for text-based AI training and generation using GPT-2.
minimaxir
2024-01-14
2019-12-29
213
8.551909
null
A robust Python tool for text-based AI training and generation using GPT-2.
[]
[]
2023-05-17
[('minimaxir/gpt-2-simple', 0.7194006443023682, 'llm', 0), ('microsoft/pycodegpt', 0.6111297011375427, 'llm', 0), ('facebookresearch/parlai', 0.5751350522041321, 'nlp', 0), ('minimaxir/textgenrnn', 0.57369065284729, 'nlp', 0), ('huggingface/text-generation-inference', 0.563347339630127, 'llm', 0), ('databrickslabs/dolly', 0.5475108623504639, 'llm', 0), ('nvidia/nemo', 0.5452271699905396, 'nlp', 0), ('google/sentencepiece', 0.5358452796936035, 'nlp', 0), ('microsoft/generative-ai-for-beginners', 0.5282863974571228, 'study', 0), ('explosion/spacy', 0.5253174901008606, 'nlp', 0), ('nateshmbhat/pyttsx3', 0.5253090858459473, 'util', 0), ('sharonzhou/long_stable_diffusion', 0.5227047801017761, 'diffusion', 0), ('prefecthq/marvin', 0.5176252126693726, 'nlp', 0), ('bytedance/lightseq', 0.5134293437004089, 'nlp', 0), ('openlmlab/moss', 0.5120126008987427, 'llm', 0), ('torantulino/auto-gpt', 0.5113155841827393, 'llm', 0), ('minimaxir/simpleaichat', 0.507713258266449, 'llm', 0), ('google-research/electra', 0.5072848796844482, 'ml-dl', 0), ('killianlucas/open-interpreter', 0.5057147741317749, 'llm', 0), ('kagisearch/vectordb', 0.5047615766525269, 'data', 0), ('krohling/bondai', 0.5016161799430847, 'llm', 0), ('norskregnesentral/skweak', 0.5007104873657227, 'nlp', 0)]
11
4
null
0.04
3
0
49
8
0
3
3
3
3
90
1
36
364
ml
https://github.com/rentruewang/koila
[]
null
[]
[]
null
null
null
rentruewang/koila
koila
1,804
64
11
Python
https://rentruewang.github.io/koila/
Prevent PyTorch's `CUDA error: out of memory` in just 1 line of code.
rentruewang
2024-01-12
2021-11-17
114
15.706468
null
Prevent PyTorch's `CUDA error: out of memory` in just 1 line of code.
['deep-learning', 'gradient-accumulation', 'lazy-evaluation', 'machine-learning', 'memory-management', 'neural-network', 'out-of-memory', 'pytorch']
['deep-learning', 'gradient-accumulation', 'lazy-evaluation', 'machine-learning', 'memory-management', 'neural-network', 'out-of-memory', 'pytorch']
2024-01-10
[('blackhc/toma', 0.6982141137123108, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.6254847645759583, 'perf', 4), ('pytorch/ignite', 0.6201809644699097, 'ml-dl', 4), ('nvidia/apex', 0.6033901572227478, 'ml-dl', 0), ('mrdbourke/pytorch-deep-learning', 0.5876379609107971, 'study', 3), ('arogozhnikov/einops', 0.5856212973594666, 'ml-dl', 2), ('skorch-dev/skorch', 0.5766161680221558, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.5745282769203186, 'study', 3), ('pytorch/data', 0.5698388814926147, 'data', 0), ('cvxgrp/pymde', 0.5673205852508545, 'ml', 2), ('karpathy/micrograd', 0.5448654890060425, 'study', 0), ('huggingface/accelerate', 0.5446726083755493, 'ml', 0), ('timdettmers/bitsandbytes', 0.5362823009490967, 'util', 0), ('pyg-team/pytorch_geometric', 0.5282607674598694, 'ml-dl', 2), ('allenai/allennlp', 0.5262885689735413, 'nlp', 2), ('denys88/rl_games', 0.5238789916038513, 'ml-rl', 2), ('ashleve/lightning-hydra-template', 0.5227289199829102, 'util', 2), ('pytorch/pytorch', 0.5214821696281433, 'ml-dl', 3), ('pytorch/torchrec', 0.5190505385398865, 'ml-dl', 2), ('cupy/cupy', 0.5168486833572388, 'math', 0), ('pytorch/captum', 0.5131102800369263, 'ml-interpretability', 0), ('nicolas-chaulet/torch-points3d', 0.5067731738090515, 'ml', 0), ('nvidia/cuda-python', 0.5058760046958923, 'ml', 0)]
4
2
null
0.46
1
0
26
0
0
1
1
1
0
90
0
36
908
math
https://github.com/google-research/torchsde
[]
null
[]
[]
null
null
null
google-research/torchsde
torchsde
1,415
178
34
Python
null
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
google-research
2024-01-12
2020-07-06
186
7.601688
https://avatars.githubusercontent.com/u/43830688?v=4
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
['deep-learning', 'deep-neural-networks', 'differential-equations', 'dynamical-systems', 'neural-differential-equations', 'pytorch', 'stochastic-differential-equations', 'stochastic-processes', 'stochastic-volatility-models']
['deep-learning', 'deep-neural-networks', 'differential-equations', 'dynamical-systems', 'neural-differential-equations', 'pytorch', 'stochastic-differential-equations', 'stochastic-processes', 'stochastic-volatility-models']
2023-09-26
[('denys88/rl_games', 0.5168188810348511, 'ml-rl', 2), ('stability-ai/stability-sdk', 0.5064745545387268, 'diffusion', 0)]
8
4
null
0.12
5
4
43
4
1
2
1
5
6
90
1.2
36
1,214
crypto
https://github.com/binance/binance-public-data
[]
null
[]
[]
null
null
null
binance/binance-public-data
binance-public-data
1,231
411
32
Python
null
Details on how to get Binance public data
binance
2024-01-13
2020-08-24
179
6.871611
https://avatars.githubusercontent.com/u/69836600?v=4
Details on how to get Binance public data
[]
[]
2023-11-01
[]
20
3
null
0.15
51
38
41
2
0
0
0
51
48
90
0.9
36
949
web
https://github.com/long2ice/fastapi-cache
[]
null
[]
[]
null
null
null
long2ice/fastapi-cache
fastapi-cache
974
119
9
Python
https://github.com/long2ice/fastapi-cache
fastapi-cache is a tool to cache fastapi response and function result, with backends support redis and memcached.
long2ice
2024-01-12
2020-08-25
179
5.441341
null
fastapi-cache is a tool to cache fastapi response and function result, with backends support redis and memcached.
['cache', 'fastapi', 'memcached', 'redis']
['cache', 'fastapi', 'memcached', 'redis']
2023-12-07
[('aio-libs/aiocache', 0.6432105898857117, 'data', 3), ('grantjenks/python-diskcache', 0.6009683609008789, 'util', 1), ('dgilland/cacheout', 0.5193830728530884, 'perf', 0), ('zilliztech/gptcache', 0.506112813949585, 'llm', 1), ('python-cachier/cachier', 0.5056164860725403, 'perf', 1), ('dmontagu/fastapi_client', 0.5032126307487488, 'web', 0)]
26
1
null
2.75
65
38
41
1
1
3
1
65
43
90
0.7
36
482
gis
https://github.com/sentinelsat/sentinelsat
[]
null
[]
[]
null
null
null
sentinelsat/sentinelsat
sentinelsat
943
239
62
Python
https://sentinelsat.readthedocs.io
Search and download Copernicus Sentinel satellite images
sentinelsat
2024-01-10
2015-05-22
453
2.079055
https://avatars.githubusercontent.com/u/29057552?v=4
Search and download Copernicus Sentinel satellite images
['copernicus', 'esa', 'geographic-data', 'open-data', 'remote-sensing', 'satellite-imagery', 'sentinel']
['copernicus', 'esa', 'geographic-data', 'open-data', 'remote-sensing', 'satellite-imagery', 'sentinel']
2023-11-08
[('plant99/felicette', 0.6691089272499084, 'gis', 1), ('giswqs/aws-open-data-geo', 0.6044768691062927, 'gis', 2), ('sentinel-hub/sentinelhub-py', 0.5519406199455261, 'gis', 1), ('developmentseed/label-maker', 0.5269395112991333, 'gis', 2), ('azavea/raster-vision', 0.5150529742240906, 'gis', 1), ('developmentseed/landsat-util', 0.5123438239097595, 'gis', 0)]
43
5
null
0.23
11
9
105
2
1
3
1
11
37
90
3.4
36
1,140
viz
https://github.com/nomic-ai/deepscatter
[]
null
[]
[]
null
null
null
nomic-ai/deepscatter
deepscatter
928
42
16
TypeScript
null
Zoomable, animated scatterplots in the browser that scales over a billion points
nomic-ai
2024-01-13
2018-10-30
274
3.386861
https://avatars.githubusercontent.com/u/102670180?v=4
Zoomable, animated scatterplots in the browser that scales over a billion points
['data-visualization', 'visualization', 'webgl']
['data-visualization', 'visualization', 'webgl']
2024-01-10
[('visgl/deck.gl', 0.6989966630935669, 'viz', 3), ('holoviz/datashader', 0.6156784296035767, 'gis', 0), ('bokeh/bokeh', 0.594667911529541, 'viz', 1), ('mckinsey/vizro', 0.5346618294715881, 'viz', 2), ('altair-viz/altair', 0.5337156653404236, 'viz', 1), ('plotly/plotly.py', 0.5329233407974243, 'viz', 2), ('residentmario/geoplot', 0.5221992135047913, 'gis', 0), ('raphaelquast/eomaps', 0.5207083225250244, 'gis', 1), ('holoviz/holoviz', 0.5163466930389404, 'viz', 0), ('holoviz/hvplot', 0.511212944984436, 'pandas', 0), ('pyqtgraph/pyqtgraph', 0.5000237822532654, 'viz', 1)]
16
4
null
2.17
11
8
63
0
3
1
3
11
4
90
0.4
36
874
time-series
https://github.com/winedarksea/autots
[]
null
[]
[]
null
null
null
winedarksea/autots
AutoTS
925
87
18
Python
null
Automated Time Series Forecasting
winedarksea
2024-01-13
2019-11-26
218
4.243119
null
Automated Time Series Forecasting
['automl', 'autots', 'deep-learning', 'feature-engineering', 'forecasting', 'machine-learning', 'preprocessing', 'time-series']
['automl', 'autots', 'deep-learning', 'feature-engineering', 'forecasting', 'machine-learning', 'preprocessing', 'time-series']
2024-01-03
[('awslabs/autogluon', 0.7558371424674988, 'ml', 5), ('sktime/sktime', 0.7021391987800598, 'time-series', 3), ('ourownstory/neural_prophet', 0.6846452355384827, 'ml', 4), ('salesforce/merlion', 0.682404637336731, 'time-series', 4), ('microsoft/nni', 0.6789240837097168, 'ml', 4), ('automl/auto-sklearn', 0.6762388944625854, 'ml', 1), ('firmai/atspy', 0.6719325184822083, 'time-series', 2), ('keras-team/autokeras', 0.6600058078765869, 'ml-dl', 3), ('microsoft/flaml', 0.6591876745223999, 'ml', 3), ('nccr-itmo/fedot', 0.6496773958206177, 'ml-ops', 2), ('xplainable/xplainable', 0.6385115385055542, 'ml-interpretability', 1), ('nixtla/statsforecast', 0.6360719799995422, 'time-series', 4), ('huggingface/autotrain-advanced', 0.6144011616706848, 'ml', 2), ('alkaline-ml/pmdarima', 0.6125960350036621, 'time-series', 3), ('mljar/mljar-supervised', 0.578948438167572, 'ml', 3), ('alpa-projects/alpa', 0.5752678513526917, 'ml-dl', 2), ('shankarpandala/lazypredict', 0.5729676485061646, 'ml', 2), ('salesforce/deeptime', 0.5623159408569336, 'time-series', 3), ('awslabs/gluonts', 0.5618434548377991, 'time-series', 4), ('aistream-peelout/flow-forecast', 0.557109534740448, 'time-series', 3), ('bentoml/bentoml', 0.5495694875717163, 'ml-ops', 2), ('torantulino/auto-gpt', 0.5468161702156067, 'llm', 0), ('autoviml/auto_ts', 0.5450201034545898, 'time-series', 2), ('featurelabs/featuretools', 0.5383171439170837, 'ml', 3), ('feast-dev/feast', 0.5365046262741089, 'ml-ops', 1), ('unit8co/darts', 0.5341631770133972, 'time-series', 4), ('alirezadir/machine-learning-interview-enlightener', 0.5339345335960388, 'study', 2), ('mosaicml/composer', 0.5297396183013916, 'ml-dl', 2), ('mindsdb/mindsdb', 0.5278527736663818, 'data', 2), ('facebook/prophet', 0.5207078456878662, 'time-series', 2), ('blue-yonder/tsfresh', 0.5182939171791077, 'time-series', 1), ('onnx/onnx', 0.516512930393219, 'ml', 2), ('google/temporian', 0.5130333304405212, 'time-series', 2), ('google/pyglove', 0.5115013122558594, 'util', 2), ('ydataai/ydata-synthetic', 0.5098974704742432, 'data', 3), ('uber/orbit', 0.5088127255439758, 'time-series', 3), ('huggingface/datasets', 0.5051737427711487, 'nlp', 2)]
1
0
null
5.08
21
15
50
0
13
12
13
21
50
90
2.4
36
929
web
https://github.com/koxudaxi/fastapi-code-generator
[]
null
[]
[]
null
null
null
koxudaxi/fastapi-code-generator
fastapi-code-generator
862
92
20
Python
null
This code generator creates FastAPI app from an openapi file.
koxudaxi
2024-01-12
2020-06-14
189
4.553962
null
This code generator creates FastAPI app from an openapi file.
['fastapi', 'generator', 'openapi', 'pydantic']
['fastapi', 'generator', 'openapi', 'pydantic']
2023-09-07
[('dmontagu/fastapi_client', 0.6843157410621643, 'web', 0), ('asacristani/fastapi-rocket-boilerplate', 0.607068657875061, 'template', 1), ('kuimono/openapi-schema-pydantic', 0.6038326025009155, 'util', 1)]
24
3
null
1.21
16
8
44
4
5
11
5
16
18
90
1.1
36
842
util
https://github.com/wolph/python-progressbar
[]
null
[]
[]
null
null
null
wolph/python-progressbar
python-progressbar
831
141
22
Python
http://progressbar-2.readthedocs.org/en/latest/
Progressbar 2 - A progress bar for Python 2 and Python 3 - "pip install progressbar2"
wolph
2024-01-10
2012-02-20
623
1.333563
null
Progressbar 2 - A progress bar for Python 2 and Python 3 - "pip install progressbar2"
['bar', 'cli', 'console', 'eta', 'gui', 'percentage', 'progress', 'progress-bar', 'progressbar', 'rate', 'terminal', 'time']
['bar', 'cli', 'console', 'eta', 'gui', 'percentage', 'progress', 'progress-bar', 'progressbar', 'rate', 'terminal', 'time']
2024-01-02
[('tqdm/tqdm', 0.7864949107170105, 'term', 9), ('rockhopper-technologies/enlighten', 0.7673426270484924, 'term', 0), ('rsalmei/alive-progress', 0.6114795207977295, 'util', 7), ('hugovk/pypistats', 0.5268552303314209, 'util', 1)]
46
3
null
0.96
13
9
145
0
3
9
3
13
38
90
2.9
36
1,500
ml-dl
https://github.com/deepmind/chex
['numpy', 'testing', 'autograd', 'jax']
Chex is a library of utilities for helping to write reliable JAX code
[]
[]
null
null
null
deepmind/chex
chex
667
40
18
Python
https://chex.readthedocs.io
null
deepmind
2024-01-13
2020-08-06
181
3.670597
https://avatars.githubusercontent.com/u/8596759?v=4
Chex is a library of utilities for helping to write reliable JAX code
[]
['autograd', 'jax', 'numpy', 'testing']
2023-12-09
[('google/flax', 0.5962191820144653, 'ml-dl', 1), ('deepmind/dm-haiku', 0.5875384211540222, 'ml-dl', 1), ('deepmind/synjax', 0.5291113257408142, 'math', 1), ('samuelcolvin/rtoml', 0.5042668581008911, 'data', 0)]
40
4
null
1.33
18
11
42
1
7
6
7
18
8
90
0.4
36
1,497
util
https://github.com/instagram/fixit
['linter']
null
[]
[]
null
null
null
instagram/fixit
Fixit
633
57
26
Python
https://fixit.rtfd.io/en/latest/
Advanced Python linting framework with auto-fixes and hierarchical configuration that makes it easy to write custom in-repo lint rules.
instagram
2024-01-14
2020-02-20
205
3.077083
https://avatars.githubusercontent.com/u/549085?v=4
Advanced Python linting framework with auto-fixes and hierarchical configuration that makes it easy to write custom in-repo lint rules.
[]
['linter']
2023-12-21
[('python-rope/rope', 0.5731984972953796, 'util', 0), ('pycqa/pyflakes', 0.5664411783218384, 'util', 1), ('python/mypy', 0.5660220384597778, 'typing', 1), ('grahamdumpleton/wrapt', 0.5495676398277283, 'util', 0), ('klen/pylama', 0.5459169745445251, 'util', 1), ('landscapeio/prospector', 0.5204662084579468, 'util', 0), ('eugeneyan/python-collab-template', 0.5144226551055908, 'template', 0), ('pytoolz/toolz', 0.5103968977928162, 'util', 0), ('asottile/reorder-python-imports', 0.5014389753341675, 'util', 1)]
41
4
null
2.12
37
22
47
1
0
3
3
37
28
90
0.8
36
1,144
util
https://github.com/terrycain/aioboto3
[]
null
[]
[]
null
null
null
terrycain/aioboto3
aioboto3
608
63
8
Python
null
Wrapper to use boto3 resources with the aiobotocore async backend
terrycain
2024-01-12
2017-09-25
331
1.836066
null
Wrapper to use boto3 resources with the aiobotocore async backend
['async', 'aws', 'boto3']
['async', 'aws', 'boto3']
2023-12-08
[('aio-libs/aiobotocore', 0.6956399083137512, 'util', 1), ('geeogi/async-python-lambda-template', 0.5498723387718201, 'template', 0), ('samuelcolvin/aioaws', 0.5090085864067078, 'data', 1)]
27
4
null
0.37
14
10
77
1
0
10
10
14
29
90
2.1
36
358
ml-ops
https://github.com/google/ml-metadata
[]
null
[]
[]
null
null
null
google/ml-metadata
ml-metadata
577
134
29
C++
https://www.tensorflow.org/tfx/guide/mlmd
For recording and retrieving metadata associated with ML developer and data scientist workflows.
google
2024-01-10
2019-01-15
263
2.193916
https://avatars.githubusercontent.com/u/1342004?v=4
For recording and retrieving metadata associated with ML developer and data scientist workflows.
[]
[]
2024-01-12
[('astronomer/astro-sdk', 0.5482959747314453, 'ml-ops', 0), ('whylabs/whylogs', 0.5445284247398376, 'util', 0), ('ploomber/ploomber', 0.5324745774269104, 'ml-ops', 0), ('airbnb/knowledge-repo', 0.5292649865150452, 'data', 0), ('hyperqueryhq/whale', 0.5290652513504028, 'data', 0), ('dagworks-inc/hamilton', 0.5270819664001465, 'ml-ops', 0), ('mage-ai/mage-ai', 0.524271547794342, 'ml-ops', 0), ('great-expectations/great_expectations', 0.5165597200393677, 'ml-ops', 0), ('simonw/datasette', 0.5161576271057129, 'data', 0), ('netflix/metaflow', 0.5132206082344055, 'ml-ops', 0), ('intake/intake', 0.506055474281311, 'data', 0), ('linealabs/lineapy', 0.5038784146308899, 'jupyter', 0), ('dbt-labs/dbt-core', 0.5018987655639648, 'ml-ops', 0), ('iterative/dvc', 0.5009445548057556, 'ml-ops', 0)]
19
2
null
1.1
12
1
61
0
3
7
3
12
53
90
4.4
36
1,569
ml
https://github.com/nicolas-hbt/pygraft
['knowledge-graph', 'ontology-generation']
null
[]
[]
1
null
null
nicolas-hbt/pygraft
pygraft
551
36
12
Python
https://pygraft.readthedocs.io/en/latest/
Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
nicolas-hbt
2024-01-12
2023-09-07
20
26.6
null
Configurable Generation of Synthetic Schemas and Knowledge Graphs at Your Fingertips
['artificial-intelligence', 'benchmarking', 'contributions-welcome', 'data-generator', 'graph-generator', 'knowledge-base', 'knowledge-graph', 'linked-data', 'machine-learning', 'ontology', 'ontology-generation', 'owl', 'rdf', 'rdfs', 'schema', 'semantic-web', 'semantics', 'synthetic-data', 'synthetic-dataset-generation']
['artificial-intelligence', 'benchmarking', 'contributions-welcome', 'data-generator', 'graph-generator', 'knowledge-base', 'knowledge-graph', 'linked-data', 'machine-learning', 'ontology', 'ontology-generation', 'owl', 'rdf', 'rdfs', 'schema', 'semantic-web', 'semantics', 'synthetic-data', 'synthetic-dataset-generation']
2023-12-01
[('sdv-dev/sdv', 0.6006342172622681, 'data', 2), ('mindsdb/mindsdb', 0.5319455862045288, 'data', 2), ('dylanhogg/llmgraph', 0.5217655897140503, 'ml', 1), ('ydataai/ydata-synthetic', 0.5071893334388733, 'data', 2), ('strawberry-graphql/strawberry', 0.5039038062095642, 'web', 0)]
1
1
null
0.75
1
0
4
1
0
0
0
1
1
90
1
36
1,247
util
https://github.com/steamship-core/steamship-langchain
[]
null
[]
[]
null
null
null
steamship-core/steamship-langchain
steamship-langchain
499
98
12
Python
null
steamship-langchain
steamship-core
2024-01-12
2023-02-04
51
9.702778
https://avatars.githubusercontent.com/u/99272373?v=4
steamship-langchain
[]
[]
2023-09-12
[('steamship-core/python-client', 0.5675639510154724, 'util', 0)]
7
2
null
2.23
1
0
11
4
17
42
17
1
1
90
1
36
1,706
util
https://github.com/snok/install-poetry
['github', 'action']
null
[]
[]
null
null
null
snok/install-poetry
install-poetry
491
46
6
Shell
null
Github action for installing and configuring Poetry
snok
2024-01-05
2020-10-25
170
2.883389
https://avatars.githubusercontent.com/u/64945977?v=4
Github action for installing and configuring Poetry
[]
['action', 'github']
2024-01-11
[('python-poetry/install.python-poetry.org', 0.6302388310432434, 'util', 0)]
22
5
null
0.44
15
11
39
0
1
8
1
15
27
90
1.8
36
1,612
llm
https://github.com/lupantech/scienceqa
['thought-chain']
null
[]
[]
null
null
null
lupantech/scienceqa
ScienceQA
487
62
9
Python
null
Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering".
lupantech
2024-01-13
2022-10-17
67
7.253191
null
Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering".
[]
['thought-chain']
2023-12-30
[('kyegomez/tree-of-thoughts', 0.5537173748016357, 'llm', 0), ('noahshinn/reflexion', 0.5062936544418335, 'llm', 0)]
4
2
null
0.67
5
5
15
0
0
1
1
5
10
90
2
36
490
gis
https://github.com/cogeotiff/rio-tiler
[]
null
[]
[]
null
null
null
cogeotiff/rio-tiler
rio-tiler
453
96
65
Python
https://cogeotiff.github.io/rio-tiler/
User friendly Rasterio plugin to read raster datasets.
cogeotiff
2024-01-11
2017-10-06
329
1.374512
https://avatars.githubusercontent.com/u/40065466?v=4
User friendly Rasterio plugin to read raster datasets.
['cog', 'cogeotiff', 'gdal', 'maptile', 'mercator', 'raster', 'raster-processing', 'rasterio', 'satellite', 'slippy-map', 'tile']
['cog', 'cogeotiff', 'gdal', 'maptile', 'mercator', 'raster', 'raster-processing', 'rasterio', 'satellite', 'slippy-map', 'tile']
2024-01-12
[('rasterio/rasterio', 0.7036706209182739, 'gis', 2), ('cogeotiff/rio-cogeo', 0.6072856783866882, 'gis', 4), ('osgeo/gdal', 0.5156446099281311, 'gis', 1), ('corteva/rioxarray', 0.5002418756484985, 'gis', 3)]
26
4
null
1.38
20
15
76
0
0
24
24
20
29
90
1.4
36
855
ml-ops
https://github.com/astronomer/astronomer
[]
null
[]
[]
null
null
null
astronomer/astronomer
astronomer
453
83
45
Python
https://www.astronomer.io
Helm Charts for the Astronomer Platform, Apache Airflow as a Service on Kubernetes
astronomer
2024-01-11
2018-01-15
315
1.437443
https://avatars.githubusercontent.com/u/12449437?v=4
Helm Charts for the Astronomer Platform, Apache Airflow as a Service on Kubernetes
['apache-airflow', 'astronomer-platform', 'docker', 'kubernetes']
['apache-airflow', 'astronomer-platform', 'docker', 'kubernetes']
2024-01-09
[('astronomer/airflow-chart', 0.8572540283203125, 'ml-ops', 2), ('anyscale/airflow-provider-ray', 0.5748955011367798, 'ml-ops', 0), ('apache/airflow', 0.5602481961250305, 'ml-ops', 1), ('gefyrahq/gefyra', 0.5323020815849304, 'util', 2)]
75
4
null
5.15
56
53
73
0
15
60
15
56
17
90
0.3
36
1,457
util
https://github.com/conda/constructor
['conda']
null
[]
[]
null
null
null
conda/constructor
constructor
430
166
33
Python
https://conda.github.io/constructor/
tool for creating installers from conda packages
conda
2024-01-04
2016-02-12
415
1.03472
https://avatars.githubusercontent.com/u/6392739?v=4
tool for creating installers from conda packages
[]
['conda']
2024-01-13
[('conda/conda-build', 0.8005626201629639, 'util', 1), ('conda/conda-pack', 0.7213409543037415, 'util', 1), ('mamba-org/boa', 0.7149392366409302, 'util', 1), ('mamba-org/quetz', 0.7079612612724304, 'util', 1), ('mamba-org/gator', 0.5621293783187866, 'jupyter', 1), ('mamba-org/mamba', 0.5558754801750183, 'util', 1), ('pyodide/micropip', 0.5295533537864685, 'util', 0), ('ofek/pyapp', 0.5201569199562073, 'util', 0), ('conda-forge/feedstocks', 0.507718563079834, 'util', 1)]
70
6
null
1.56
57
47
96
0
8
6
8
57
33
90
0.6
36
713
gis
https://github.com/weecology/deepforest
[]
null
[]
[]
null
null
null
weecology/deepforest
DeepForest
411
157
15
Python
https://deepforest.readthedocs.io/
Python Package for Airborne RGB machine learning
weecology
2024-01-10
2018-03-07
307
1.335035
https://avatars.githubusercontent.com/u/1156696?v=4
Python Package for Airborne RGB machine learning
[]
[]
2023-12-27
[('sentinel-hub/eo-learn', 0.5667561888694763, 'gis', 0), ('mdbloice/augmentor', 0.5662134885787964, 'ml', 0), ('lightly-ai/lightly', 0.5572022199630737, 'ml', 0), ('pycaret/pycaret', 0.5376171469688416, 'ml', 0), ('earthlab/earthpy', 0.5284902453422546, 'gis', 0), ('radiantearth/radiant-mlhub', 0.5279979705810547, 'gis', 0), ('gradio-app/gradio', 0.525834858417511, 'viz', 0), ('azavea/raster-vision', 0.5204096436500549, 'gis', 0), ('facebookresearch/pytorch3d', 0.5166642069816589, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5097160339355469, 'study', 0), ('featurelabs/featuretools', 0.5066676139831543, 'ml', 0), ('rasbt/mlxtend', 0.5020350217819214, 'ml', 0)]
14
6
null
2.17
115
86
71
1
0
12
12
115
104
90
0.9
36
1,526
llm
https://github.com/operand/agency
[]
null
[]
[]
null
null
null
operand/agency
agency
351
18
10
Python
https://createwith.agency
A fast and minimal framework for building agent-integrated systems
operand
2024-01-12
2023-05-23
36
9.75
null
A fast and minimal framework for building agent-integrated systems
['actor', 'actor-model', 'agent', 'agents', 'agi', 'ai', 'api', 'artificial-general-intelligence', 'artificial-intelligence', 'autonomous-agent', 'autonomous-agents', 'framework', 'llm', 'llmops', 'llms', 'machine-learning', 'minimal']
['actor', 'actor-model', 'agent', 'agents', 'agi', 'ai', 'api', 'artificial-general-intelligence', 'artificial-intelligence', 'autonomous-agent', 'autonomous-agents', 'framework', 'llm', 'llmops', 'llms', 'machine-learning', 'minimal']
2024-01-12
[('prefecthq/marvin', 0.6231884956359863, 'nlp', 3), ('transformeroptimus/superagi', 0.6139060258865356, 'llm', 8), ('microsoft/lmops', 0.6131894588470459, 'llm', 2), ('geekan/metagpt', 0.6091906428337097, 'llm', 2), ('mlc-ai/mlc-llm', 0.6070036888122559, 'llm', 1), ('unity-technologies/ml-agents', 0.596383810043335, 'ml-rl', 1), ('mindsdb/mindsdb', 0.5936707854270935, 'data', 4), ('ludwig-ai/ludwig', 0.5899900197982788, 'ml-ops', 2), ('zacwellmer/worldmodels', 0.5862823128700256, 'ml-rl', 0), ('aiwaves-cn/agents', 0.5783196687698364, 'nlp', 2), ('antonosika/gpt-engineer', 0.5778323411941528, 'llm', 2), ('cheshire-cat-ai/core', 0.5766038298606873, 'llm', 2), ('projectmesa/mesa', 0.5751315355300903, 'sim', 0), ('bentoml/bentoml', 0.5735385417938232, 'ml-ops', 3), ('nccr-itmo/fedot', 0.5655133128166199, 'ml-ops', 1), ('microsoft/semantic-kernel', 0.5540736317634583, 'llm', 3), ('lastmile-ai/aiconfig', 0.5538642406463623, 'util', 2), ('lucidrains/toolformer-pytorch', 0.5433422923088074, 'llm', 1), ('facebookresearch/habitat-lab', 0.5416178107261658, 'sim', 1), ('pathwaycom/llm-app', 0.5409510135650635, 'llm', 3), ('hpcaitech/colossalai', 0.5398745536804199, 'llm', 1), ('facebookresearch/droidlet', 0.5389538407325745, 'sim', 0), ('deepset-ai/haystack', 0.5344579815864563, 'llm', 2), ('microsoft/promptflow', 0.5344325304031372, 'llm', 2), ('ml-tooling/opyrator', 0.5331600308418274, 'viz', 1), ('krohling/bondai', 0.5317063331604004, 'llm', 2), ('yoheinakajima/babyagi', 0.53130042552948, 'llm', 2), ('pettingzoo-team/pettingzoo', 0.5311383605003357, 'ml-rl', 1), ('smol-ai/developer', 0.5302104949951172, 'llm', 2), ('jina-ai/thinkgpt', 0.5273327827453613, 'llm', 0), ('pytorchlightning/pytorch-lightning', 0.526900053024292, 'ml-dl', 3), ('assafelovic/gpt-researcher', 0.5227841734886169, 'llm', 1), ('chatarena/chatarena', 0.5225850343704224, 'llm', 2), ('google/dopamine', 0.5216368436813354, 'ml-rl', 1), ('farama-foundation/gymnasium', 0.5203875303268433, 'ml-rl', 1), ('oliveirabruno01/babyagi-asi', 0.519800066947937, 'llm', 3), ('microsoft/autogen', 0.5193168520927429, 'llm', 2), ('minedojo/voyager', 0.516743540763855, 'llm', 0), ('langchain-ai/langgraph', 0.5159871578216553, 'llm', 1), ('mnotgod96/appagent', 0.51549232006073, 'llm', 2), ('googlecloudplatform/vertex-ai-samples', 0.5143194198608398, 'ml', 1), ('adap/flower', 0.5125753283500671, 'ml-ops', 4), ('linksoul-ai/autoagents', 0.5123705267906189, 'llm', 1), ('uber/fiber', 0.5117772817611694, 'data', 1), ('nebuly-ai/nebullvm', 0.5101591348648071, 'perf', 3), ('inspirai/timechamber', 0.5097473859786987, 'sim', 0), ('microsoft/generative-ai-for-beginners', 0.5075168013572693, 'study', 2), ('pytorch/rl', 0.5073025822639465, 'ml-rl', 2), ('torantulino/auto-gpt', 0.5023353099822998, 'llm', 3), ('modularml/mojo', 0.5005974769592285, 'util', 2), ('onnx/onnx', 0.5004202127456665, 'ml', 1)]
3
1
null
5.54
11
9
8
0
15
23
15
11
0
90
0
36
857
ml-ops
https://github.com/astronomer/astro-sdk
[]
null
[]
[]
null
null
null
astronomer/astro-sdk
astro-sdk
299
35
13
Python
https://astro-sdk-python.rtfd.io/
Astro SDK allows rapid and clean development of {Extract, Load, Transform} workflows using Python and SQL, powered by Apache Airflow.
astronomer
2024-01-12
2021-12-06
112
2.666242
https://avatars.githubusercontent.com/u/12449437?v=4
Astro SDK allows rapid and clean development of {Extract, Load, Transform} workflows using Python and SQL, powered by Apache Airflow.
['airflow', 'apache-airflow', 'bigquery', 'dags', 'data-analysis', 'data-science', 'elt', 'etl', 'gcs', 'pandas', 'postgres', 's3', 'snowflake', 'sql', 'sqlite', 'workflows']
['airflow', 'apache-airflow', 'bigquery', 'dags', 'data-analysis', 'data-science', 'elt', 'etl', 'gcs', 'pandas', 'postgres', 's3', 'snowflake', 'sql', 'sqlite', 'workflows']
2024-01-09
[('mage-ai/mage-ai', 0.6467173099517822, 'ml-ops', 4), ('apache/airflow', 0.6314418911933899, 'ml-ops', 5), ('kestra-io/kestra', 0.6130484342575073, 'ml-ops', 2), ('flyteorg/flyte', 0.5711103081703186, 'ml-ops', 2), ('hi-primus/optimus', 0.5675498843193054, 'ml-ops', 2), ('ploomber/ploomber', 0.5675156116485596, 'ml-ops', 1), ('google/ml-metadata', 0.5482959747314453, 'ml-ops', 0), ('prefecthq/server', 0.5464804768562317, 'util', 0), ('orchest/orchest', 0.5454973578453064, 'ml-ops', 3), ('getindata/kedro-kubeflow', 0.541987419128418, 'ml-ops', 0), ('dagster-io/dagster', 0.5415989756584167, 'ml-ops', 2), ('kubeflow-kale/kale', 0.5413955450057983, 'ml-ops', 0), ('prefecthq/prefect', 0.5360534191131592, 'ml-ops', 1), ('linealabs/lineapy', 0.5296847224235535, 'jupyter', 0), ('aws/aws-sdk-pandas', 0.525879442691803, 'pandas', 3), ('fugue-project/fugue', 0.5199980735778809, 'pandas', 2), ('tobymao/sqlglot', 0.5131558179855347, 'data', 5), ('fastai/fastcore', 0.5107561945915222, 'util', 0), ('meltano/meltano', 0.5098263621330261, 'ml-ops', 1), ('airbytehq/airbyte', 0.5056763887405396, 'data', 6), ('kubeflow/fairing', 0.5054138898849487, 'ml-ops', 0)]
39
2
null
3.85
66
57
26
0
14
40
14
66
29
90
0.4
36
1,520
ml-ops
https://github.com/lithops-cloud/lithops
[]
null
[]
[]
null
null
null
lithops-cloud/lithops
lithops
293
92
13
Python
http://lithops.cloud
A multi-cloud framework for big data analytics and embarrassingly parallel jobs, that provides an universal API for building parallel applications in the cloud β˜οΈπŸš€
lithops-cloud
2024-01-12
2018-04-23
301
0.97296
https://avatars.githubusercontent.com/u/71205470?v=4
A multi-cloud framework for big data analytics and embarrassingly parallel jobs, that provides an universal API for building parallel applications in the cloud β˜οΈπŸš€
['big-data', 'big-data-analytics', 'cloud-computing', 'data-processing', 'distributed', 'kubernetes', 'multicloud', 'multiprocessing', 'object-storage', 'parallel', 'serverless', 'serverless-computing', 'serverless-functions']
['big-data', 'big-data-analytics', 'cloud-computing', 'data-processing', 'distributed', 'kubernetes', 'multicloud', 'multiprocessing', 'object-storage', 'parallel', 'serverless', 'serverless-computing', 'serverless-functions']
2024-01-12
[('skypilot-org/skypilot', 0.6185680031776428, 'llm', 2), ('apache/spark', 0.5891563296318054, 'data', 1), ('flyteorg/flyte', 0.5794029235839844, 'ml-ops', 1), ('backtick-se/cowait', 0.5676038861274719, 'util', 1), ('jina-ai/jina', 0.5622606873512268, 'ml', 1), ('eventual-inc/daft', 0.5597764849662781, 'pandas', 0), ('airbytehq/airbyte', 0.5396174788475037, 'data', 0), ('fugue-project/fugue', 0.53661048412323, 'pandas', 1), ('aws/chalice', 0.5222293138504028, 'web', 1), ('netflix/metaflow', 0.5198798179626465, 'ml-ops', 1), ('localstack/localstack', 0.514224648475647, 'util', 0), ('dagster-io/dagster', 0.5072967410087585, 'ml-ops', 0), ('googlecloudplatform/vertex-ai-samples', 0.5040023922920227, 'ml', 0)]
45
2
null
5.6
59
58
70
0
5
13
5
59
152
90
2.6
36
950
util
https://github.com/cqcl/tket
[]
null
[]
[]
null
null
null
cqcl/tket
tket
220
45
17
C++
https://tket.quantinuum.com/
Source code for the TKET quantum compiler, Python bindings and utilities
cqcl
2024-01-11
2021-09-13
124
1.772152
https://avatars.githubusercontent.com/u/15688781?v=4
Source code for the TKET quantum compiler, Python bindings and utilities
['compiler', 'quantum-computing']
['compiler', 'quantum-computing']
2024-01-12
[('pyscf/pyscf', 0.677206814289093, 'sim', 0), ('cqcl/lambeq', 0.6623311638832092, 'nlp', 0), ('quantumlib/cirq', 0.6193458437919617, 'sim', 1), ('jackhidary/quantumcomputingbook', 0.6081982851028442, 'study', 1), ('numba/llvmlite', 0.5800346732139587, 'util', 0), ('qiskit/qiskit', 0.5771373510360718, 'sim', 1)]
29
2
null
6.54
155
134
28
0
50
58
50
155
102
90
0.7
36
1,867
util
https://github.com/pypdfium2-team/pypdfium2
[]
null
[]
[]
null
null
null
pypdfium2-team/pypdfium2
pypdfium2
216
12
6
Python
https://pypdfium2.readthedocs.io/
Python bindings to PDFium
pypdfium2-team
2024-01-13
2021-10-23
118
1.823884
https://avatars.githubusercontent.com/u/93039761?v=4
Python bindings to PDFium
['pdf', 'pdf-documents', 'pdf-to-image', 'pdfium', 'rasterisation']
['pdf', 'pdf-documents', 'pdf-to-image', 'pdfium', 'rasterisation']
2024-01-10
[('py-pdf/pypdf2', 0.6358337998390198, 'util', 2), ('pyfpdf/fpdf2', 0.6115421652793884, 'util', 1), ('camelot-dev/camelot', 0.5336915850639343, 'util', 0), ('jorisschellekens/borb', 0.5246109366416931, 'util', 1)]
4
2
null
8.15
45
44
27
0
37
42
37
45
93
90
2.1
36
1,768
data
https://github.com/meltano/sdk
['data-engineering']
null
[]
[]
null
null
null
meltano/sdk
sdk
74
53
7
Python
https://sdk.meltano.com
Write 70% less code by using the SDK to build custom extractors and loaders that adhere to the Singer standard: https://sdk.meltano.com
meltano
2024-01-12
2021-06-21
136
0.543547
https://avatars.githubusercontent.com/u/43816713?v=4
Write 70% less code by using the SDK to build custom extractors and loaders that adhere to the Singer standard: https://sdk.meltano.com
['sdk']
['data-engineering', 'sdk']
2024-01-11
[]
70
3
null
10.56
159
134
31
0
28
31
28
157
284
90
1.8
36
931
data
https://github.com/scylladb/python-driver
[]
null
[]
[]
null
null
null
scylladb/python-driver
python-driver
57
35
9
Python
https://python-driver.docs.scylladb.com
ScyllaDB Python Driver, originally DataStax Python Driver for Apache Cassandra
scylladb
2024-01-11
2018-11-20
271
0.210332
https://avatars.githubusercontent.com/u/14364730?v=4
ScyllaDB Python Driver, originally DataStax Python Driver for Apache Cassandra
['scylladb']
['scylladb']
2024-01-11
[('datastax/python-driver', 0.8284926414489746, 'data', 0), ('neo4j/neo4j-python-driver', 0.5569538474082947, 'data', 0)]
211
6
null
2.17
41
16
63
0
0
23
23
41
105
90
2.6
36