max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
src/train/test.py
jiangqn/RNNLM
1
12798251
<filename>src/train/test.py<gh_stars>1-10 import os import torch from torch import nn from torch.utils.data.dataloader import DataLoader from src.data_process.dataset import LMDataset from src.train.eval import eval from src.utils.constants import PAD_INDEX from src.utils.logger import Logger def test(args): os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) base_path = os.path.join('./data', args.data) processed_base_path = os.path.join(base_path, 'processed') processed_test_path = os.path.join(processed_base_path, 'test.npz') save_path = os.path.join(processed_base_path, 'rnnlm.pkl') log_base_path = os.path.join(base_path, 'log') log_path = os.path.join(log_base_path, 'test_log.txt') logger = Logger(log_path) test_data = LMDataset(processed_test_path) test_loader = DataLoader( dataset=test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True ) model = torch.load(save_path) model = model.cuda() criterion = nn.CrossEntropyLoss(ignore_index=PAD_INDEX) test_loss, test_ppl = eval(model, test_loader, criterion) logger.log('test_loss: %.4f\ttest_ppl: %.4f' % (test_loss, test_ppl))
2.03125
2
database_build/dbpedia_run_log_http.py
derdav3/tf-sparql
5
12798252
<reponame>derdav3/tf-sparql<filename>database_build/dbpedia_run_log_http.py<gh_stars>1-10 from multiprocessing import Pool import re, sys, requests, random, json import time as timesleep import numpy as np from tqdm import * from urlparse import urlparse, parse_qs import urllib from datetime import datetime, time fallback_json = { "head": { "link": [], "vars": ["property", "propertyLabel", "propertyVal", "propertyValLabel"] }, "results": { "distinct": False, "ordered": True, "bindings": [ ] } } def run_http_request(req): '''Executes HTTP request to server and returns time Keyword-args: req -- sparql query in url formatting ''' url = 'http://claudio11.ifi.uzh.ch:8890' + req + '&format=json' t0 = datetime.utcnow() # make call and measure time taken resp = requests.get(url) time1 = (datetime.utcnow() - t0).total_seconds() return resp, time1 def cleanup_query(query): '''Cleans log-url into readable sparql query Keyword-args: query -- log-url to clean ''' line_no_tabs = re.sub(r'%09|%0B', '+', query) line_single_spaces = re.sub(r'\++', '+', line_no_tabs) line_no_formatting = re.sub(r'%0A|%0D', '', line_single_spaces) line_noprefix = re.sub(r'.*query=', '', line_no_formatting) line_noquotes = re.sub(r'"', '', line_noprefix) line_end_format = re.sub(r'(&.*?)$', '', line_noquotes) return urllib.unquote_plus(line_end_format.encode('ascii')) def get_result_size(response): try: result_size = len(response['results']['bindings']) except: # respJson = fallback_json result_size = 0 return result_size def run_log(query_line, last_timestamp): # open queries and regex for links url_ = re.findall('"GET (.*?) HTTP', query_line) last_timestamp_new = datetime.utcnow() if len(url_) == 1: request_url = url_[0] query_times = [] resp = '' result_size = 0 try: utcnow = datetime.utcnow() midnight_utc = datetime.combine(utcnow.date(), time(0)) delta_last_query = (datetime.utcnow() - last_timestamp).total_seconds() for _ in range(11): response, exec_time = run_http_request(request_url) # if exec_time == -1.: # break query_times.append(exec_time) # timesleep.sleep(random.random()*0.1) last_timestamp_new = datetime.utcnow() timestamp_query = ((last_timestamp_new - midnight_utc).total_seconds()) respJson = response.json() result_size = get_result_size(respJson) except: exec_time = -1 if exec_time != -1 and len(query_times) == 11: #and result_size > 0: cold_exec_time = query_times[0] warm_times = query_times[1:] warm_mean = np.mean(warm_times, dtype=np.float64) time_vec = [timestamp_query, delta_last_query] query_clean = cleanup_query(request_url) res = str(query_clean + '\t'+ str(time_vec) + '\t' + str(warm_mean) + '\t' + str(cold_exec_time) + '\t' + str(result_size) + '\n') return (res, last_timestamp_new) else: return (-1., last_timestamp_new) else: return (-1., last_timestamp_new) def main(): results = [] log_file = 'database.log' # with open(log_file) as f: # #Spawn pool of workers to execute http queries # pool = Pool() # results = pool.map_async(run_log, f,1) # pool.close() # while not results.ready(): # remaining = results._number_left # print "Waiting for", remaining, "tasks to complete..." # sys.stdout.flush() # time.sleep(10) with open(log_file) as in_, tqdm(total=40000) as pbar: count = 0. last_timestamp = datetime.utcnow() for l_ in in_: count += 1 res, last_timestamp = run_log(l_, last_timestamp) if len(results) > 40000: break if count == 19: count = 0 pbar.update(19) sys.stdout.flush() if res != -1.: results.append(res) with open(log_file + '-test2', 'a') as out: for entry in results: # for entry in results.get(): if entry is not None: out.write(str(entry)) if __name__ == '__main__': main()
2.234375
2
setup.py
finnish-heritage-agency/passari-web-ui
1
12798253
from setuptools import setup, find_packages NAME = "passari_web_ui" DESCRIPTION = ( "Web interface for Passari workflow" ) LONG_DESCRIPTION = DESCRIPTION AUTHOR = "<NAME>" AUTHOR_EMAIL = "<EMAIL>" setup( name=NAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, author=AUTHOR, author_email=AUTHOR_EMAIL, packages=find_packages("src"), include_package_data=True, package_dir={"passari_web_ui": "src/passari_web_ui"}, install_requires=[ "Flask", "Flask-Security-Too", "click>=7", "click<8", "SQLAlchemy", "psycopg2", "rq>=1", "rq-dashboard>=0.6", "toml", "bcrypt", "Flask-SQLAlchemy", "Flask-WTF", "flask-talisman", "arrow" ], classifiers=[ "Development Status :: 5 - Production/Stable", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "License :: OSI Approved :: MIT License", "Framework :: Flask", ], python_requires=">=3.6", use_scm_version=True, command_options={ "build_sphinx": { "project": ("setup.py", NAME), "source_dir": ("setup.py", "docs") } }, setup_requires=["setuptools_scm", "sphinx", "sphinxcontrib-apidoc"], extras_require={ "sphinx": ["sphinxcontrib-apidoc"] } )
1.34375
1
classification.py
Gusyatnikova/argument-mining-rus
0
12798254
<reponame>Gusyatnikova/argument-mining-rus import os import pickle import nltk as nltk from nltk.classify import SklearnClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB, BernoulliNB from data_manager import DataManager correct_labels = ['Premise', 'Claim', 'MajorClaim'] correct_links = ['Support', 'Attacks'] class Classification: def __init__(self): self.divided_args = [] self.divided_links = [] pass def set_data(self, data): args = DataManager().filter_labels(data, correct_labels) links = DataManager().filter_links(data) self.divided_args = DataManager().divide_sentences(args) self.divided_links = DataManager().divide_sentences(links) def get_divided_args(self): return self.divided_args def get_divided_links(self): return self.divided_links @staticmethod def save_pickle(classifier, pickle_name): pickle_dir = 'pickle_files' filename = os.path.join(pickle_dir, pickle_name) with open(filename, 'wb') as f: pickle.dump(classifier, f) @staticmethod def getFeatures(words): content = DataManager().get_content(words) features = nltk.FreqDist(content).keys() return features def set_naivebayes_classifier(self, train_args, train_links): classifier = nltk.NaiveBayesClassifier.train(train_args) Classification().save_pickle(classifier, 'args_naivebayes.pickle') classifier = nltk.NaiveBayesClassifier.train(train_links) Classification().save_pickle(classifier, 'links_naivebayes.pickle') pass def set_sklearn_classifier(self, train_args, train_links): classifier = SklearnClassifier(MultinomialNB()).train(train_args) self.save_pickle(classifier, 'args_sklearn.pickle') classifier = SklearnClassifier(MultinomialNB()).train(train_links) self.save_pickle(classifier, 'links_sklearn.pickle') pass def set_logisticregression_classifier(self, train_args, train_links): classifier = SklearnClassifier(LogisticRegression()).train(train_args) self.save_pickle(classifier, 'args_logisticregression.pickle') classifier = SklearnClassifier(LogisticRegression()).train(train_links) self.save_pickle(classifier, 'links_logisticregression.pickle') pass def train_classifiers(self, arguments_training_set, links_training_set): self.set_naivebayes_classifier(arguments_training_set, links_training_set) self.set_sklearn_classifier(arguments_training_set, links_training_set) self.set_logisticregression_classifier(arguments_training_set, links_training_set) pass def load_classifier(self, filename): classifier_file = open('pickle_files/'+filename, "rb") classifier = pickle.load(classifier_file, encoding="latin1") classifier_file.close() return classifier
2.78125
3
blog/urls.py
minielectron/portfolio
0
12798255
from django.urls import path from . import views app_name="blog" #Works as namespace urlpatterns = [ path('', views.blogs, name="blog"), path('<int:blog_id>', views.detail, name="detail") ]
1.8125
2
ch16/app.py
rauhaanrizvi/code
10
12798256
from pyreact import setTitle, useEffect, useState, render, createElement as el def App(): newTask, setNewTask = useState("") editTask, setEditTask = useState(None) taskList, setTaskList = useState([]) taskCount, setTaskCount = useState(0) taskFilter, setTaskFilter = useState("all") def handleSubmit(event): event.preventDefault() new_list = list(taskList) # Make a copy if editTask is not None: # In edit mode taskIndex = new_list.index(editTask) # Get list position new_list[taskIndex].update({'name': newTask}) # Update name else: # In add mode new_list.append({'name': newTask, 'status': False}) # Add new item setTaskList(new_list) # Update our state setNewTask("") # Clear the new item value setEditTask(None) # Clear the edit item value def handleEdit(task): setNewTask(task['name']) # Set the new item value setEditTask(task) # Set the edit item value def handleDelete(task): new_list = list(taskList) # Make a copy new_list.remove(task) # Remove the specified item setTaskList(new_list) # Update our state def handleChange(event): target = event['target'] if target['name'] == 'taskFilter': setTaskFilter(target['value']) else: setNewTask(target['value']) def handleChangeStatus(event, task): target = event['target'] new_list = list(taskList) # Make a copy taskIndex = new_list.index(task) # Get list position new_list[taskIndex].update({'status': target['checked']}) # Update setTaskList(new_list) # Update our state def ListItem(props): task = props['task'] if taskFilter == "all" or \ (taskFilter == "open" and not task['status']) or \ (taskFilter == "closed" and task['status']): return el('li', None, task['name'] + " ", el('button', {'type': 'button', 'onClick': lambda: handleDelete(task) }, "Delete" ), el('button', {'type': 'button', 'onClick': lambda: handleEdit(task) }, "Edit" ), el('label', {'htmlFor': 'status'}, " Completed:"), el('input', {'type': 'checkbox', 'id': 'status', 'onChange': lambda e: handleChangeStatus(e, task), 'checked': task['status'] } ), ) else: return None def ListItems(): return [el(ListItem, {'key': task['name'], 'task': task}) for task in taskList] def updateCount(): if taskFilter == 'open': new_list = [task for task in taskList if not task['status']] elif taskFilter == 'closed': new_list = [task for task in taskList if task['status']] else: new_list = [task for task in taskList] setTaskCount(len(new_list)) useEffect(lambda: setTitle("ToDo List"), []) useEffect(updateCount, [taskList, taskFilter]) return el('form', {'onSubmit': handleSubmit}, el('div', None, f"Number of Tasks: {taskCount}"), el('div', None, el('label', {'htmlFor': 'all'}, "All Tasks:"), el('input', {'type': 'radio', 'name': 'taskFilter', 'id': 'all', 'value': 'all', 'onChange': handleChange, 'checked': taskFilter == 'all' } ), el('label', {'htmlFor': 'open'}, " Active:"), el('input', {'type': 'radio', 'name': 'taskFilter', 'id': 'open', 'value': 'open', 'onChange': handleChange, 'checked': taskFilter == 'open' } ), el('label', {'htmlFor': 'closed'}, " Completed:"), el('input', {'type': 'radio', 'name': 'taskFilter', 'id': 'closed', 'value': 'closed', 'onChange': handleChange, 'checked': taskFilter == 'closed' } ), ), el('label', {'htmlFor': 'editBox'}, "Edit Task: " if editTask is not None else "Add Task: " ), el('input', {'id': 'editBox', 'onChange': handleChange, 'value': newTask } ), el('input', {'type': 'submit'}), el('ol', None, el(ListItems, None) ), ) render(App, None, 'root')
2.765625
3
setup.py
grantjenks/python-appstore
1
12798257
from io import open from setuptools import setup from setuptools.command.test import test as TestCommand import appstore class Tox(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import tox errno = tox.cmdline(self.test_args) exit(errno) with open('README.rst', encoding='utf-8') as reader: readme = reader.read() setup( name='appstore', version=appstore.__version__, description='App Store -- user-oriented front-end for pip.', long_description=readme, author='<NAME>', author_email='<EMAIL>', url='http://www.grantjenks.com/docs/appstore/', license='Apache 2.0', packages=['appstore'], tests_require=['tox'], cmdclass={'test': Tox}, install_requires=[], classifiers=( 'Development Status :: 1 - Planning', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', ), )
1.90625
2
img_vec.py
janisoteps/imsim1
0
12798258
<reponame>janisoteps/imsim1 # from keras.models import Model # from keras.layers import Flatten, Dense, Input # from keras.utils.data_utils import get_file # from keras import backend as K from keras.layers import Dense from tensorflow.python.framework import ops import tensorflow as tf sess = tf.Session() from keras import backend as K K.set_session(sess) # this placeholder will contain our input digits, as flat vectors img_features_x = tf.placeholder(tf.float32, shape=(1, 4096)) def loss(x1, x2, y): # Euclidean distance between x1,x2 l2diff = tf.sqrt( tf.reduce_sum(tf.square(tf.sub(x1, x2)), reduction_indices=1)) # you can try margin parameters margin = tf.constant(1.) labels = tf.to_float(y) match_loss = tf.square(l2diff, 'match_term') mismatch_loss = tf.maximum(0., tf.sub(margin, tf.square(l2diff)), 'mismatch_term') # if label is 1, only match_loss will count, otherwise mismatch_loss loss = tf.add(tf.mul(labels, match_loss), tf.mul((1 - labels), mismatch_loss), 'loss_add') loss_mean = tf.reduce_mean(loss) return loss_mean def initialize_parameters(): """ Initializes parameters to build a neural network with tensorflow. The shapes are: W1 : [25, 12288] b1 : [25, 1] W2 : [12, 25] b2 : [12, 1] W3 : [6, 12] b3 : [6, 1] Returns: parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3 """ tf.set_random_seed(1) # so that your "random" numbers match ours ### START CODE HERE ### (approx. 6 lines of code) W1 = tf.get_variable("W1", [25, 12288], initializer=tf.contrib.layers.xavier_initializer(seed=1)) b1 = tf.get_variable("b1", [25, 1], initializer=tf.zeros_initializer()) W2 = tf.get_variable("W2", [12, 25], initializer=tf.contrib.layers.xavier_initializer(seed=1)) b2 = tf.get_variable("b2", [12, 1], initializer=tf.zeros_initializer()) W3 = tf.get_variable("W3", [6, 12], initializer=tf.contrib.layers.xavier_initializer(seed=1)) b3 = tf.get_variable("b3", [6, 1], initializer=tf.zeros_initializer()) ### END CODE HERE ### parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2, "W3": W3, "b3": b3} return parameters def forward_propagation(X, parameters): """ Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] b1 = parameters['b1'] W2 = parameters['W2'] b2 = parameters['b2'] W3 = parameters['W3'] b3 = parameters['b3'] ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents: Z1 = tf.add(tf.matmul(W1, tf.cast(X, tf.float32)), b1) # Z1 = np.dot(W1, X) + b1 A1 = tf.nn.relu(Z1) # A1 = relu(Z1) Z2 = tf.add(tf.matmul(W2, A1), b2) # Z2 = np.dot(W2, a1) + b2 A2 = tf.nn.relu(Z2) # A2 = relu(Z2) Z3 = tf.add(tf.matmul(W3, A2), b3) # Z3 = np.dot(W3,Z2) + b3 ### END CODE HERE ### return Z3 def model(X_train, Y_train, X_test, Y_test, learning_rate=0.0001, num_epochs=1500, minibatch_size=32, print_cost=True): """ Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX. Arguments: X_train -- training set, of shape (input size = 12288, number of training examples = 1080) Y_train -- test set, of shape (output size = 6, number of training examples = 1080) X_test -- training set, of shape (input size = 12288, number of training examples = 120) Y_test -- test set, of shape (output size = 6, number of test examples = 120) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables tf.set_random_seed(1) # to keep consistent results seed = 3 # to keep consistent results (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set) n_y = Y_train.shape[0] # n_y : output size costs = [] # To keep track of the cost # Create Placeholders of shape (n_x, n_y) ### START CODE HERE ### (1 line) X, Y = create_placeholders(n_x, n_y) ### END CODE HERE ### # Initialize parameters ### START CODE HERE ### (1 line) parameters = initialize_parameters() ### END CODE HERE ### # Forward propagation: Build the forward propagation in the tensorflow graph ### START CODE HERE ### (1 line) Z3 = forward_propagation(X, parameters) ### END CODE HERE ### # Cost function: Add cost function to tensorflow graph ### START CODE HERE ### (1 line) cost = compute_cost(Z3, Y) ### END CODE HERE ### # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer. ### START CODE HERE ### (1 line) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) ### END CODE HERE ### # Initialize all the variables init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): epoch_cost = 0. # Defines a cost related to an epoch num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # IMPORTANT: The line that runs the graph on a minibatch. # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y). ### START CODE HERE ### (1 line) _, minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) ### END CODE HERE ### epoch_cost += minibatch_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 100 == 0: print("Cost after epoch %i: %f" % (epoch, epoch_cost)) if print_cost == True and epoch % 5 == 0: costs.append(epoch_cost) # lets save the parameters in a variable parameters = sess.run(parameters) print("Parameters have been trained!") # Calculate the correct predictions correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train})) print("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test})) return parameters loss_ = loss(x1_, x2_, y_) optimizer = tf.train.AdamOptimizer(learning_rate=0.1).minimize(loss_) # batchsize = 4 # x1 = np.random.rand(batchsize, dim) # x2 = np.random.rand(batchsize, dim) # y = np.array([0,1,1,0]) # # l = sess.run(loss_, feed_dict={x1_:x1, x2_:x2, y_:y}) # sess.run((optimizer, cost), feed_dict = {X: minibatch_X, Y: minibatch_Y}) # Initialize all variables init_op = tf.global_variables_initializer() sess.run(init_op) # Run training loop with sess.as_default(): optimizer.run(feed_dict={x1_:x1, x2_:x2, y_:y})
2.875
3
thanks/package_tools.py
vsprogrammer2909/thanks
168
12798259
<filename>thanks/package_tools.py from functools import reduce from itertools import chain, takewhile import os import pkg_resources import re class MetaDataNotFound(Exception): pass def get_local_dist(package_name): working_set = dict( (dist.project_name, dist) for dist in pkg_resources.WorkingSet() ) return working_set[package_name] def get_dist_metadata(dist): metadata_path = get_local_dist_metadata_filepath(dist) with open(metadata_path) as fh: metadata = parse_metadata(fh.read()) return metadata def get_funding_data(metadata): return metadata.get('funding_url') def get_local_dist_metadata_filepath(dist): # Dist filename syntax # name ["-" version ["-py" pyver ["-" required_platform]]] "." ext # https://setuptools.readthedocs.io/en/latest/formats.html#filename-embedded-metadata def valid_component(component): return component[1] # Stop taking filename components at the first missing/invalid component filename_component = takewhile(valid_component, ( ('', pkg_resources.to_filename(pkg_resources.safe_name(dist.project_name))), ('-', pkg_resources.to_filename(pkg_resources.safe_version(dist.version))), ('-py', dist.py_version), ('-', dist.platform), )) filename = ''.join(chain(*filename_component)) if isinstance(dist, pkg_resources.EggInfoDistribution): ext = 'egg-info' metadata_file = 'PKG-INFO' elif isinstance(dist, pkg_resources.DistInfoDistribution): ext = 'dist-info' metadata_file = 'METADATA' elif isinstance(dist, pkg_resources.Distribution): ext = os.path.join('egg', 'EGG-INFO') metadata_file = 'PKG-INFO' else: ext = None metadata_file = None filename = '{}.{}'.format(filename, ext) path = os.path.join(dist.location, filename, metadata_file) if ext: return path else: return None metadata_patterns = re.compile(r""" (\s*Author:\s+(?P<author>.*)\s*)? # Author (\s*Maintainer:\s+(?P<maintainer>.+)\s*)? # Maintainer (\s*Project-URL:\sFunding,\s+(?P<funding_url>.+)\s*)? # Funding URL """, re.VERBOSE) def get_line_metadata(line): return metadata_patterns.search(line).groupdict() def filter_empty_metadata(metadata): return dict((k, v) for k, v in metadata.items() if v) def parse_metadata(metadata): metadata = ( filter_empty_metadata(get_line_metadata(line)) for line in metadata.splitlines() ) metadata = [m for m in metadata if m] metadata = reduce( lambda x, y: dict((k, v) for k, v in chain(x.items(), y.items())), metadata, {}, ) return metadata def get_local_metadata(package_name): try: dist = get_local_dist(package_name) metadata = get_dist_metadata(dist) except FileNotFoundError: # No metadata.json file locally raise MetaDataNotFound() return metadata def get_local_funding_metadata(package_name): try: metadata = get_local_metadata(package_name) funding_url = get_funding_data(metadata) except KeyError: # Package not available locally, # or there isn't a 'Funding' entry in the project_urls raise MetaDataNotFound() return funding_url
2.234375
2
kubernetes_manager/models/base.py
breimers/Django-Kubernetes-Manager
13
12798260
<reponame>breimers/Django-Kubernetes-Manager import json from tempfile import NamedTemporaryFile from uuid import uuid4 from django.contrib.postgres.fields import JSONField from django.db import models from kubernetes import client, config class KubernetesBase(models.Model): """ KubernetesBase :type: model (abstract) :description: Base parent model that all subsequent models inherit from. :inherits: django_extensions.db.models.TitleSlugDescriptionModel :fields: id, cluster, config, deployed, deleted """ id = models.UUIDField(default=uuid4, editable=False, primary_key=True, help_text="UUID Auto field.") title = models.CharField(max_length=128) cluster = models.ForeignKey("TargetCluster", on_delete=models.SET_NULL, null=True, help_text="ForeignKey to TargetCluster object.") config = JSONField(default=dict, null=True, blank=True, help_text="Pass in extra parameters here.") deployed = models.DateTimeField(null=True, blank=True, help_text="Time when object is applied to cluster.") removed = models.DateTimeField(null=True, blank=True, help_text="Time when object is removed from cluster.") class Meta: abstract = True def slugify_function(self): """ :description: Overrides default slugify with custom logic. """ return self.title.replace("_", "-").replace(" ", "-").lower() @property def slug(self): return self.slugify_function() def get_client(self, API=client.CoreV1Api, **kwargs): """Gets a k8s api client Args: API (client.<type>) - Kubernetes Client Type Returns: object of type <API> """ if "persist_config" not in kwargs: kwargs["persist_config"] = False with NamedTemporaryFile() as ntf: kwargs["config_file"] = ntf.name cc = json.dumps(self.cluster.config) if isinstance(self.cluster.config, dict) else self.cluster.config with open(ntf.name, "w") as f: f.write(cc) return API(api_client=config.new_client_from_config(config_file=ntf.name)) class KubernetesMetadataObjBase(KubernetesBase): """ KubernetesMetadataObjBase :type: model (abstract) :description: Extends KubernetesBase to include metadata fields. :inherits: kubernetes_manager.models.base.KubernetesBase :fields: labels, annotations """ labels = JSONField(default=dict, help_text="Dictionary store equivalent to Labels in Kubernetes API") annotations = JSONField(default=dict, null=True, blank=True, help_text="Dictionary store equivalent to Annotations in Kubernetes API") class Meta: abstract = True class KubernetesNetworkingBase(KubernetesMetadataObjBase): """ KubernetesNetworkingBase :type: model (abstract) :description: Extends KubernetesMetadataObjBase to include network fields. :inherits: kubernetes_manager.models.base.KubernetesMetadataObjBase :fields: labels, annotations """ api_version = models.CharField(max_length=16, default="v1", help_text="API version used to deploy child object.") kind = models.CharField(max_length=16, help_text="String representation of Kubernetes object kind") port = models.IntegerField(default=80, help_text="Port object will expose") namespace = models.ForeignKey("KubernetesNamespace", on_delete=models.CASCADE, help_text="Live namespace the object is associated with.") kuid = models.CharField(max_length=48, null=True, blank=True, help_text="Object's UID in the cluster") class Meta: abstract = True
1.953125
2
demos/video_demo.py
ALEXKIRNAS/tensorflow-fast-style-transfer
0
12798261
<reponame>ALEXKIRNAS/tensorflow-fast-style-transfer from moviepy.video.io.ffmpeg_reader import FFMPEG_VideoReader from tqdm import tqdm import cv2 from utils.demo_utils import StyleTransferDemo import numpy as np from typing import List import click def get_frames(video_path: str) -> List[np.ndarray]: """ Load frames from video. :param video_path: path to video. :return: loaded frames. """ video_reader = FFMPEG_VideoReader(video_path) frames = [] for _ in tqdm(range(video_reader.nframes), desc='Getting video frames'): frames.append(video_reader.read_frame()) return frames def generate_video_by_frames(path: str, frames: List[np.ndarray]): """ Generate video file by frames sequence. :param path: path where to store resulting video. :param frames: frames sequence. """ (height, width, _) = frames[0].shape video = cv2.VideoWriter(path, -1, 30, (width, height)) for image in tqdm(frames, desc='Writing video'): video.write(image) video.release() def combine_frames(left_frames: List[np.ndarray], right_frames: List[np.ndarray]) -> List[np.ndarray]: """ Combine two sequences of frames into one by concatenating them. :param left_frames: left side sequence. :param right_frames: right side sequence. :return: concatenated sequence. """ if len(left_frames) != len(right_frames): raise ValueError('Sequences of frames must be same length!') combined_frames = [] for left_frame, right_frame in zip(left_frames, right_frames): combined_frame = np.concatenate([left_frame, right_frame], axis=1) combined_frames.append(combined_frame) return combined_frames @click.command() @click.option('--video_path', help='Path to video that need to process.', default='../data/videos/Africa.mp4') @click.option('--result_path', help='Path to file where to store results.', default='../data/videos/Africa_styled.mp4') @click.option('--model_path', help='Path to model protobuf.', default='../model/optimized_model.pb') @click.option('--image_size', help='Output image size.', default='360,640') @click.option('--batch_size', help='Batch size.', default='1') def video_demo(video_path: str, result_path: str, model_path: str, image_size: str, batch_size: str): image_size = [int(size) for size in image_size.split(',')] batch_size = int(batch_size) transformer = StyleTransferDemo( model_path=model_path, input_shape=image_size, scope='style_transfer_cnn' ) original_frames = get_frames(video_path=video_path) original_frames = [ cv2.resize(frame, dsize=(image_size[1], image_size[0])) for frame in original_frames ] counter = tqdm(original_frames, desc='Processing frames') num_frames = len(original_frames) num_batches = num_frames // batch_size num_batches += int(num_batches % batch_size != 0) styled_frames = [] for i in range(num_batches): begin = i * batch_size end = min((i + 1) * batch_size, num_frames) curr_frames = np.array(original_frames[begin:end]) out_frames = transformer(curr_frames) if batch_size != 1: styled_frames.extend(out_frames) else: styled_frames.append(out_frames) counter.update(n=(end - begin)) resulting_images = combine_frames( left_frames=original_frames, right_frames=styled_frames ) generate_video_by_frames(result_path, frames=resulting_images) if __name__ == '__main__': video_demo()
3.03125
3
logs/main.py
akshitdewan/cs61a-apps
5
12798262
<reponame>akshitdewan/cs61a-apps from html import escape from json import loads from flask import Flask, abort from common.oauth_client import create_oauth_client, get_user, is_staff, login from common.shell_utils import sh from common.url_for import url_for from common.rpc.auth import is_admin app = Flask(__name__, static_folder="", static_url_path="") if __name__ == "__main__": app.debug = True create_oauth_client(app, "61a-logs") @app.route("/") def index(): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): abort(401) service_list = "\n".join( f"<p /><a href={url_for('create_secret', service=service)}>{service}</a>" for service in list_services() ) return f""" <h1>Log Viewer</h1> {service_list} """ @app.route("/service/<service>") def create_secret(service): if not is_staff("cs61a"): return login() email = get_user()["email"] if not is_admin(course="cs61a", email=email): abort(401) if service not in list_services(): abort(404) out = reversed( [ entry["timestamp"] + " " + escape(entry["textPayload"]) for entry in loads( sh( "gcloud", "logging", "read", f"projects/cs61a-140900/logs/run.googleapis.com AND resource.labels.service_name={service}", "--limit", "100", "--format", "json", capture_output=True, ) ) if "textPayload" in entry ] ) return "<pre>" + "\n".join(map(str, out)) + "</pre>" def list_services(): """Returns the list of services from Google Cloud Run necessary to access app logs :return: list of services """ return [ service["metadata"]["name"] for service in loads( sh( "gcloud", "run", "services", "list", "--platform", "managed", "--region", "us-west1", "--format", "json", "-q", capture_output=True, ) ) ] if __name__ == "__main__": app.run(debug=True)
2.25
2
nb_train_iib.py
icrdr/3D-UNet-Renal-Anatomy-Extraction
0
12798263
# %% from trainer import Trainer from network import ResUnet3D, ResAttrUnet3D, ResAttrUnet3D2, ResAttrBNUnet3D from loss import Dice, HybirdLoss, DiceLoss, FocalLoss from data import CaseDataset from torchvision.transforms import Compose from transform import Crop, RandomCrop, ToTensor, CombineLabels, \ RandomBrightness, RandomContrast, RandomGamma, \ RandomRescale, RandomRescaleCrop, RandomMirror from torch.optim import Adam from torch.optim.lr_scheduler import ReduceLROnPlateau from datetime import datetime model = ResUnet3D(out_channels=3).cuda() optimizer = Adam(model.parameters(), lr=1e-4) loss = HybirdLoss(weight_v=[1, 148, 191], alpha=0.9, beta=0.1) metrics = {'dsc': DiceLoss(weight_v=[1, 148, 191], alpha=0.9, beta=0.1), 'focal': FocalLoss(weight_v=[1, 148, 191]), 'a_dsc': Dice(weight_v=[0, 1, 0]), 'v_dsc': Dice(weight_v=[0, 0, 1])} scheduler = ReduceLROnPlateau(optimizer, factor=0.2, patience=25) dataset = CaseDataset('data/Task20_Kidney/vessel_region_norm') patch_size = (128, 128, 128) train_transform = Compose([ RandomRescaleCrop(0.1, patch_size, crop_mode='random'), RandomMirror((0.5, 0.5, 0.5)), RandomContrast(0.1), RandomBrightness(0.1), RandomGamma(0.1), ToTensor() ]) valid_transform = Compose([ RandomCrop(patch_size), ToTensor() ]) # ckpt = torch.load('logs/Task20_Kidney/av-loss-last.pt') # model.load_state_dict(ckpt['model_state_dict']) # optimizer.load_state_dict(ckpt['optimizer_state_dict']) trainer = Trainer( model=model, optimizer=optimizer, loss=loss, metrics=metrics, dataset=dataset, scheduler=scheduler, train_transform=train_transform, valid_transform=valid_transform, batch_size=2, valid_split=0.0, num_samples=200, ) # %% save_dir = "logs/DOC/iib-H-09-{}".format(datetime.now().strftime("%y%m%d%H%M")) save_dir = 'logs/DOC/iib-H-09-2006150257' trainer.load_checkpoint('logs/DOC/iib-H-09-2006150257-last.pt') trainer.fit( num_epochs=800, use_amp=True, save_dir=save_dir ) # %%
1.585938
2
features/steps/levenshtein_steps.py
clibc/howabout
2
12798264
<filename>features/steps/levenshtein_steps.py import random from behave import given, when, then from howabout import get_levenshtein @given('two long strings') def step_two_long_strings(context): alphabet = 'abcdefghijklmnopqrstuvwxyz' random_str = lambda size: [random.choice(alphabet) for _ in range(0, size)] context.first = random_str(1024) context.second = random_str(1024) @given('two empty strings') def step_two_empty_strings(context): context.first = '' context.second = '' @when('we compare them') def step_compare_two_strings(context): context.distance = get_levenshtein(context.first, context.second) @then('the interpreter should not overflow') def step_assert_no_overflow(context): assert not context.failed @given('"{string}" and the empty string') def step_a_string_and_the_emtpy_string(context, string): context.first = string context.second = '' @given('a string "{string}"') def step_a_string(context, string): context.first = string @when('we compare it to itself') def step_compare_string_to_itself(context): string = context.first, context.first context.distance = get_levenshtein(string, string) @then('the distance is {distance:d}') def step_assert_distance(context, distance): assert context.distance == distance @given('the first string "{first}" and the second string "{second}" starting with "{prefix}"') def step_impl2(context, first, second, prefix): """ :type context behave.runner.Context :type first str :type second str :type prefix str """ context.first = first context.second = second
3.046875
3
apis/custom_errors.py
gusibi/Metis
84
12798265
<reponame>gusibi/Metis # -*- coding: utf-8 -*- ### ### DO NOT CHANGE THIS FILE ### ### The code is auto generated, your change will be overwritten by ### code generating. ### from sanic.exceptions import SanicException def add_status_code(code): """ Decorator used for adding exceptions to _sanic_exceptions. """ def class_decorator(cls): cls.status_code = code return cls return class_decorator class JSONException(SanicException): def __init__(self, code, message=None, errors=None, status_code=None): super().__init__(message) self.error_code = code self.message = message self.errors = errors if status_code is not None: self.status_code = status_code @add_status_code(422) class UnprocessableEntity(JSONException): pass @add_status_code(401) class Unauthorized(JSONException): pass @add_status_code(403) class Forbidden(JSONException): pass @add_status_code(500) class ServerError(JSONException): pass
1.96875
2
telewavesim/utils.py
mtoqeerpk/Telewavesim
0
12798266
<filename>telewavesim/utils.py # Copyright 2019 <NAME> # This file is part of Telewavesim. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ''' Utility functions to interact with ``telewavesim`` modules. ''' import sys import itertools import numpy as np import pyfftw from scipy.signal import hilbert from obspy.core import Trace, Stream from obspy.signal.rotate import rotate_ne_rt from telewavesim import conf as cf from telewavesim import elast as es from telewavesim.rmat_f import conf as cf_f from telewavesim.rmat_f import plane as pw_f def set_iso_tensor(a, b): """ Function to generate tensor for isotropic material. Args: a (float): P-wave velocity (km/s) b (float): S-wave velocity (km/s) Returns: (np.ndarray): cc: Elastic tensor (GPa /density) \ (shape ``(3, 3, 3, 3)``) """ a = a*1.e3 b = b*1.e3 C = es.iso_tensor(a, b) # Convert Voigt to full tensor cc = voigt2cc(C) return cc def set_tri_tensor(a, b, tr, pl, ani): """ Function to generate tensor for transverse isotropy. The tensor is rotated using the trend and plunge of the symmetry axis. Args: a (float): P-wave velocity (km/s) b (float): S-wave velocity (km/s) tr (float): Trend angle of symmetry axis (degree) pl (float): Plunge angle of symmetry axis (degree) ani (float): Percent anisotropy Returns: (np.ndarray): cc: Elastic tensor (GPa /density) \ (shape ``(3, 3, 3, 3)``) """ # Trend and plunge of symmetry axis tr = -tr*np.pi/180. pl = (90. - pl)*np.pi/180. # Percent anisotropy da = (a*1.e3)*ani/100. db = (b*1.e3)*ani/100. # Set up matrix elements AA = (a*1.e3 - da/2.)**2 CC = (a*1.e3 + da/2.)**2 LL = (b*1.e3 + db/2.)**2 NN = (b*1.e3 - db/2.)**2 AC = (a*1.e3)**2 FF = -LL + np.sqrt((2.*AC)**2 - 2.*AC*(AA + CC + 2.*LL) + (AA + LL)*(CC + LL)) # eta = FF/(AA - 2.*LL) # Get tensor with horizontal axis cc = es.tri_tensor(AA, CC, FF, LL, NN) # Rotate tensor using trend and plunge cc = rot_tensor(cc, pl, tr, 0.) # Return tensor return cc def set_aniso_tensor(tr, pl, typ='atg'): """ Function to generate tensor for anisotropic minerals. The \ tensor is rotated using the trend and plunge of the symmetry \ axis. Args: tr (float): Trend angle of symmetry axis (degree) pl (float): Plunge angle of symmetry axis (degree) type (str, optional): Type of elastic material Returns: (tuple): Tuple containing: * cc (np.ndarray): Elastic tensor (GPa /density)\ (shape ``(3, 3, 3, 3)``) * rho (float): Density (kg/m^3) """ # Trend and plunge of symmetry axis tr = -tr*np.pi/180. pl = (90. - pl)*np.pi/180. # Get tensor with horizontal axis # Minerals if typ=='atg': C, rho = es.antigorite() elif typ=='bt': C, rho = es.biotite() elif typ=='cpx': C, rho = es.clinopyroxene_92() elif typ=='dol': C, rho = es.dolomite() elif typ=='ep': C, rho = es.epidote() elif typ=='grt': C, rho = es.garnet() elif typ=='gln': C, rho = es.glaucophane() elif typ=='hbl': C, rho = es.hornblende() elif typ=='jade': C, rho = es.jadeite() elif typ=='lws': C, rho = es.lawsonite() elif typ=='lz': C, rho = es.lizardite() elif typ=='ms': C, rho = es.muscovite() elif typ=='ol': C, rho = es.olivine() elif typ=='opx': C, rho = es.orthopyroxene() elif typ=='plag': C, rho = es.plagioclase_06() elif typ=='qtz': C, rho = es.quartz() elif typ=='zo': C, rho = es.zoisite() # Rocks elif typ=='BS_f': C, rho = es.blueschist_felsic() elif typ=='BS_m': C, rho = es.blueschist_mafic() elif typ=='EC_f': C, rho = es.eclogite_foliated() elif typ=='EC_m': C, rho = es.eclogite_massive() elif typ=='HB': C, rho = es.harzburgite() elif typ=='SP_37': C, rho = es.serpentinite_37() elif typ=='SP_80': C, rho = es.serpentinite_80() elif typ=='LHZ': C, rho = es.lherzolite() else: print('type of mineral/rock not implemented') return # Convert Voigt to full tensor cc = voigt2cc(C)*1.e9/rho # Rotate tensor using trend and plunge cc = rot_tensor(cc, pl, tr, 0.) # Return tensor return cc, rho def full_3x3_to_Voigt_6_index(i, j): """ Conversion of tensor to Voigt notation for indices """ if i == j: return i return 6-i-j def voigt2cc(C): """ Convert the Voigt representation of the stiffness matrix to the full 3x3x3x3 tensor representation. Args: C (np.ndarray): Stiffness matrix (shape ``(6, 6)``) Returns: (np.ndarray): cc: Elastic tensor (shape ``(3, 3, 3, 3)``) """ C = np.asarray(C) cc = np.zeros((3,3,3,3), dtype=float) for i, j, k, l in itertools.product(range(3), range(3), range(3), range(3)): Voigt_i = full_3x3_to_Voigt_6_index(i, j) Voigt_j = full_3x3_to_Voigt_6_index(k, l) cc[i, j, k, l] = C[Voigt_i, Voigt_j] return cc def cc2voigt(cc): """ Convert from the full 3x3x3x3 tensor representation to the Voigt notation of the stiffness matrix. Args: cc (np.ndarray): Elastic tensor (shape ``(3, 3, 3, 3)``) Returns: (np.ndarray): C: Stiffness matrix (shape ``(6, 6)``) """ Voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)] tol = 1e-3 cc = np.asarray(cc) C = np.zeros((6,6)) for i in range(6): for j in range(6): k, l = Voigt_notation[i] m, n = Voigt_notation[j] C[i,j] = cc[k,l,m,n] return C def VRH_average(C): """ Performs a Voigt-Reuss-Hill average of the anisotropic stifness matrix to the bulk modulus K and the shear modulus G. Args: C (np.ndarray): Stiffness matrix (shape ``(6, 6)``) Returns: (tuple): Tuple containing: * Kvoigt (float): Voigt average bulk modulus (GPa) * Gvoigt (float): Voigt average shear modulus (GPa) * Kreuss (float): Reuss average bulk modulus (GPa) * Greuss (float): Reuss average shear modulus (GPa) * Kvrh (float): Voigt-Reuss-Hill average bulk modulus (GPa) * Gvrh (float): Voigt-Reuss-Hill average shear modulus (GPa) Example ------- >>> from telewavesim import utils >>> cc, rho = utils.set_aniso_tensor(0., 0., typ='atg') >>> C = utils.cc2voigt(cc) >>> utils.VRH_average(C*rho) (75655555555.555557, 48113333333.333336, 61245706544.967415, 28835098086.844658, 68450631050.26149, 38474215710.088997) """ # Compliance matrix S = np.linalg.inv(C) # Voigt averaging Kvoigt = (C[0,0] + C[1,1] + C[2,2] + 2.*C[0,1] + 2.*C[0,2] + 2.*C[1,2])/9. Gvoigt = (C[0,0] + C[1,1] + C[2,2] - C[0,1] - C[0,2] - C[1,2] + 3.*C[3,3] + \ 3.*C[4,4] + 3.*C[5,5])/15. # Reuss averaging Kreuss = 1./(S[0,0] + S[1,1] + S[2,2] + 2.*S[0,1] + 2.*S[0,2] + 2.*S[1,2]) Greuss = 15./(4.*S[0,0] + 4.*S[1,1] + 4.*S[2,2] - 4.*S[0,1] - 4.*S[0,2] - \ 4.*S[1,2] + 3.*S[3,3] + 3.*S[4,4] + 3.*S[5,5]) # Voigt-Reuss-Hill average Kvrh = (Kvoigt + Kreuss)/2. Gvrh = (Gvoigt + Greuss)/2. return Kvoigt, Gvoigt, Kreuss, Greuss, Kvrh, Gvrh def mod2vel(K,G,rho): """ Calculates the isotropic P and S wave velocities from given bulk (K) and shear (G) moduli and density (rho) in kg/m^3 Args: K (float): Bulk modulus (GPa) G (float): Shear modulus (GPa) rho (float): Density (kg/m^3) Returns: (tuple): tuple containing: * Vp (float): P-wave velocity (m/s) * Vs (float): S-wave velocity (m/s) Example ------- >>> from telewavesim import utils >>> cc, rho = utils.set_aniso_tensor(0., 0., typ='atg') >>> C = utils.cc2voigt(cc) >>> K, G = utils.VRH_average(C*rho)[4:6] >>> utils.mod2vel(K, G, rho) (6760.617471753726, 3832.0771334254896) """ Vp = np.sqrt((K + 4.*G/3.)/rho) Vs = np.sqrt(G/rho) return Vp, Vs def rot_tensor(a,alpha,beta,gam): """ Performs a rotation of the tensor cc (c_ijkl) about three angles (alpha, beta, gamma) Args: a (np.ndarray): Elastic tensor with shape ``(3, 3, 3, 3)`` alpha (float): Angle in radians beta (float): Angle in radians gam (float): Angle in radians Returns: (np.ndarray): aa: Rotated tensor with shape ``(3, 3, 3, 3)`` .. note:: The three angles (``alpha``, ``beta``, ``gam``) correspond to rotation about the x_2, x_3, x_1 axes. Note that the sequence of the rotation is important: (AB ~= BA). In this case we rotate about x_2 first, x_3 second and x_1 third. For trend and plunge of symmetry axis (e.g., tri_tensor): ``alpha`` = plunge ``beta`` = trend """ rot = np.zeros((3,3)) aa = np.zeros((3,3,3,3)) rot[0,0] = np.cos(alpha)*np.cos(beta) rot[0,1] = np.sin(beta) rot[0,2] = np.sin(alpha)*np.cos(beta) rot[1,0] = -np.cos(gam)*np.sin(beta)*np.cos(alpha) - \ np.sin(gam)*np.sin(alpha) rot[1,1] = np.cos(gam)*np.cos(beta) rot[1,2] = -np.cos(gam)*np.sin(beta)*np.sin(alpha) + \ np.sin(gam)*np.cos(alpha) rot[2,0] = np.sin(gam)*np.sin(beta)*np.cos(alpha) - \ np.cos(gam)*np.sin(alpha) rot[2,1] = -np.sin(gam)*np.cos(beta) rot[2,2] = np.sin(gam)*np.sin(beta)*np.sin(alpha) + \ np.cos(gam)*np.cos(alpha) # # c_ijkl ---> c_mnrs # for m in range(3): for n in range(3): for r in range(3): for s in range(3): asum=0.0 for i in range(3): for j in range(3): for k in range(3): for l in range(3): rr = rot[m,i]*rot[n,j]*rot[r,k]*rot[s,l] asum = asum + rr*a[i,j,k,l] aa[m,n,r,s] = asum return aa def rotate_zrt_pvh(trZ, trR, trT, vp=6., vs=3.5): """ Rotates traces from `Z-R-T` orientation to `P-SV-SH` wave mode. Args: trZ (obspy.trace): Vertical component trR (obspy.trace): Radial component trT (obspy.trace): Transverse component vp (float, optional): P-wave velocity used for rotation vs (float, optional): S-wave velocity used for rotation Returns: (tuple): tuple containing: * trP (obspy.trace): Compressional (P) wave mode * trV (obspy.trace): Vertically polarized shear (SV) wave mode * trH (obspy.trace): Horizontally polarized shear (SH) wave mode """ # Copy traces trP = trZ.copy() trV = trR.copy() trH = trT.copy() # Vertical slownesses qp = np.sqrt(1/vp/vp - cf.slow*cf.slow) qs = np.sqrt(1/vs/vs - cf.slow*cf.slow) # Elements of rotation matrix m11 = cf.slow*vs*vs/vp m12 = -(1 - 2*vs*vs*cf.slow*cf.slow)/(2*vp*qp) m21 = (1 - 2*vs*vs*cf.slow*cf.slow)/(2*vs*qs) m22 = cf.slow*vs # Rotation matrix rot = np.array([[-m11, m12], [-m21, m22]]) # Vector of Radial and Vertical r_z = np.array([trR.data,trZ.data]) # Rotation vec = np.dot(rot, r_z) # Extract P and SV components trP.data = vec[0,:] trV.data = vec[1,:] trH.data = -trT.data/2. return trP, trV, trH def stack_all(st1, st2, pws=False): """ Stacks all traces in two ``Stream`` objects. Args: st1 (obspy.stream): Stream 1 st2 (obspy.stream,): Stream 2 pws (bool, optional): Enables Phase-Weighted Stacking Returns: (tuple): tuple containing: * stack1 (obspy.trace): Stacked trace for Stream 1 * stack2 (obspy.trace): Stacked trace for Stream 2 """ print() print('Stacking ALL traces in streams') # Copy stats from stream str_stats = st1[0].stats # Initialize arrays tmp1 = np.zeros(len(st1[0].data)) tmp2 = np.zeros(len(st2[0].data)) weight1 = np.zeros(len(st1[0].data), dtype=complex) weight2 = np.zeros(len(st2[0].data), dtype=complex) # Stack all traces for tr in st1: tmp1 += tr.data hilb1 = hilbert(tr.data) phase1 = np.arctan2(hilb1.imag, hilb1.real) weight1 += np.exp(1j*phase1) for tr in st2: tmp2 += tr.data hilb2 = hilbert(tr.data) phase2 = np.arctan2(hilb2.imag, hilb2.real) weight2 += np.exp(1j*phase2) # Normalize tmp1 = tmp1/np.float(len(st1)) tmp2 = tmp2/np.float(len(st2)) # Phase-weighting if pws: weight1 = weight1/np.float(len(st1)) weight2 = weight2/np.float(len(st2)) weight1 = np.real(abs(weight1)) weight2 = np.real(abs(weight2)) else: weight1 = np.ones(len(st1[0].data)) weight2 = np.ones(len(st1[0].data)) # Put back into traces stack1 = Trace(data=weight1*tmp1,header=str_stats) stack2 = Trace(data=weight2*tmp2,header=str_stats) return stack1, stack2 def calc_ttime(slow): """ Calculates total propagation time through model. The bottom layer is irrelevant in this calculation. .. note:: The ``conf`` global variables need to be set for this calculation to succeed. This is typically ensured through reading of the model file from the function ``utils.read_model(modfile)``, and setting the variable ``conf.wvtype`` Args: slow (float): Slowness value (s/km) Returns: (float): t1: Time in seconds Example ------- >>> from telewavesim import conf >>> from telewavesim import utils >>> import numpy as np >>> cc, rho = utils.set_aniso_tensor(0., 0., typ='atg') >>> # Define two-layer model model with identical material >>> conf.nlay = 2 >>> conf.a = np.zeros((3,3,3,3,conf.nlay)) >>> conf.rho = np.zeros((conf.nlay)) >>> conf.thickn = np.zeros((conf.nlay)) >>> # Pass variables to the `conf` module >>> # Only topmost layer is useful for travel time calculation >>> conf.isoflg = ['atg'] >>> conf.a[:,:,:,:,0] = cc >>> conf.rho[0] = rho >>> conf.thickn[0] = 10. >>> conf.wvtype = 'P' >>> slow = 0.06 # s/km >>> utils.calc_ttime(slow) 0.0013519981570791182 """ t1 = 0. for i in range(cf.nlay-1): if cf.isoflg[i] == 'iso': a0 = cf.a[2,2,2,2,i] b0 = cf.a[1,2,1,2,i] else: cc = cc2voigt(cf.a[:,:,:,:,i]) rho = cf.rho[i] K1,G1,K2,G2,K,G = VRH_average(cc*rho) a0, b0 = mod2vel(K,G,rho) a0 = a0**2 b0 = b0**2 if cf.wvtype=='P': t1 += cf.thickn[i]*np.sqrt(1./a0 - (slow*1.e-3)**2) elif cf.wvtype=='Si' or cf.wvtype=='SV' or cf.wvtype=='SH': t1 += cf.thickn[i]*np.sqrt(1./b0 - (slow*1.e-3)**2) return t1 def read_model(modfile): """ Reads model parameters from file that are passed through the configuration module ``conf``. Returns: None: Parameters are now global variables shared between all other modules """ h = []; r = []; a = []; b = []; fl = []; ani = []; tr = []; pl = [] # Read file line by line and populate lists try: open(modfile) except: raise(Exception('model file cannot be opened: ',modfile)) with open(modfile) as fileobj: for line in fileobj: if not line.rstrip().startswith('#'): model = line.rstrip().split() h.append(np.float64(model[0])*1.e3) r.append(np.float64(model[1])) a.append(np.float64(model[2])) b.append(np.float64(model[3])) fl.append(model[4]) ani.append(np.float64(model[5])) tr.append(np.float64(model[6])) pl.append(np.float64(model[7])) # Pass configuration parameters cf.nlay = len(h) cf.thickn = h cf.rho = r cf.isoflg = fl cf.a = np.zeros((3,3,3,3,cf.nlay)) cf.evecs = np.zeros((6,6,cf.nlay),dtype=complex) cf.evals = np.zeros((6,cf.nlay),dtype=complex) cf.Tui = np.zeros((3,3,cf.nlay),dtype=complex) cf.Rui = np.zeros((3,3,cf.nlay),dtype=complex) cf.Tdi = np.zeros((3,3,cf.nlay),dtype=complex) cf.Rdi = np.zeros((3,3,cf.nlay),dtype=complex) mins = ['atg', 'bt', 'cpx', 'dol', 'ep', 'grt', 'gln', 'hbl', 'jade',\ 'lws', 'lz', 'ms', 'ol', 'opx', 'plag', 'qtz', 'zo'] rocks = ['BS_f', 'BS_m', 'EC_f', 'EC_m', 'HB', 'LHZ', 'SP_37', 'SP_80'] for j in range(cf.nlay): if fl[j]=='iso': cc = set_iso_tensor(a[j],b[j]) cf.a[:,:,:,:,j] = cc elif fl[j]=='tri': cc = set_tri_tensor(a[j],b[j],tr[j],pl[j],ani[j]) cf.a[:,:,:,:,j] = cc elif fl[j] in mins or fl[j] in rocks: cc, rho = set_aniso_tensor(tr[j],pl[j],typ=fl[j]) cf.a[:,:,:,:,j] = cc cf.rho[j] = rho else: print('\nFlag not defined: use either "iso", "tri" or one among\n') print(mins,rocks) print() raise(Exception()) return def check_cf(obs=False): """ Checks whether or not all required global variables are set and throws an Exception if not. Args: obs (bool, optional): Whether the analysis is done for an OBS case or not. :raises ExceptionError: Throws ExceptionError if not all variables are set. """ lst = [cf.a, cf.rho, cf.thickn, cf.isoflg, cf.dt, cf.nt, cf.slow, cf.baz] check = [f is None for f in lst] if sum(check)/len(check)>0.: raise Exception("global variables not all set. Set all of the following variables through the conf module: 'a', 'rho', 'thickn', 'isoflg', 'dt', 'nt', 'slow', 'baz'") if obs: lst = [cf.dp, cf.c, cf.rhof] check = [f is None for f in lst] if sum(check)/len(check)>0.: raise Exception("global variables not all set for OBS case. Set all of the following variables through the conf module: 'dp', 'c', 'rhof'") def model2for(): """ Passes global model variables to Fortran ``conf`` module. Returns: None Variables to pass are ``a``, ``rho``, ``thickn``, ``isoflg`` """ nlaymx = cf_f.nlaymx cf_f.a = np.zeros((3,3,3,3,nlaymx)) cf_f.rho = np.zeros((nlaymx)) cf_f.thickn = np.zeros((nlaymx)) cf_f.isoflg = np.zeros((nlaymx), dtype='int') for i in range(cf.nlay): cf_f.a[:,:,:,:,i] = cf.a[:,:,:,:,i] cf_f.rho[i] = cf.rho[i] cf_f.thickn[i] = cf.thickn[i] if cf.isoflg[i]=='iso': cf_f.isoflg[i] = 1 def wave2for(): """ Passes global wavefield variables to Fortran ``conf`` module. Returns: None Variables to pass are ``dt``, ``slow``, ``baz`` """ cf_f.dt = cf.dt cf_f.slow = cf.slow cf_f.baz = cf.baz def obs2for(): """ Passes global OBS-related variables to Fortran ``conf`` module. Returns: None Variables to pass are ``dp``, ``c``, ``rhof`` """ cf_f.dp = cf.dp cf_f.c = cf.c cf_f.rhof = cf.rhof def run_plane(obs=False): """ Function to run the ``plane`` module and return 3-component seismograms as an ``obspy`` ``Stream`` object. .. note:: The ``conf`` global variables need to be set for this calculation to succeed. This function first checks to make sure the variables are all set before executing the main ``telewavesim.rmat_f.plane_****`` function. Args: fortran (book, option): Whether or not the Fortran modules are used obs (bool, optional): Whether or not the analysis is done for an OBS stations Returns: (obspy.stream): trxyz: Stream containing 3-component displacement seismograms """ # Check if all variables are set. If not, throw an Exception and stop check_cf(obs) # Pass variables to Fortran conf model2for() wave2for() # Run the ``plane`` module depending on land or OBS case. if obs: # If OBS, then further pass OBS-related paramters to Fortran conf obs2for() # Get the Fourier transform of seismograms for ``obs``case yx, yy, yz = pw_f.plane_obs(cf.nt,cf.nlay,np.array(cf.wvtype, dtype='c')) else: # Get the Fourier transform of seismograms for ``land`` case yx, yy, yz = pw_f.plane_land(cf.nt,cf.nlay,np.array(cf.wvtype, dtype='c')) # Transfer displacement seismograms to an ``obspy`` ``Stream`` object. trxyz = get_trxyz(yx, yy, yz) return trxyz def get_trxyz(yx, yy, yz): """ Function to store displacement seismograms into ``obspy`` ``Trace`` obsjects and then an ``obspy`` ``Stream`` object. Args: ux (np.ndarray): x-component displacement seismogram uy (np.ndarray): y-component displacement seismogram uz (np.ndarray): z-component displacement seismogram Returns: (obspy.stream): trxyz: Stream containing 3-component displacement seismograms """ # Get displacements in time domain ux = np.real(pyfftw.interfaces.numpy_fft.fft(yx)) uy = np.real(pyfftw.interfaces.numpy_fft.fft(yy)) uz = -np.real(pyfftw.interfaces.numpy_fft.fft(yz)) # Store in traces tux = Trace(data=ux) tuy = Trace(data=uy) tuz = Trace(data=uz) # Update trace header tux = update_stats(tux, cf.nt, cf.dt, cf.slow, cf.baz) tuy = update_stats(tuy, cf.nt, cf.dt, cf.slow, cf.baz) tuz = update_stats(tuz, cf.nt, cf.dt, cf.slow, cf.baz) # Append to stream trxyz = Stream(traces=[tux, tuy, tuz]) return trxyz def tf_from_xyz(trxyz, pvh=False): """ Function to generate transfer functions from displacement traces. Args: trxyz (obspy.stream): Obspy ``Stream`` object in cartesian coordinate system pvh (bool, optional): Whether to rotate from Z-R-T coordinate system to P-SV-SH wave mode Returns: (obspy.stream): tfs: Stream containing Radial and Transverse transfer functions """ # Extract East, North and Vertical ntr = trxyz[0] etr = trxyz[1] ztr = trxyz[2] baz = cf.baz # Copy to radial and transverse rtr = ntr.copy() ttr = etr.copy() # Rotate to radial and transverse rtr.data, ttr.data = rotate_ne_rt(ntr.data, etr.data, baz) a = pyfftw.empty_aligned(len(rtr.data), dtype='float') # print(rtr.data, ttr.data) if pvh: vp = np.sqrt(cf.a[2,2,2,2,0])/1.e3 vs = np.sqrt(cf.a[1,2,1,2,0])/1.e3 trP, trV, trH = rotate_zrt_pvh(ztr, rtr, ttr, vp=vp, vs=vs) tfr = trV.copy(); tfr.data = np.zeros(len(tfr.data)) tft = trH.copy(); tft.data = np.zeros(len(tft.data)) ftfv = pyfftw.interfaces.numpy_fft.fft(trV.data) ftfh = pyfftw.interfaces.numpy_fft.fft(trH.data) ftfp = pyfftw.interfaces.numpy_fft.fft(trP.data) if cf.wvtype=='P': # Transfer function tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(ftfv,ftfp)))) tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(ftfh,ftfp)))) elif cf.wvtype=='Si': tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfp,ftfv)))) tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfp,ftfh)))) elif cf.wvtype=='SV': tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfp,ftfv)))) elif cf.wvtype=='SH': tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfp,ftfh)))) else: tfr = rtr.copy(); tfr.data = np.zeros(len(tfr.data)) tft = ttr.copy(); tft.data = np.zeros(len(tft.data)) ftfr = pyfftw.interfaces.numpy_fft.fft(rtr.data) ftft = pyfftw.interfaces.numpy_fft.fft(ttr.data) ftfz = pyfftw.interfaces.numpy_fft.fft(ztr.data) if cf.wvtype=='P': # Transfer function tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(ftfr,ftfz)))) tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(ftft,ftfz)))) elif cf.wvtype=='Si': tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfz,ftfr)))) tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfz,ftft)))) elif cf.wvtype=='SV': tfr.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfz,ftfr)))) elif cf.wvtype=='SH': tft.data = np.fft.fftshift(np.real(pyfftw.interfaces.numpy_fft.ifft(np.divide(-ftfz,ftft)))) # Store in stream tfs = Stream(traces=[tfr, tft]) # Return stream return tfs def update_stats(tr, nt, dt, slow, baz): """ Updates the ``stats`` doctionary from an obspy ``Trace`` object. Args: tr (obspy.trace): Trace object to update nt (int): Number of samples dt (float): Sampling rate slow (float): Slowness value (s/km) baz (float): Back-azimuth value (degree) Returns: (obspy.trace): tr: Trace with updated stats """ tr.stats.delta = dt tr.stats.slow = slow tr.stats.baz = baz return tr
1.742188
2
pdx_beer_finder/beer_googles/models.py
mgborgman/pcg2015_mgb
0
12798267
<filename>pdx_beer_finder/beer_googles/models.py from django.db import models from django.contrib.auth.models import User class Beer(models.Model): name = models.CharField(max_length=200) description = models.TextField() slug = models.SlugField(unique=True, default='') def __unicode__(self): return self.name class Meta: verbose_name = "Beer" verbose_name_plural = "Beers" class Bar(models.Model): name = models.CharField(max_length=200) description = models.TextField() beers = models.ManyToManyField(Beer, related_name='bars') slug = models.SlugField(unique=True, default='') def __unicode__(self): return self.name class Meta: verbose_name = "Bar" verbose_name_plural = "Bars" class BarRating(models.Model): rating = models.IntegerField() bar = models.ForeignKey(Bar) user = models.ForeignKey(User) def __unicode__(self): return unicode(self.rating) class BeerRating(models.Model): rating = models.IntegerField(default=0) comment = models.TextField() beer = models.ForeignKey(Beer) user = models.ForeignKey(User) def __unicode__(self): return unicode(self.user) class BarComment(models.Model): comment = models.TextField() bar = models.ForeignKey(Bar) user = models.ForeignKey(User) def __unicode__(self): return unicode(self.user) class BeerComment(models.Model): Comment = models.TextField() bar = models.ForeignKey(Bar) user = models.ForeignKey(User) def __unicode__(self): return unicode(self.user) class UserProfile(models.Model): user = models.ForeignKey(User, null=True, blank=True) def __unicode__(self): return self.user.username
2.328125
2
JoystickInput/JoystickServer.py
Mnenmenth/RobotCode
0
12798268
from serial import Serial import time import platform import socket serialPort = Serial('COM3' if platform.system() == 'Windows' else '/dev/ttyUSB0', 9600) time.sleep(2) server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind(('', 2222)) server.listen(1) while True: (client, address) = server.accept() print('Connected') while True: data = client.recv(6)#.decode() if 'CLOSE' in data: break #print(data) serialPort.write(data)
2.71875
3
app/api/v1/stu/teacher_class.py
Hansybx/guohe3
1
12798269
<filename>app/api/v1/stu/teacher_class.py """ -*- coding: utf-8 -*- Time : 2019/7/27 16:15 Author : Hansybx """ from flask import request, jsonify from app.api.v1.stu import stu from app.models.error import PasswordFailed from app.models.res import Res from app.utils.teacher_class.teacher_class_utils import get_teacher_class @stu.route('/class/teacher', methods=['POST']) def teacher_class_get(): username = request.form['username'] password = request.form['password'] semester = request.form['semester'] academy = request.form['academy'] zc = request.form['zc'] try: result = get_teacher_class(username, password, semester, academy, zc) code = 200 msg = '查询成功' info = result except PasswordFailed: code = 401 msg = '查询失败' info = { 'result': '账号或密码错误' } except Exception: code = 500 msg = '查询失败' info = [ { 'result': '未知异常' } ] res_json = Res(code, msg, info) return jsonify(res_json.__dict__)
2.640625
3
process_html.py
weepingwillowben/web-script-wars
1
12798270
<reponame>weepingwillowben/web-script-wars<gh_stars>1-10 import base64 from jinja2 import Template import sys import os import urllib.request def encodebase64(filename): fin = open(filename, 'rb') contents = fin.read() data_url = base64.b64encode(contents) fin.close() return data_url.decode("utf-8") def make_data_url_png(filename): prefix = 'data:image/png;base64,' return prefix + encodebase64(filename) def make_data_url_of_type(filename,type): prefix = 'data:{};base64,'.format(type) return prefix + encodebase64(filename) def render_template(): src_file = "template.tmpl" dest_file = "index.html" template = Template(get_local_file(src_file)) result = template.render( get_local_file=get_local_file, get_remote_file=get_remote_file, make_data_url_png=make_data_url_png, make_data_url_of_type=make_data_url_of_type, encodebase64=encodebase64, ) save_file(result,dest_file) def get_local_file(filename): return open(filename).read() def save_file(data,filename): open(filename,'w').write(data) def get_remote_file(url): basename = url.split("/")[-1] if os.path.exists(basename): return get_local_file(basename) else: with urllib.request.urlopen(url) as response: html = response.read().decode("utf-8") save_file(html,basename) return html if __name__ == "__main__": render_template() # gets tensorflow for s3 upload get_remote_file("https://cdnjs.cloudflare.com/ajax/libs/tensorflow/0.14.1/tf.min.js")
2.703125
3
setup.py
litrin/MACD
13
12798271
<filename>setup.py from distutils.core import setup setup( name='MACD', version='1.0', py_modules=["Average", "MACD"], license='MIT', author='<NAME>', author_email='<EMAIL>' )
1.070313
1
hplusminus/sid.py
bio-phys/hplusminus
1
12798272
<filename>hplusminus/sid.py # Copyright (c) 2020 <NAME>, Max Planck Institute of Biophysics, Frankfurt am Main, Germany # Released under the MIT Licence, see the file LICENSE.txt. import os import numpy as np from scipy.stats import gamma as gamma_dist import scipy def _get_package_gsp(): """ Return the directory path containing gamma spline parameter files that come bundled with the package. ------- gsp_dir: str directory path containing gamma spline parameter files """ package_dir = os.path.dirname(os.path.abspath(__file__)) gsp_dir = os.path.join(package_dir, "gsp") if not os.path.exists(gsp_dir): raise RuntimeError("gamma spline parameter directory not found at " + gsp_dir) else: return gsp_dir def load_spline_parameters(ipath, tests=['h', 'both', 'h_simple', 'both_simple']): """ Load knots and coefficients for B-splines representing :math:`\alpha`, :math:`\beta`, :math:`\matcal{I}_o` paramters of the shifted gamma disributions as functions of :math:`\log_{10} N`, where :math:`N` is the number of data points. Parameters ---------- ipath: str Input path. tests: List of str (optional) Names of tests, for which paramaters are read in. Names identify the corresponding files. Returns ------- spline_par: dict Dictionary containing knots and coefficients of B-splines for all tests and parameters of the shifted gamma disributions. """ spline_par = {} for k in tests: spline_par[k] = {} for na in ["alpha", "beta", "I0"]: spline_par[k][na] = {} for tmp in ["knots", "coeffs"]: iname = "%s_%s_%s.npy" % (tmp, k, na) spline_par[k][na][tmp] = np.load(os.path.join(ipath, iname)) return spline_par def cumulative_SID_gamma(SI, alpha, beta, I0): """ Returns cumulative distribution function of the Shannon information given by gamma distribution. Parameters ---------- SI: float or array-like Shannon information alpha: float Shape parameter of the gamma disribution. beta: float Inverser scale parameter of the gamma disribution. I0: float Shift (location) parameter of the gamma distribution. Returns ------- cdf: float Value of Shannon information """ cdf = 1. - gamma_dist.cdf(SI, alpha, scale=1. / beta, loc=I0) return cdf def get_spline(spline_par, tests=['h', 'both', 'h_simple', 'both_simple']): """ Returns spline function objects for the data size dependence of the parameters of the gamma distributions representing cumulative Shannon information distribution functions. Parameters ---------- spline_par: dict Dictionary containing knots and coefficients of B-splines for all tests and parameters of the shifted gamma disributions. Ouput of load_spline_parameters(). tests: List of str (optional) Names of tests. Returns ------- spline_func: dict Dictionary of spline functions. """ nam = ["alpha", "beta", "I0"] spline_func = {} for k in tests: spline_func[k] = {} for i in range(3): spline_func[k][nam[i]] = scipy.interpolate.BSpline(t=spline_par[k][nam[i]]["knots"], c=spline_par[k][nam[i]]["coeffs"], k=3) return spline_func def get_gamma_parameters(Ns, test, spline_func): """ Returns parameters of shifted gamma distributions for given number of data points. Parameters ---------- Ns: int Number of data points. test: str Name of test. spline_func: dict Dictionary of spline functions. Output of get_spline() or init(). Returns ------- alpha: float Shape parameter of the gamma disribution. beta: float Inverser scale parameter of the gamma disribution. I0: float Shift (location) parameter of the gamma distribution. """ log_Ns = np.log10(Ns) alpha = spline_func[test]["alpha"](log_Ns) beta = spline_func[test]["beta"](log_Ns) I0 = spline_func[test]["I0"](log_Ns) return alpha, beta, I0 def init(gamma_params_ipath=_get_package_gsp()): """ Initialises spline function object. Parameters ---------- gamma_params_ipath: str Input path. Returns ------- spline_func: dict Dictionary of spline functions. Output of get_spline() or init(). """ spline_par = load_spline_parameters(gamma_params_ipath) spline_func = get_spline(spline_par) return spline_func def cumulative(SI, number_data_points, test, spline_func): """ Calculate p-values for given test using gamma disribuiton approximation of Shannon information distribution. Parameters ---------- SI: float Shannon information value. number_data_points: int Number of data points. test: str Name of statistical test. spline_func: dict Dictionary of spline functions. Output of get_spline() or init(). Returns ------- p-value: float P-value for given test. """ #tests = ['chi2', 'h', 'hpm', 'chi2_h', 'chi2_hp'] if test == "chi2": alpha = 0.5 beta = 1. I0 = -np.log(scipy.stats.chi2.pdf(number_data_points - 2, number_data_points)) p_value = cumulative_SID_gamma(SI, alpha, beta, I0) elif test == "h": alpha, beta, I0 = get_gamma_parameters(number_data_points, "h_simple", spline_func) p_value = cumulative_SID_gamma(SI, alpha, beta, I0) elif test == "hpm": alpha, beta, I0 = get_gamma_parameters(number_data_points, "h", spline_func) p_value = cumulative_SID_gamma(SI, alpha, beta, I0) elif test == "chi2_h": alpha, beta, I0 = get_gamma_parameters(number_data_points, "both_simple", spline_func) p_value = cumulative_SID_gamma(SI, alpha, beta, I0) elif test == "chi2_hpm": alpha, beta, I0 = get_gamma_parameters(number_data_points, "both", spline_func) p_value = cumulative_SID_gamma(SI, alpha, beta, I0) else: print("Error: Test \"%s\" not available!") print("Exiting. Returning -1.") return -1. return p_value def get_p_value(SI, number_data_points, test, spline_func): """ Calculate p-values for given test using the gamma distribution approximation of the Shannon information distribution. Wrapper function for function cumulative(SI, number_data_points, test, spline_func) Parameters ---------- SI: float Shannon information value. number_data_points: int Number of data points. test: str Name of statistical test. spline_func: dict Dictionary of spline functions. Output of get_spline() or init(). Returns ------- p-value: float P-value for given test. """ p_value = cumulative(SI, number_data_points, test, spline_func) return p_value
2.375
2
book/form.py
GyanendraMaurya/book-recommendation-system
0
12798273
from django.forms import ModelForm, Textarea, TextInput from .models import Review from django import forms from django.contrib.auth.models import User # Form to take display to take user's review class ReviewForm(ModelForm): class Meta: model = Review fields = ['rating', 'comment'] #user_name = forms.CharField(widget=forms.TextInput(attrs={'placeholder': 'abcd'})) widgets = { 'comment' : Textarea(attrs={'cols':35, 'rows':10}), #'user_name' : TextInput(attrs={'placeholder':User.username,}) } class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class':'forminput'})) password = forms.CharField(widget=forms.PasswordInput)
2.25
2
app.py
DanielNery/vagas-emprego-flask-api
0
12798274
<gh_stars>0 from flask import Flask from flask_restful import Api from resources.vagas import VagasEmpregoResource App = Flask(__name__) App.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///banco.db' App.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False Api = Api(App) # Vai criar o banco e todas aas suas tabelas @App.before_first_request def cria_banco(): banco.create_all() def set_routes(Api): Api.add_resource( VagasEmpregoResource, "/vagas" ) if __name__ == '__main__': from sql_alchemy import banco banco.init_app(App) set_routes(Api) App.run(debug=True)
2.4375
2
item_engine/textbase/__init__.py
GabrielAmare/ItemEngine
0
12798275
from item_engine import * from .constants import * from .items import * from .functions import * from .base_materials import * from .materials import * from .operators import * from .display import * from .setup import *
1.101563
1
output/models/sun_data/ctype/derivation_method/derivation_method00102m/derivation_method00102m2_xsd/derivation_method00102m2.py
tefra/xsdata-w3c-tests
1
12798276
<reponame>tefra/xsdata-w3c-tests from dataclasses import dataclass, field from typing import Optional __NAMESPACE__ = "derivationMethod" @dataclass class A1: class Meta: name = "A" value: Optional[int] = field( default=None, metadata={ "required": True, } ) t: Optional[int] = field( default=None, metadata={ "type": "Attribute", } ) @dataclass class A(A1): class Meta: name = "a" namespace = "derivationMethod"
2.234375
2
models.py
ethanabrooks/jax-rl
0
12798277
from flax import nn import jax from haiku._src.typing import PRNGKey from jax import random import jax.numpy as jnp import numpy as onp from typing import List, Tuple from utils import gaussian_likelihood class TD3Actor(nn.Module): def apply(self, x, action_dim, max_action): x = nn.Dense(x, features=256) x = nn.relu(x) x = nn.Dense(x, features=256) x = nn.relu(x) x = nn.Dense(x, features=action_dim) return max_action * nn.tanh(x) class TD3Critic(nn.Module): def apply(self, state, action, Q1=False): state_action = jnp.concatenate([state, action], axis=1) q1 = nn.Dense(state_action, features=256) q1 = nn.relu(q1) q1 = nn.Dense(q1, features=256) q1 = nn.relu(q1) q1 = nn.Dense(q1, features=1) if Q1: return q1 q2 = nn.Dense(state_action, features=256) q2 = nn.relu(q2) q2 = nn.Dense(q2, features=256) q2 = nn.relu(q2) q2 = nn.Dense(q2, features=1) return q1, q2 class DoubleCritic(nn.Module): def apply(self, state, action, Q1=False): state_action = jnp.concatenate([state, action], axis=1) q1 = nn.Dense(state_action, features=500) q1 = nn.LayerNorm(q1) q1 = nn.tanh(q1) q1 = nn.Dense(q1, features=500) q1 = nn.elu(q1) q1 = nn.Dense(q1, features=1) if Q1: return q1 q2 = nn.Dense(state_action, features=500) q2 = nn.LayerNorm(q2) q2 = nn.tanh(q2) q2 = nn.Dense(q2, features=500) q2 = nn.elu(q2) q2 = nn.Dense(q2, features=1) return q1, q2 class GaussianPolicy(nn.Module): def apply( self, x, action_dim, max_action, key=None, MPO=False, sample=False, log_sig_min=-20, log_sig_max=2, ): x = nn.Dense(x, features=200) x = nn.LayerNorm(x) x = nn.tanh(x) x = nn.Dense(x, features=200) x = nn.elu(x) x = nn.Dense(x, features=2 * action_dim) mu, log_sig = jnp.split(x, 2, axis=-1) log_sig = nn.softplus(log_sig) log_sig = jnp.clip(log_sig, log_sig_min, log_sig_max) if MPO: return mu, log_sig if not sample: return max_action * nn.tanh(mu), log_sig else: pi = mu + random.normal(key, mu.shape) * jnp.exp(log_sig) log_pi = gaussian_likelihood(pi, mu, log_sig) pi = nn.tanh(pi) log_pi -= jnp.sum(jnp.log(nn.relu(1 - pi ** 2) + 1e-6), axis=1) return max_action * pi, log_pi class Constant(nn.Module): def apply(self, start_value, dtype=jnp.float32): value = self.param("value", (1,), nn.initializers.ones) return start_value * jnp.asarray(value, dtype) def build_constant_model(start_value, init_rng): constant = Constant.partial(start_value=start_value) _, init_params = constant.init(init_rng) return nn.Model(constant, init_params) def build_td3_actor_model(input_shapes, action_dim, max_action, init_rng): actor = TD3Actor.partial(action_dim=action_dim, max_action=max_action) _, init_params = actor.init_by_shape(init_rng, input_shapes) return nn.Model(actor, init_params) def build_td3_critic_model(input_shapes, init_rng): critic = TD3Critic.partial() _, init_params = critic.init_by_shape(init_rng, input_shapes) return nn.Model(critic, init_params) def build_model(module: nn.Module, key: PRNGKey, input_shapes): _, init_params = module.init_by_shape(key, input_shapes) return nn.Model(module, init_params) def build_double_critic_model(input_shapes, init_rng): critic = DoubleCritic.partial() _, init_params = critic.init_by_shape(init_rng, input_shapes) return nn.Model(critic, init_params) def build_gaussian_policy_model(input_shapes, action_dim, max_action, init_rng): actor = GaussianPolicy.partial(action_dim=action_dim, max_action=max_action) _, init_params = actor.init_by_shape(init_rng, input_shapes) return nn.Model(actor, init_params)
2.09375
2
bootcamp/authentication/admin.py
ChowBu/bootcamp
0
12798278
<reponame>ChowBu/bootcamp from django.contrib import admin from bootcamp.authentication.models import Profile @admin.register(Profile) class ProfileAdmin(admin.ModelAdmin): # 不能添加tags 会出错,暂时不管 # list_display = ('id','user','location', 'url','job_title',) # search_fields = ('user','location', 'url','job_title',) # 设置列表页展示条目数比较小,可提高打开列表页性能 list_per_page = 10 # list_filter是性能杀手,尽量不要开启 # list_filter = ('user', 'post',) # 开始没有加id进入list_display导致第一项title没法编辑,出现以上问题,后来加了个id在前面解决 # list_editable = ('user','location', 'url','job_title',)
2.09375
2
tests/test_anagram.py
npcasler/anagram
0
12798279
# Anagram Utility # License: MIT """ Tests for anagram""" import unittest import errno import shutil from os.path import join import anagram.anagram as anagram class TestAnagram(unittest.TestCase): @classmethod def setUpClass(cls): cls.parser = anagram.args_options() cls.mock_path = '/path/to/folder' @classmethod def tearDownClass(cls): try: shutil.rmtree('path') except OSError as exc: if exc.errno != errno.ENOENT: raise def test_incorrect_dict_path(self): """ Test read from non-existant file """ args = ['--input', 'tests/samples/test'] with self.assertRaises(IOError): anagram.main(self.parser.parse_args(args)) def test_negative_threshold(self): """ Test an negative value for the character threshold """ args = ['--count', '-1'] with self.assertRaises(ValueError): anagram.main(self.parser.parse_args(args)) def test_empty_output(self): """ Test an empty output """ args = ['--input', 'tests/samples/empty'] self.assertEquals(anagram.main(self.parser.parse_args(args)), 'Input dataset is empty')
3.328125
3
moulin/builders/android_kernel.py
Deedone/moulin
0
12798280
# SPDX-License-Identifier: Apache-2.0 # Copyright 2021 EPAM Systems """ Android kernel builder module """ import os.path from typing import List from moulin.yaml_wrapper import YamlValue from moulin import ninja_syntax def get_builder(conf: YamlValue, name: str, build_dir: str, src_stamps: List[str], generator: ninja_syntax.Writer): """ Return configured AndroidKernel class """ return AndroidKernel(conf, name, build_dir, src_stamps, generator) def gen_build_rules(generator: ninja_syntax.Writer): """ Generate yocto build rules for ninja """ cmd = " && ".join([ "export $env", "cd $build_dir", "build/build.sh", ]) generator.rule("android_kernel_build", command=f'bash -c "{cmd}"', description="Invoke Android Kernel build script", pool="console") generator.newline() class AndroidKernel: """ AndroidBuilder class generates Ninja rules for given Android build configuration """ def __init__(self, conf: YamlValue, name: str, build_dir: str, src_stamps: List[str], generator: ninja_syntax.Writer): self.conf = conf self.name = name self.generator = generator self.src_stamps = src_stamps self.build_dir = build_dir def gen_build(self): """Generate ninja rules to build AOSP""" env_node = self.conf.get("env", None) if env_node: env_values = [x.as_str for x in env_node] else: env_values = [] env = " ".join(env_values) variables = { "build_dir": self.build_dir, "env": env, } targets = self.get_targets() self.generator.build(targets, "android_kernel_build", self.src_stamps, variables=variables) self.generator.newline() return targets def get_targets(self): "Return list of targets that are generated by this build" return [os.path.join(self.build_dir, t.as_str) for t in self.conf["target_images"]] def capture_state(self): """ This method should capture Android Kernel state for a reproducible builds. Luckily, there is nothing to do, as Android state is controlled solely by its repo state. And repo state is captured by repo fetcher code. """
2.125
2
backend/lk/logic/websites.py
Purus/LaunchKitDocker
2,341
12798281
<gh_stars>1000+ # encoding: utf-8 # # Copyright 2016 Cluster Labs, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import logging from datetime import datetime from django.conf import settings from django.db import transaction from backend.lk.logic import appstore_fetch from backend.lk.models import AppWebsiteScreenshot from backend.lk.models import AppWebsitePage from backend.util import dnsutil from backend.util import text def check_domain_for_cname_record(domain): cname, error_message = dnsutil.get_cname_for_domain(domain) if error_message: return False, error_message if cname != '%s.' % settings.HOSTED_WEBSITE_CNAME: return False, 'The CNAME value is set but incorrect' return True, None def _short_description(long_description): if not long_description: return long_description return '%s...' % long_description[:180] def example_from_itunes_id(itunes_id, country): info = appstore_fetch.app_info_with_id(itunes_id, country) app_name, app_tagline = text.app_name_tagline(info.name) example_website = { 'id': 'example', 'appName': app_name, 'tagline': app_tagline, 'longDescription': info.description, 'shortDescription': _short_description(info.description), 'itunesId': info.itunes_id, 'images': { 'screenshots': {'iPhone': [{'url': screenshot} for screenshot in info.screenshots]}, 'icon': {'url': info.icon_512}, } } return example_website def get_fancy_cluster_example(): return { 'id': 'example', 'domain': 'cluster.co', 'template': '', 'appName': 'Cluster', 'tagline': 'Privately share special moments with friends and family', 'shortDescription': 'Cluster gives you a private space to share photos and memories with the people you choose, away from social media. Make your own groups and share pics, videos, comments, and chat!', 'longDescription': u'Cluster makes it possible to create private groups where you share moments through photos and videos with the people you care about. Create a group with family, a group of friends, coworkers, people from your home town, or anyone else!\r\n\r\nGreat for:\r\n\u2022 New Moms! Share photos of a new baby with close friends and family without spamming everyone on other social networks\r\n\u2022 College Students! Share memories with friends not appropriate for Facebook\r\n\u2022 Families! Keep in touch even if you\u2019re not in the same place.\r\n\r\nTons of people already trust Cluster. Here\u2019s why:\r\n\r\n\u2022 Private & secure: Only invited members of the group can see what you post.\r\n\u2022 An app for everyone: Access Cluster through gorgeous mobile apps and the web.\r\n\u2022 Relevant notifications: Know when people you invited post new things to the group.', 'keywords': 'private,group,social,network,space,family,album,photo,video,collaborative,shared,sharing,event,baby', 'itunesId': '596595032', 'playStoreId': 'com.getcluster.android', 'supportLink': 'http://cluster.co/help', 'termsLink': 'http://cluster.co/terms', 'privacyLink': 'http://cluster.co/privacy', 'primaryColor': '#0092F2', 'font': 'Lato', 'frameScreenshots': 'white', 'images': { 'logo': {'url':'https://cluster-static.s3.amazonaws.com/images/marketing/presskit/cluster-logo-white-v1f813d97.png'}, 'background': {'url':'https://cluster-static.s3.amazonaws.com/images/namespaces/default/homepage-billboard-v4bead2de.jpg'}, 'icon': {'url':'http://a1668.phobos.apple.com/us/r30/Purple3/v4/01/c6/f0/01c6f095-df15-7bd9-03f6-53dba727cc8b/mzl.clrnjwyb.png'}, 'screenshots': {'iPhone': [{'url':'http://a3.mzstatic.com/us/r30/Purple3/v4/46/6a/f0/466af0fb-f1d7-80b5-6d03-ccd36ad904ef/screen1136x1136.jpeg'}, {'url':'http://a2.mzstatic.com/us/r30/Purple3/v4/4d/41/8c/4d418cfe-a384-312b-f04f-ac336c3359ff/screen1136x1136.jpeg'}, {'url':'http://a5.mzstatic.com/us/r30/Purple5/v4/21/a6/5a/21a65abd-2f66-6265-1fb0-c08c72e403b3/screen1136x1136.jpeg'}, {'url':'http://a3.mzstatic.com/us/r30/Purple3/v4/a6/6d/4e/a66d4e25-d0f7-d1d0-05ab-edffa3899c14/screen1136x1136.jpeg'}, {'url':'http://a4.mzstatic.com/us/r30/Purple1/v4/33/a0/d0/33a0d056-1761-9c51-4bb7-35813eb14f1f/screen1136x1136.jpeg'}, ], } }, } @transaction.atomic def update_website_screenshots(website, screenshot_images, platform): existing_screenshots = list(AppWebsiteScreenshot.objects.filter(website_id=website.id, platform=platform).order_by('order')) screenshot_image_ids = set([i.id for i in screenshot_images]) screenshots_to_delete = [s for s in existing_screenshots if s.image_id not in screenshot_image_ids] for screenshot in screenshots_to_delete: screenshot.image.decrement_ref_count() screenshot.delete() existing_by_image_id = {i.image_id: i for i in existing_screenshots} for i, image in enumerate(screenshot_images): order = i + 1 if image.id in existing_by_image_id: screenshot = existing_by_image_id[image.id] if screenshot.order != order: screenshot.order = order screenshot.save() else: image.increment_ref_count() screenshot = AppWebsiteScreenshot(website=website, image=image, platform=platform, order=order) screenshot.save() @transaction.atomic def create_or_update_hosted_page(website, slug, body): hosted_page_titles = { 'terms' : 'Terms and Conditions', 'privacy' : 'Privacy Policy', 'support' : 'Support', } page = AppWebsitePage.objects.filter(website=website, slug=slug).first() if page and body: page.body = body page.save() elif not page and body: AppWebsitePage.objects.create(website=website, slug=slug, body=body, title=hosted_page_titles[slug]) elif page and not body: page.delete() @transaction.atomic def delete_website(website): screenshots = list(website.screenshots.all()) for screenshot in screenshots: screenshot.image.decrement_ref_count() screenshot.delete() if website.icon: website.icon.decrement_ref_count() website.icon = None if website.logo: website.logo.decrement_ref_count() website.logo = None if website.background: website.background.decrement_ref_count() website.background = None # TODO(Taylor): Mark as deleted instead of actually deleting potentially huge number of rows # AppWebsiteView.objects.filter(website_id=website.id).delete() website.domain = None website.delete_time = datetime.now() website.save()
1.5625
2
plumeria/config/common.py
sk89q/plumeria
18
12798282
<filename>plumeria/config/common.py<gh_stars>10-100 """A list of common configuration options that might be used by plugins.""" from functools import wraps from plumeria import config from plumeria.command import CommandError from plumeria.config.types import boolstr, dateformatstr from plumeria.core.scoped_config import scoped_config allow_games = config.create("common", "allow_games", type=boolstr, fallback=False, comment="Whether to allow game functions", scoped=True, private=False) nsfw = config.create("common", "nsfw", type=boolstr, fallback=False, comment="Whether to allow NSFW functions", scoped=True, private=False) short_date_time_format = config.create("common", "date_time_short", type=dateformatstr, fallback="%b %m, %Y %I:%M %p %Z", comment="Short date and time format", scoped=True, private=False) config.add(allow_games) config.add(nsfw) config.add(short_date_time_format) def games_allowed_only(f): @wraps(f) async def wrapper(message, *args, **kwargs): if not scoped_config.get(allow_games, message.channel): raise CommandError( "Games aren't allowed here! Enable games by setting the `common/allow_games` config setting to `yes` for the channel or server.") if not message.channel.is_private: return await f(message, *args, **kwargs) return wrapper
2.3125
2
tests/test_totalchance.py
sponsfreixes/dice_stats
2
12798283
from fractions import Fraction from dice_stats import Dice def test_totalchance(): d6 = Dice.from_dice(6) for c in [ Fraction(1), Fraction(1, 2), Fraction(1, 6), ]: assert d6 @ c * 2 == 2 * d6 @ c def test_nested_d6(): d6 = Dice.from_dice(6) d6_a = Dice.sum(v * d6 for v, c in d6.items()) d6_b = Dice.sum([1 * d6, 2 * d6, 3 * d6, 4 * d6, 5 * d6, 6 * d6]) assert d6_a == d6_b assert d6_a._total_chance == Fraction(6) def test_nested_d6_chance(): d6 = Dice.from_dice(6) d6_a = Dice.sum(v * d6 @ c for v, c in d6.items()) c = Fraction(1, 6) d6_b = Dice.sum( [1 * d6 @ c, 2 * d6 @ c, 3 * d6 @ c, 4 * d6 @ c, 5 * d6 @ c, 6 * d6 @ c,] ) assert d6_a == d6_b assert d6_a._total_chance == Fraction(1) def test_nested_d6_chance_squared(): d6 = Dice.from_dice(6) d6_a = Dice.sum(v * d6 @ c for v, c in d6.items()) c = Fraction(1, 6) d6_b = Dice.sum( [d6 @ c * 1, d6 @ c * 2, d6 @ c * 3, d6 @ c * 4, d6 @ c * 5, d6 @ c * 6,] ) assert d6_a == d6_b def test_applyfunction(): d6 = Dice.from_dice(6) result = d6.apply_functions({(1,): lambda d: d6 @ d}, lambda d: d) expected = Dice.from_full( { 1: Fraction(1, 36), 2: Fraction(7, 36), 3: Fraction(7, 36), 4: Fraction(7, 36), 5: Fraction(7, 36), 6: Fraction(7, 36), } ) assert result == expected assert result._total_chance == Fraction(1) def test_applyfunction_old(): d6 = Dice.from_dice(6) result = d6.apply_functions({(1,): lambda _: d6}, lambda d: d) expected = Dice.from_external( { 1: Fraction(1, 6), 2: Fraction(1, 3), 3: Fraction(1, 3), 4: Fraction(1, 3), 5: Fraction(1, 3), 6: Fraction(1, 3), }, Fraction(11, 6), ) assert result == expected assert result._total_chance == Fraction(11, 6) def test_applydice(): result = Dice.from_dice(3).apply_dice( {(1,): Dice.from_dice(4, 2)}, Dice.from_dice(6), ) expected = Dice.from_external( { 1: Fraction(5, 18), 2: Fraction(5, 18), 3: Fraction(5, 18), 4: Fraction(5, 18), 5: Fraction(1, 9), 6: Fraction(1, 9), }, Fraction(4, 3), ) assert result == expected def test_sum_to_one(): result = Dice.sum( [Dice.from_dice(6) @ Fraction(1 / 2), Dice.from_dice(3) @ Fraction(1 / 2),] ) expected = Dice.from_external( { 1: Fraction(1, 4), 2: Fraction(1, 4), 3: Fraction(1, 4), 4: Fraction(1, 12), 5: Fraction(1, 12), 6: Fraction(1, 12), }, Fraction(1), ) assert result == expected def test_sum_to_half(): result = Dice.sum([Dice.from_dice(6), Dice.from_dice(3) @ Fraction(1 / 2),]) expected = Dice.from_external( { 1: Fraction(1, 3), 2: Fraction(1, 3), 3: Fraction(1, 3), 4: Fraction(1, 6), 5: Fraction(1, 6), 6: Fraction(1, 6), }, Fraction(3, 2), ) assert result == expected
3.28125
3
datasets/sult_model/fetch_smiles.py
ssirimulla/openDMPK
17
12798284
<gh_stars>10-100 # Script to fetch smiles using chembl id # Source: https://www.ebi.ac.uk/chembl/ws # For monkey patching (necessary?) # import gevent.monkey # gevent.monkey.patch_all() # from requests.packages.urllib3.util.ssl_ import create_urllib3_context # create_urllib3_context() from chembl_webresource_client.new_client import new_client molecule = new_client.molecule def get_smiles(_id): mol = molecule.get(_id) return mol["molecule_structures"]["canonical_smiles"] print(get_smiles("CHEMBL300797"))
2.359375
2
python/sqlflow_submitter/pai/model.py
pake35/sqlflow
1
12798285
# Copyright 2019 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import pickle import tarfile import odps import tensorflow as tf from tensorflow.python.platform import gfile from sqlflow_submitter import db import os def save(oss_model_dir, *meta): ''' Save model descriptions like the training SQL statements to OSS directory. Data are saved using pickle. Args: oss_model_dir: OSS URI that the model will be saved to. *meta: python objects to be saved. Return: None ''' uri_parts = oss_model_dir.split("?") if len(uri_parts) != 2: raise ValueError("error oss_model_dir: ", oss_model_dir) oss_path = "/".join([uri_parts[0].rstrip("/"), "sqlflow_model_desc"]) writer = gfile.GFile(oss_path, mode='w') pickle.dump(list(meta), writer) writer.flush() writer.close() def load(oss_model_dir): ''' Load and restore a directory and metadata that are saved by `model.save` from a MaxCompute table Args: oss_model_dir: OSS URI that the model will be saved to. Return: A list contains the saved python objects ''' uri_parts = oss_model_dir.split("?") if len(uri_parts) != 2: raise ValueError("error oss_model_dir: ", oss_model_dir) oss_path = "/".join([uri_parts[0].rstrip("/"), "sqlflow_model_desc"]) reader = gfile.GFile(oss_path, mode='r') return pickle.load(reader)
2.125
2
houdini_manage/library.py
NiklasRosenstein/houdini-manage
7
12798286
# Copyright (C) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import datetime import json import os import operator import shlex import subprocess from . import __version__ from .config import config def get_houdini_environment_path(hou=None): hou = hou or config.get('houdinienv', 'houdini16.0') if not '/' in hou and not os.sep in hou: hou = os.path.expanduser('~/Documents/' + hou + '/houdini.env') return os.path.normpath(hou) def get_houdini_user_prefs_directories(): directory = os.path.expanduser('~/Documents') if not os.path.isdir(directory): return [] result = [] for name in os.listdir(directory): envfile = os.path.join(directory, name, 'houdini.env') if name.startswith('houdini') and os.path.isfile(envfile): result.append((name, envfile)) result.sort(key=operator.itemgetter(0), reverse=True) return result def load_library_config(directory): config_file = os.path.join(directory, 'houdini-library.json') if not os.path.isfile(config_file): raise NotALibraryError('missing library configuration file: {}'.format(config_file)) with open(config_file) as fp: return json.load(fp) def install_library(env, directory, overwrite=False): # Open the librarie's configuration file. config = load_library_config(directory) now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M') version = __version__ # Initialize the default section. It's purpose is to make sure that # Houdini's default paths do not get messed up. section = env.get_named_section('DEFAULT') if not section: section = env.add_named_section('DEFAULT', '', before=env.get_first_named_section()) else: section.clear() section.add_comment(' Automatically generated by houdini-manage v{}'.format(version)) section.add_comment(' Last update: {}'.format(now)) #for info in HOUDINI_PATH_ENVVARS: # # Houdini will use the default value of the variable when it sees # # the ampersand. # section.add_variable(info['var'], '&') section.add_variable('HOUDINI_PATH', '&') section.add_variable('PYTHONPATH', '&') # Create or update the section for this library. directory = os.path.normpath(os.path.abspath(directory)) section = env.get_named_section('library:' + config['libraryName']) if not section: previous = False section = env.add_named_section('library:' + config['libraryName'], '') else: previous = True if not overwrite: raise PreviousInstallationFoundError(config['libraryName']) section.clear() section.add_comment(' Automatically generated by houdini-manage v{}'.format(version)) section.add_comment(' Last update: {}'.format(now)) #for info in HOUDINI_PATH_ENVVARS: # if not info['dir']: continue # vardir = os.path.join(directory, info['dir']) # if not os.path.isdir(vardir): continue # section.add_variable(info['var'], '$' + info['var'], vardir) section.add_variable('HOUDINI_PATH', '$HOUDINI_PATH', directory) section.add_variable('PYTHONPATH', '$PYTHONPATH', os.path.join(directory, 'python')) section.add_variable('HLIBPATH_' + config['libraryName'], directory) section.add_variable('HLIBVERSION_' + config['libraryName'], config['libraryVersion']) if config.get('environment'): section.add_comment('Environment variables specified by the library:') for line in config['environment']: section.add_line(line) def remove_library(env, name): section = env.get_library(name) if section: env.remove_section(section) return True return False def get_houdini_application_dir(): install_dir = config.get('houdiniapp') if install_dir: return install_dir if os.name == 'nt': import winreg key = winreg.OpenKey(winreg.HKEY_CLASSES_ROOT, 'Houdini.hip\\shell\\open\\command') path = shlex.split(winreg.QueryValue(key, None))[0] path = os.path.dirname(os.path.dirname(path)) else: path = '' return path def build_dso(hou_app_dir, library_dir): hcustom = os.path.join(hou_app_dir, 'bin\\hcustom.exe' if os.name == 'nt' else 'bin/hcustom') library_dir = os.path.abspath(library_dir) config = load_library_config(library_dir) dso_source = os.path.join(library_dir, config.get('dsoSource', 'dso_source')) if not os.path.isdir(dso_source): return 0, True dso_dir = os.path.join(library_dir, 'dso') if not os.path.isdir(dso_dir): os.makedirs(dso_dir) files = [] for name in os.listdir(dso_source): ext = os.path.splitext(name)[1].lower() if ext in ('.c', '.cc', '.cxx', '.cpp'): files.append(os.path.join(dso_source, name)) if not files: return 0, True command = [hcustom] if config.get('dsoDebug'): command += '-g' for path in config.get('dsoInclude', []): command += ['-I', os.path.join(library_dir, path)] for path in config.get('dsoLibdir', []): command += ['-L', os.path.join(library_dir, path)] for lib in config.get('dsoLibs', []): command += ['-l', lib] command += ['-i', dso_dir] print('Building DSOs for "{}" ...'.format(config['libraryName'])) ok = True for filename in files: current_command = command + [filename] print() print(' {} ...'.format(os.path.basename(filename))) print() res = subprocess.call(current_command, cwd=dso_dir) if res != 0: print('Error: hcustom failed with exit code', res) ok = False print('Done.') return len(files), ok class InstallError(Exception): pass class NotALibraryError(InstallError): pass class PreviousInstallationFoundError(InstallError): def __init__(self, library_name): self.library_name = library_name
1.882813
2
code/waldo/prepare/summarize.py
amarallab/waldo
0
12798287
from __future__ import print_function, absolute_import, unicode_literals, division import six from six.moves import (zip, filter, map, reduce, input, range) # standard library import functools # third party # project specific from waldo.conf import settings from waldo import wio from . import secondary from . import primary __all__ = ['summarize'] CALLBACK_LOAD_FRAC = 0.02 CALLBACK_PRIMARY_FRAC = 0.90 CALLBACK_SECONDARY_FRAC = 0.08 # TODO remove ex_id from parameters. rely solely on experiment def summarize(ex_id, experiment=None, verbose=False, callback=None): """ intermediate summary data. """ if verbose: talk = print else: talk = lambda *a, **k: None if callback: def cb_load(p): callback(CALLBACK_LOAD_FRAC * p) def cb_pri(p): callback(CALLBACK_LOAD_FRAC + CALLBACK_PRIMARY_FRAC * p) def cb_sec(p): callback(CALLBACK_LOAD_FRAC + CALLBACK_PRIMARY_FRAC + CALLBACK_SECONDARY_FRAC * p) def cb_pri_steps(p, step, num_steps): cb_pri((step + p) / num_steps) else: cb_load = cb_pri = cb_sec = cb_pri_steps = None talk('preparing blob files') if experiment is None: # load experiment experiment = wio.Experiment(experiment_id=ex_id, callback=cb_load) talk('Loaded experiment ID: {}'.format(experiment.id)) def save_processed_data(data, experiment): talk(' - Saving to CSVs...') dumped_keys = [] for key, value in six.iteritems(data): talk(' - {}'.format(key)) experiment.prepdata.dump(data_type=key, dataframe=value, index=False) dumped_keys.append(key) # free up memory once this is saved for key in dumped_keys: del data[key] # process the basic blob data talk(' - Summarizing raw data...') data = {} for i, df_type in enumerate(['bounds', 'terminals', 'sizes']): if callback: cb = lambda x: cb_pri_steps(x, i, 3) else: cb = None print(' - Summarizing {df} data...'.format(df=df_type)) data[df_type] = primary.create_primary_df(experiment, df_type, callback=cb) save_processed_data(data, experiment) # TODO: remove this commented method. it keeps failing. # data = primary.summarize(experiment, callback=cb_pri) # generate secondary data talk(' - Generating secondary data...') # data['roi'] = secondary.in_roi(experiment=experiment, bounds=data['bounds']) data['roi'] = secondary.in_roi(experiment=experiment, bounds=None) if callback: cb_sec(0.4) save_processed_data(data, experiment) if callback: cb_sec(0.6) # data['moved'] = secondary.bodylengths_moved(bounds=data['bounds'], sizes=data['sizes']) data['moved'] = secondary.bodylengths_moved(experiment=experiment) if callback: cb_sec(0.8) save_processed_data(data, experiment) if callback: cb_sec(1) # dump it out
1.984375
2
ismore/invasive/sim_passive_movement.py
DerekYJC/bmi_python
0
12798288
import numpy as np import socket, struct from ismore import settings, udp_feedback_client import time from ismore import common_state_lists, ismore_bmi_lib import pandas as pd import pickle import os class Patient(object): def __init__(self, targets_matrix_file): self.addrs = [settings.ARMASSIST_UDP_SERVER_ADDR, settings.REHAND_UDP_SERVER_ADDR] self.socks = [socket.socket(socket.AF_INET, socket.SOCK_DGRAM), socket.socket(socket.AF_INET, socket.SOCK_DGRAM)] self.n_dofs = [range(3), range(3, 7)] self.plant_types = ['ArmAssist', 'ReHand'] self.aa_p = range(3) #common_state_lists.aa_pos_states self.rh_p = range(4) #common_state_lists.rh_pos_states self.rh_v = range(4, 8) #common_state_lists.rh_vel_states self.aa_v = range(3, 6) #self.aa = udp_feedback_client.ArmAssistData() #self.rh = udp_feedback_client.ReHandData() #self.aa.start() #self.last_aa_pos = pd.Series(np.zeros((3, )), dtype=self.aa_p) #self.aa.get()['data'][self.aa_p] #self.last_aa_pos_t = time.time() #self.rh.start() assister_kwargs = { 'call_rate': 20, 'xy_cutoff': 5, } self.assister = ismore_bmi_lib.ASSISTER_CLS_DICT['IsMore'](**assister_kwargs) self.targets_matrix = pickle.load(open(targets_matrix_file)) def send_vel(self, vel): for i, (ia, sock, ndof, plant) in enumerate(zip(self.addrs, self.socks, self.n_dofs, self.plant_types)): self._send_command('SetSpeed %s %s\r' % (plant, self.pack_vel(vel[ndof], ndof)), ia, sock) def pack_vel(self, vel, n_dof): format_str = "%f " * len(n_dof) return format_str % tuple(vel) def _send_command(self, command, addr, sock): sock.sendto(command, addr) def _get_current_state(self): #aa_data = self.aa.get()['data'] with open(os.path.expandvars('$HOME/code/bmi3d/log/armassist.txt'), 'r') as f: lines = f.read().splitlines() last_line = lines[-2] aa_data = np.array([float(i) for i in last_line.split(',')]) with open(os.path.expandvars('$HOME/code/bmi3d/log/rehand.txt'), 'r') as f: lines = f.read().splitlines() last_line = lines[-2] rh_data = np.array([float(i) for i in last_line.split(',')]) #daa = np.array([aa_data[0][i] - self.last_aa_pos[0][i] for i in range(3)]) #aa_vel = daa/(time.time() - self.last_aa_pos_t) #self.last_aa_pos = aa_data[self.aa_p] #rh_data = self.rh.get()['data'] pos = np.hstack(( aa_data[self.aa_p], rh_data[self.rh_p] )) vel = np.hstack(( aa_data[self.aa_v], rh_data[self.rh_v] )) return np.hstack((pos, vel)) def get_to_target(self, target_pos): current_state = np.mat(self._get_current_state()).T target_state = np.mat(np.hstack((target_pos, np.zeros((7, ))))).T assist_kwargs = self.assister(current_state, target_state, 1., mode=None) self.send_vel(10*np.squeeze(np.array(assist_kwargs['Bu'][7:14]))) return np.sum((np.array(current_state)-np.array(target_state))**2) def go_to_target(self, target_name, tix=0): if len(self.targets_matrix[target_name].shape) > 1: targ = self.targets_matrix[target_name][tix] else: targ = self.targets_matrix[target_name] d = 100 while d > 20: d = self.get_to_target(targ) print d
2.078125
2
batchglm/train/tf/base_glm_all/estimator_graph.py
SabrinaRichter/batchglm
0
12798289
<reponame>SabrinaRichter/batchglm from typing import Union import logging import tensorflow as tf import numpy as np import xarray as xr from .external import GradientGraphGLM, NewtonGraphGLM, TrainerGraphGLM from .external import EstimatorGraphGLM, FullDataModelGraphGLM, BatchedDataModelGraphGLM from .external import op_utils from .external import pkg_constants logger = logging.getLogger(__name__) class FullDataModelGraph(FullDataModelGraphGLM): """ Computational graph to evaluate negative binomial GLM metrics on full data set. """ def __init__( self, sample_indices: tf.Tensor, fetch_fn, batch_size: Union[int, tf.Tensor], model_vars, constraints_loc, constraints_scale, train_a, train_b, noise_model: str, dtype ): """ :param sample_indices: TODO :param fetch_fn: TODO :param batch_size: int Size of mini-batches used. :param model_vars: ModelVars Variables of model. Contains tf.Variables which are optimized. :param constraints_loc: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the mean model. This form of constraints is used in vector generalized linear models (VGLMs). :param constraints_scale: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the dispersion model. This form of constraints is used in vector generalized linear models (VGLMs). :param train_mu: bool Whether to train mean model. If False, the initialisation is kept. :param train_r: bool Whether to train dispersion model. If False, the initialisation is kept. :param dtype: Precision used in tensorflow. """ if noise_model == "nb": from .external_nb import BasicModelGraph, Jacobians, Hessians, FIM else: raise ValueError("noise model not rewcognized") self.noise_model = noise_model dataset = tf.data.Dataset.from_tensor_slices(sample_indices) batched_data = dataset.batch(batch_size) batched_data = batched_data.map(fetch_fn, num_parallel_calls=pkg_constants.TF_NUM_THREADS) batched_data = batched_data.prefetch(1) def map_model(idx, data) -> BasicModelGraph: X, design_loc, design_scale, size_factors = data model = BasicModelGraph( X=X, design_loc=design_loc, design_scale=design_scale, constraints_loc=constraints_loc, constraints_scale=constraints_scale, a_var=model_vars.a_var, b_var=model_vars.b_var, dtype=dtype, size_factors=size_factors) return model model = map_model(*fetch_fn(sample_indices)) with tf.name_scope("log_likelihood"): log_likelihood = op_utils.map_reduce( last_elem=tf.gather(sample_indices, tf.size(sample_indices) - 1), data=batched_data, map_fn=lambda idx, data: map_model(idx, data).log_likelihood, parallel_iterations=1, ) norm_log_likelihood = log_likelihood / tf.cast(tf.size(sample_indices), dtype=log_likelihood.dtype) norm_neg_log_likelihood = - norm_log_likelihood with tf.name_scope("loss"): loss = tf.reduce_sum(norm_neg_log_likelihood) with tf.name_scope("hessians"): # Hessian of full model for reporting. hessians_full = Hessians( batched_data=batched_data, sample_indices=sample_indices, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=True, hess_a=True, hess_b=True, dtype=dtype ) # Hessian of submodel which is to be trained. if train_a or train_b: if not train_a or not train_b: hessians_train = Hessians( batched_data=batched_data, sample_indices=sample_indices, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=True, hess_a=train_a, hess_b=train_b, dtype=dtype ) else: hessians_train = hessians_full else: hessians_train = None fim_full = FIM( batched_data=batched_data, sample_indices=sample_indices, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=True, update_a=True, update_b=True, dtype=dtype ) # Fisher information matrix of submodel which is to be trained. if train_a or train_b: if not train_a or not train_b: fim_train = FIM( batched_data=batched_data, sample_indices=sample_indices, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=True, update_a=train_a, update_b=train_b, dtype=dtype ) else: fim_train = fim_full else: fim_train = None with tf.name_scope("jacobians"): # Jacobian of full model for reporting. jacobian_full = Jacobians( batched_data=batched_data, sample_indices=sample_indices, batch_model=None, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.JACOBIAN_MODE, noise_model=noise_model, iterator=True, jac_a=True, jac_b=True, dtype=dtype ) # Jacobian of submodel which is to be trained. if train_a or train_b: if not train_a or not train_b: jacobian_train = Jacobians( batched_data=batched_data, sample_indices=sample_indices, batch_model=None, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.JACOBIAN_MODE, noise_model=noise_model, iterator=True, jac_a=train_a, jac_b=train_b, dtype=dtype ) else: jacobian_train = jacobian_full else: jacobian_train = None self.X = model.X self.design_loc = model.design_loc self.design_scale = model.design_scale self.batched_data = batched_data self.mu = model.mu self.r = model.r self.sigma2 = model.sigma2 self.probs = model.probs self.log_probs = model.log_probs # custom self.sample_indices = sample_indices self.log_likelihood = log_likelihood self.norm_log_likelihood = norm_log_likelihood self.norm_neg_log_likelihood = norm_neg_log_likelihood self.loss = loss self.jac = jacobian_full.jac self.jac_train = jacobian_train self.hessians = hessians_full self.hessians_train = hessians_train self.fim = fim_full self.fim_train = fim_train class BatchedDataModelGraph(BatchedDataModelGraphGLM): """ Computational graph to evaluate negative binomial GLM metrics on batched data set. """ def __init__( self, num_observations, fetch_fn, batch_size: Union[int, tf.Tensor], buffer_size: int, model_vars, constraints_loc, constraints_scale, train_a, train_b, noise_model: str, dtype ): """ :param fetch_fn: TODO :param batch_size: int Size of mini-batches used. :param model_vars: ModelVars Variables of model. Contains tf.Variables which are optimized. :param constraints_loc: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the mean model. This form of constraints is used in vector generalized linear models (VGLMs). :param constraints_scale: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the dispersion model. This form of constraints is used in vector generalized linear models (VGLMs). :param train_mu: bool Whether to train mean model. If False, the initialisation is kept. :param train_r: bool Whether to train dispersion model. If False, the initialisation is kept. :param dtype: Precision used in tensorflow. """ if noise_model == "nb": from .external_nb import BasicModelGraph, Jacobians, Hessians, FIM else: raise ValueError("noise model not rewcognized") self.noise_model = noise_model with tf.name_scope("input_pipeline"): data_indices = tf.data.Dataset.from_tensor_slices(( tf.range(num_observations, name="sample_index") )) training_data = data_indices.apply(tf.contrib.data.shuffle_and_repeat(buffer_size=2 * batch_size)) training_data = training_data.batch(batch_size, drop_remainder=True) training_data = training_data.map(tf.contrib.framework.sort) # sort indices training_data = training_data.map(fetch_fn, num_parallel_calls=pkg_constants.TF_NUM_THREADS) training_data = training_data.prefetch(buffer_size) iterator = training_data.make_one_shot_iterator() batch_sample_index, batch_data = iterator.get_next() (batch_X, batch_design_loc, batch_design_scale, batch_size_factors) = batch_data with tf.name_scope("batch"): batch_model = BasicModelGraph( X=batch_X, design_loc=batch_design_loc, design_scale=batch_design_scale, constraints_loc=constraints_loc, constraints_scale=constraints_scale, a_var=model_vars.a_var, b_var=model_vars.b_var, dtype=dtype, size_factors=batch_size_factors ) # Define the jacobian on the batched model for newton-rhapson: # (note that these are the Jacobian matrix blocks # of the trained subset of parameters). if train_a or train_b: batch_jac = Jacobians( batched_data=batch_data, sample_indices=batch_sample_index, batch_model=batch_model, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.JACOBIAN_MODE, noise_model=noise_model, iterator=False, jac_a=train_a, jac_b=train_b, dtype=dtype ) else: batch_jac = None # Define the hessian on the batched model for newton-rhapson: # (note that these are the Hessian matrix blocks # of the trained subset of parameters). if train_a or train_b: batch_hessians = Hessians( batched_data=batch_data, sample_indices=batch_sample_index, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=False, hess_a=train_a, hess_b=train_b, dtype=dtype ) else: batch_hessians = None # Define the IRLS components on the batched model: # (note that these are the IRLS matrix blocks # of the trained subset of parameters). if train_a or train_b: batch_fim = FIM( batched_data=batch_data, sample_indices=batch_sample_index, constraints_loc=constraints_loc, constraints_scale=constraints_scale, model_vars=model_vars, mode=pkg_constants.HESSIAN_MODE, noise_model=noise_model, iterator=False, update_a=train_a, update_b=train_b, dtype=dtype ) else: batch_fim = None self.X = batch_model.X self.design_loc = batch_model.design_loc self.design_scale = batch_model.design_scale self.batched_data = batch_data self.mu = batch_model.mu self.r = batch_model.r self.sigma2 = batch_model.sigma2 self.probs = batch_model.probs self.log_probs = batch_model.log_probs self.sample_indices = batch_sample_index self.log_likelihood = batch_model.log_likelihood self.norm_log_likelihood = batch_model.norm_log_likelihood self.norm_neg_log_likelihood = batch_model.norm_neg_log_likelihood self.loss = batch_model.loss self.jac_train = batch_jac self.hessians_train = batch_hessians self.fim_train = batch_fim class EstimatorGraphAll(EstimatorGraphGLM): """ """ mu: tf.Tensor sigma2: tf.Tensor def __init__( self, fetch_fn, feature_isnonzero, num_observations, num_features, num_design_loc_params, num_design_scale_params, num_loc_params, num_scale_params, constraints_loc: xr.DataArray, constraints_scale: xr.DataArray, graph: tf.Graph = None, batch_size: int = None, init_a=None, init_b=None, train_loc: bool = True, train_scale: bool = True, provide_optimizers: Union[dict, None] = None, termination_type: str = "global", extended_summary=False, noise_model: str = None, dtype="float32" ): """ :param fetch_fn: TODO :param feature_isnonzero: Whether all observations of a feature are zero. Features for which this is the case are not fitted. :param num_observations: int Number of observations. :param num_features: int Number of features. :param num_design_loc_params: int Number of parameters per feature in mean model. :param num_design_scale_params: int Number of parameters per feature in scale model. :param graph: tf.Graph :param batch_size: int Size of mini-batches used. :param init_a: nd.array (mean model size x features) Initialisation for all parameters of mean model. :param init_b: nd.array (dispersion model size x features) Initialisation for all parameters of dispersion model. :param constraints_loc: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the mean model. This form of constraints is used in vector generalized linear models (VGLMs). :param constraints_scale: tensor (all parameters x dependent parameters) Tensor that encodes how complete parameter set which includes dependent parameters arises from indepedent parameters: all = <constraints, indep>. This tensor describes this relation for the dispersion model. This form of constraints is used in vector generalized linear models (VGLMs). :param train_loc: bool Whether to train mean model. If False, the initialisation is kept. :param train_scale: bool Whether to train dispersion model. If False, the initialisation is kept. :param provide_optimizers: :param termination_type: :param extended_summary: :param dtype: Precision used in tensorflow. """ if noise_model == "nb": from .external_nb import BasicModelGraph, ModelVars, Jacobians, Hessians, FIM else: raise ValueError("noise model not recognized") self.noise_model = noise_model EstimatorGraphGLM.__init__( self=self, num_observations=num_observations, num_features=num_features, num_design_loc_params=num_design_loc_params, num_design_scale_params=num_design_scale_params, num_loc_params=num_loc_params, num_scale_params=num_scale_params, graph=graph, batch_size=batch_size, constraints_loc=constraints_loc, constraints_scale=constraints_scale, dtype=dtype ) # initial graph elements with self.graph.as_default(): with tf.name_scope("model_vars"): self.model_vars = ModelVars( dtype=dtype, init_a=init_a, init_b=init_b, constraints_loc=constraints_loc, constraints_scale=constraints_scale ) self.idx_nonconverged = np.where(self.model_vars.converged == False)[0] # ### performance related settings buffer_size = 4 with tf.name_scope("batched_data"): logger.debug(" ** Build batched data model") self.batched_data_model = BatchedDataModelGraph( num_observations=self.num_observations, fetch_fn=fetch_fn, batch_size=batch_size, buffer_size=buffer_size, model_vars=self.model_vars, constraints_loc=constraints_loc, constraints_scale=constraints_scale, train_a=train_loc, train_b=train_scale, noise_model=noise_model, dtype=dtype ) with tf.name_scope("full_data"): logger.debug(" ** Build full data model") # ### alternative definitions for custom observations: sample_selection = tf.placeholder_with_default( tf.range(num_observations), shape=(None,), name="sample_selection" ) self.full_data_model = FullDataModelGraph( sample_indices=sample_selection, fetch_fn=fetch_fn, batch_size=batch_size * buffer_size, model_vars=self.model_vars, constraints_loc=constraints_loc, constraints_scale=constraints_scale, train_a=train_loc, train_b=train_scale, noise_model=noise_model, dtype=dtype ) self._run_trainer_init( termination_type=termination_type, provide_optimizers=provide_optimizers, train_loc=train_loc, train_scale=train_scale, dtype=dtype ) # Define output metrics: self._set_out_var( feature_isnonzero=feature_isnonzero, dtype=dtype ) self.loss = self.full_data_model.loss self.log_likelihood = self.full_data_model.log_likelihood self.hessians = self.full_data_model.hessians.hessian self.fisher_inv = op_utils.pinv(self.full_data_model.hessians.neg_hessian) # TODO switch for fim? # Summary statistics on feature-wise model gradients: self.gradients = tf.reduce_sum(tf.transpose(self.gradients_full), axis=1) with tf.name_scope('summaries'): tf.summary.histogram('a_var', self.model_vars.a_var) tf.summary.histogram('b_var', self.model_vars.b_var) tf.summary.scalar('loss', self.batched_data_model.loss) tf.summary.scalar('learning_rate', self.learning_rate) if extended_summary: pass self.saver = tf.train.Saver() self.merged_summary = tf.summary.merge_all()
2.5
2
tno/mpc/encryption_schemes/utils/utils.py
TNO-MPC/encryption_schemes.utils
0
12798290
""" Useful functions for creating encryption schemes. """ from math import gcd from typing import Tuple import sympy from ._check_gmpy2 import USE_GMPY2 if USE_GMPY2: import gmpy2 def randprime(low: int, high: int) -> int: """ Generate a random prime number in the range [low, high). Returns GMPY2 MPZ integer if available. :param low: Lower bound (inclusive) of the range. :param high: Upper bound (exclusive) of the range. :return: Random prime number. :raise ValueError: the lower bound should be strictly lower than the upper bound """ if low >= high: raise ValueError( "the lower bound should be smaller or equal to the upper bound" ) if USE_GMPY2: return gmpy2.mpz(sympy.ntheory.generate.randprime(low, high)) # else return sympy.ntheory.generate.randprime(low, high) def pow_mod(base: int, exponent: int, modulus: int) -> int: """ Compute base**exponent % modulus. Uses GMPY2 if available. :param base: base :param exponent: exponent :param modulus: modulus :return: base**exponent % modulus """ if USE_GMPY2: return gmpy2.powmod(base, exponent, modulus) # else return pow(base, exponent, modulus) def mod_inv(value: int, modulus: int) -> int: """ Compute the inverse of a number, given the modulus of the group. Note that the inverse might not exist. Uses GMPY2 if available. :param value: The number to be inverted. :param modulus: The group modulus. :raise ZeroDivisionError: Raised when the inverse of the value does not exist. :return: The inverse of a under the modulus. """ value %= modulus if USE_GMPY2: return gmpy2.invert(value, modulus) # else gcd_, inverse, _ = extended_euclidean(value, modulus) if gcd_ != 1: raise ZeroDivisionError(f"Inverse of {value} mod {modulus} does not exist.") return inverse def extended_euclidean(num_a: int, num_b: int) -> Tuple[int, int, int]: """ Perform the extended euclidean algorithm on the input numbers. The method returns gcd, x, y, such that a*x + b*y = gcd. :param num_a: First number a. :param num_b: Second number b. :return: Tuple containing gcd, x, and y, such that a*x + b*y = gcd. """ # a*x + b*y = gcd x_old, x_cur, y_old, y_cur = 0, 1, 1, 0 while num_a != 0: quotient, num_b, num_a = num_b // num_a, num_a, num_b % num_a y_old, y_cur = y_cur, y_old - quotient * y_cur x_old, x_cur = x_cur, x_old - quotient * x_cur return num_b, x_old, y_old def lcm(num_a: int, num_b: int) -> int: """ Compute the least common multiple of two input numbers. Uses GMPY2 if available. :param num_a: First number a. :param num_b: Second number b. :return: Least common multiple of a and b. """ if USE_GMPY2: return gmpy2.lcm(num_a, num_b) # else return num_a * num_b // gcd(num_a, num_b) def is_prime(number: int) -> bool: """ Check if the input number is a prime number. Uses GMPY2 if available :param number: The number to check :return: Whether the input is prime or not """ if USE_GMPY2: return gmpy2.mpz(number).is_prime() # else return sympy.isprime(number)
3.90625
4
src/mbed_cloud/_backends/enrollment/models/bulk_create_response.py
GQMai/mbed-cloud-sdk-python
12
12798291
<reponame>GQMai/mbed-cloud-sdk-python # coding: utf-8 """ Enrollment API Mbed Cloud Connect Enrollment Service allows users to claim the ownership of a device which is not yet assigned to an account. A device without an assigned account can be a device purchased from the open market (OEM dealer) or a device transferred from an account to another. More information in [Device ownership: First-to-claim](https://cloud.mbed.com/docs/current/connecting/device-ownership.html) document. OpenAPI spec version: 3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class BulkCreateResponse(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'account_id': 'str', 'completed_at': 'datetime', 'created_at': 'datetime', 'errors_count': 'int', 'errors_report_file': 'str', 'etag': 'str', 'full_report_file': 'str', 'id': 'str', 'object': 'str', 'processed_count': 'int', 'status': 'str', 'total_count': 'int' } attribute_map = { 'account_id': 'account_id', 'completed_at': 'completed_at', 'created_at': 'created_at', 'errors_count': 'errors_count', 'errors_report_file': 'errors_report_file', 'etag': 'etag', 'full_report_file': 'full_report_file', 'id': 'id', 'object': 'object', 'processed_count': 'processed_count', 'status': 'status', 'total_count': 'total_count' } def __init__(self, account_id=None, completed_at=None, created_at=None, errors_count=None, errors_report_file=None, etag=None, full_report_file=None, id=None, object=None, processed_count=None, status='new', total_count=None): """ BulkCreateResponse - a model defined in Swagger """ self._account_id = account_id self._completed_at = completed_at self._created_at = created_at self._errors_count = errors_count self._errors_report_file = errors_report_file self._etag = etag self._full_report_file = full_report_file self._id = id self._object = object self._processed_count = processed_count self._status = status self._total_count = total_count self.discriminator = None @property def account_id(self): """ Gets the account_id of this BulkCreateResponse. ID :return: The account_id of this BulkCreateResponse. :rtype: str """ return self._account_id @account_id.setter def account_id(self, account_id): """ Sets the account_id of this BulkCreateResponse. ID :param account_id: The account_id of this BulkCreateResponse. :type: str """ if account_id is None: raise ValueError("Invalid value for `account_id`, must not be `None`") self._account_id = account_id @property def completed_at(self): """ Gets the completed_at of this BulkCreateResponse. The time of completing the bulk creation task. :return: The completed_at of this BulkCreateResponse. :rtype: datetime """ return self._completed_at @completed_at.setter def completed_at(self, completed_at): """ Sets the completed_at of this BulkCreateResponse. The time of completing the bulk creation task. :param completed_at: The completed_at of this BulkCreateResponse. :type: datetime """ self._completed_at = completed_at @property def created_at(self): """ Gets the created_at of this BulkCreateResponse. The time of receiving the bulk creation task. :return: The created_at of this BulkCreateResponse. :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """ Sets the created_at of this BulkCreateResponse. The time of receiving the bulk creation task. :param created_at: The created_at of this BulkCreateResponse. :type: datetime """ if created_at is None: raise ValueError("Invalid value for `created_at`, must not be `None`") self._created_at = created_at @property def errors_count(self): """ Gets the errors_count of this BulkCreateResponse. The number of enrollment identities with failed processing. :return: The errors_count of this BulkCreateResponse. :rtype: int """ return self._errors_count @errors_count.setter def errors_count(self, errors_count): """ Sets the errors_count of this BulkCreateResponse. The number of enrollment identities with failed processing. :param errors_count: The errors_count of this BulkCreateResponse. :type: int """ if errors_count is None: raise ValueError("Invalid value for `errors_count`, must not be `None`") self._errors_count = errors_count @property def errors_report_file(self): """ Gets the errors_report_file of this BulkCreateResponse. :return: The errors_report_file of this BulkCreateResponse. :rtype: str """ return self._errors_report_file @errors_report_file.setter def errors_report_file(self, errors_report_file): """ Sets the errors_report_file of this BulkCreateResponse. :param errors_report_file: The errors_report_file of this BulkCreateResponse. :type: str """ self._errors_report_file = errors_report_file @property def etag(self): """ Gets the etag of this BulkCreateResponse. etag :return: The etag of this BulkCreateResponse. :rtype: str """ return self._etag @etag.setter def etag(self, etag): """ Sets the etag of this BulkCreateResponse. etag :param etag: The etag of this BulkCreateResponse. :type: str """ if etag is None: raise ValueError("Invalid value for `etag`, must not be `None`") if etag is not None and not re.search('[A-Za-z0-9]{0,256}', etag): raise ValueError("Invalid value for `etag`, must be a follow pattern or equal to `/[A-Za-z0-9]{0,256}/`") self._etag = etag @property def full_report_file(self): """ Gets the full_report_file of this BulkCreateResponse. :return: The full_report_file of this BulkCreateResponse. :rtype: str """ return self._full_report_file @full_report_file.setter def full_report_file(self, full_report_file): """ Sets the full_report_file of this BulkCreateResponse. :param full_report_file: The full_report_file of this BulkCreateResponse. :type: str """ self._full_report_file = full_report_file @property def id(self): """ Gets the id of this BulkCreateResponse. Bulk ID :return: The id of this BulkCreateResponse. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this BulkCreateResponse. Bulk ID :param id: The id of this BulkCreateResponse. :type: str """ if id is None: raise ValueError("Invalid value for `id`, must not be `None`") if id is not None and not re.search('^[A-Za-z0-9]{32}', id): raise ValueError("Invalid value for `id`, must be a follow pattern or equal to `/^[A-Za-z0-9]{32}/`") self._id = id @property def object(self): """ Gets the object of this BulkCreateResponse. :return: The object of this BulkCreateResponse. :rtype: str """ return self._object @object.setter def object(self, object): """ Sets the object of this BulkCreateResponse. :param object: The object of this BulkCreateResponse. :type: str """ if object is None: raise ValueError("Invalid value for `object`, must not be `None`") allowed_values = ["enrollment-identity-bulk-uploads"] if object not in allowed_values: raise ValueError( "Invalid value for `object` ({0}), must be one of {1}" .format(object, allowed_values) ) self._object = object @property def processed_count(self): """ Gets the processed_count of this BulkCreateResponse. The number of enrollment identities processed until now. :return: The processed_count of this BulkCreateResponse. :rtype: int """ return self._processed_count @processed_count.setter def processed_count(self, processed_count): """ Sets the processed_count of this BulkCreateResponse. The number of enrollment identities processed until now. :param processed_count: The processed_count of this BulkCreateResponse. :type: int """ if processed_count is None: raise ValueError("Invalid value for `processed_count`, must not be `None`") self._processed_count = processed_count @property def status(self): """ Gets the status of this BulkCreateResponse. The state of the process is 'new' at the time of creation. If the creation is still in progress, the state is shown as 'processing'. When the request has been fully processed, the state changes to 'completed'. :return: The status of this BulkCreateResponse. :rtype: str """ return self._status @status.setter def status(self, status): """ Sets the status of this BulkCreateResponse. The state of the process is 'new' at the time of creation. If the creation is still in progress, the state is shown as 'processing'. When the request has been fully processed, the state changes to 'completed'. :param status: The status of this BulkCreateResponse. :type: str """ if status is None: raise ValueError("Invalid value for `status`, must not be `None`") allowed_values = ["new", "processing", "completed"] if status not in allowed_values: raise ValueError( "Invalid value for `status` ({0}), must be one of {1}" .format(status, allowed_values) ) self._status = status @property def total_count(self): """ Gets the total_count of this BulkCreateResponse. Total number of enrollment identities found in the input CSV. :return: The total_count of this BulkCreateResponse. :rtype: int """ return self._total_count @total_count.setter def total_count(self, total_count): """ Sets the total_count of this BulkCreateResponse. Total number of enrollment identities found in the input CSV. :param total_count: The total_count of this BulkCreateResponse. :type: int """ if total_count is None: raise ValueError("Invalid value for `total_count`, must not be `None`") self._total_count = total_count def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, BulkCreateResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
2.03125
2
nets/vgg16.py
bubbliiiing/classification-pytorch
88
12798292
import torch import torch.nn as nn from torchvision.models.utils import load_state_dict_from_url model_urls = { 'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth', } class VGG(nn.Module): def __init__(self, features, num_classes=1000, init_weights=True): super(VGG, self).__init__() self.features = features self.avgpool = nn.AdaptiveAvgPool2d((7, 7)) self.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) if init_weights: self._initialize_weights() def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def freeze_backbone(self): for param in self.features.parameters(): param.requires_grad = False def Unfreeze_backbone(self): for param in self.features.parameters(): param.requires_grad = True def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) # 224,224,3 -> 224,224,64 -> 112,112,64 -> 112,112,128 -> 56,56,128 -> 56,56,256 -> 28,28,256 -> 28,28,512 # 14,14,512 -> 14,14,512 -> 7,7,512 cfgs = { 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], } def vgg16(pretrained=False, progress=True, num_classes=1000): model = VGG(make_layers(cfgs['D'])) if pretrained: state_dict = load_state_dict_from_url(model_urls['vgg16'], model_dir='./model_data', progress=progress) model.load_state_dict(state_dict,strict=False) if num_classes!=1000: model.classifier = nn.Sequential( nn.Linear(512 * 7 * 7, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(True), nn.Dropout(), nn.Linear(4096, num_classes), ) return model
2.59375
3
data-detective-airflow/data_detective_airflow/test_utilities/test_helper.py
dmitriy-e/metadata-governance
5
12798293
<reponame>dmitriy-e/metadata-governance """Helper for creating DAG tests """ import logging from typing import Any, Union import petl from airflow.models import BaseOperator, TaskInstance from airflow.utils import timezone from pandas import DataFrame from pytest_mock.plugin import MockerFixture from data_detective_airflow.dag_generator import TDag from data_detective_airflow.operators.tbaseoperator import TBaseOperator from data_detective_airflow.test_utilities.assertions import assert_frame_equal def run_task(task: Union[TBaseOperator, BaseOperator], context: dict = None): """Run a task""" # Removing launch restrictions based on the status of previous operators task.trigger_rule = 'dummy' task.render_template_fields(task.generate_context()) task.pre_execute(context) task.execute(context) task.post_execute(context) def mock_task_inputs(task, dataset, mocker): for i, uptask in enumerate(task.upstream_list): task.upstream_list[i].result.read = mocker.MagicMock(return_value=dataset[uptask.task_id]) def run_and_read(task: Union[TBaseOperator, BaseOperator], context: dict = None) -> DataFrame: """Run the task and return the DataFrame from the BaseResult instance.""" logging.info(f'Running task {task.task_id}') run_task(task, context) return task.read_result(context) def run_and_assert_task( task: Union[TBaseOperator, BaseOperator], dataset: dict[str, Any], mocker: MockerFixture = None, exclude_cols: list = None, **kwargs ): """Run the task, get the result and compare :param task: Id of the running task :param dataset: Dictionary with comparison examples. Output and input datasets are needed. :param exclude_cols: Columns excluded from comparison :param mocker: MockerFixture fixture """ task_instance = TaskInstance(task=task, execution_date=timezone.utcnow()) context = task_instance.get_template_context() if mocker and dataset: mock_task_inputs(task, dataset, mocker) actual = run_and_read(task=task, context=context) if actual is not None: expected = dataset[task.task_id] if isinstance(expected, DataFrame): if task.include_columns: actual = actual[list(task.include_columns)] expected = expected[list(task.include_columns)] if isinstance(actual, tuple): # pylint: disable=no-member actual = petl.wrap(actual).todataframe() exclude_cols = exclude_cols or [] e_cols = list(task.exclude_columns) + exclude_cols actual = actual.drop(e_cols, axis=1, errors='ignore') expected = expected.drop(e_cols, axis=1, errors='ignore') assert_frame_equal(actual, expected, **kwargs) else: assert actual == expected def run_and_assert( dag: TDag, task_id: str, test_datasets: dict, mocker: MockerFixture, exclude_cols: list = None ): # pylint: disable=inconsistent-return-statements """Using run_and_assert_task Run the task and if it is TBaseOperator then get the result and compare it with the example Also if the task is PgReplacePartitions then the target table will be cleared first, and then after the launch, compare the contents of the target table with the example :param dag: TDag :param task_id: Id of the running task :param test_datasets: Dictionary with examples :param exclude_cols: Columns excluded from comparison :param mocker: MockerFixture fixture """ task: TBaseOperator = dag.task_dict[task_id] run_and_assert_task(task, dataset=test_datasets, mocker=mocker, exclude_cols=exclude_cols)
2.03125
2
fast_tmp/apps/api/__init__.py
Chise1/fast-tmp2
1
12798294
from datetime import timedelta from fastapi import Form from fastapi.security import OAuth2PasswordRequestForm from fastapi import Depends, HTTPException from pydantic import BaseModel from starlette import status from starlette.requests import Request from fast_tmp.apps.api.schemas import LoginR from fast_tmp.depends import get_current_active_user from fast_tmp.func import get_site_from_permissionschema, init_permission from fast_tmp.models import Permission, User from fast_tmp.amis_router import AmisRouter from fast_tmp.conf import settings from fast_tmp.depends import authenticate_user from fast_tmp.responses import Success, LoginError from fast_tmp.templates_app import templates from fast_tmp.utils.token import create_access_token from fastapi.responses import JSONResponse ACCESS_TOKEN_EXPIRE_MINUTES = settings.EXPIRES_DELTA app = AmisRouter(title="fast_tmp", prefix="/auth", tags=["auth"]) INIT_PERMISSION = False @app.post("/token", response_class=JSONResponse) async def login(form_data: OAuth2PasswordRequestForm = Depends()): """ 仅用于docs页面测试返回用 """ user = await authenticate_user(form_data.username, form_data.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username, "id": user.pk}, expires_delta=access_token_expires ) return {"access_token": access_token, "token_type": "bearer"} @app.post("/get-token") async def login(form_data: LoginR): """ 标准的请求接口 """ user = await authenticate_user(form_data.username, form_data.password) if not user: raise LoginError() access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username, "id": user.pk}, expires_delta=access_token_expires ) return {"access_token": access_token, "token_type": "bearer"} async def get_pages(user: User): global INIT_PERMISSION app = settings.app # 初始化permission if not INIT_PERMISSION: await init_permission(app.site_schema, list(await Permission.all())) INIT_PERMISSION = True permissions = await user.perms site = get_site_from_permissionschema(app.site_schema, permissions, "", user.is_superuser) if site: return [site] else: return [] @app.get("/index", summary="主页面") async def index(request: Request): return templates.TemplateResponse( "gh-pages/index.html", {"request": request, }, ) class L(BaseModel): username: str password: <PASSWORD> @app.post("/index", summary="登录") async def index(request: Request, u: L): user = await authenticate_user(u.username, u.password) if not user: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}, ) access_token = create_access_token( data={"sub": user.username}, expires_delta=timedelta(minutes=settings.EXPIRES_DELTA) ) return Success(data={"access_token": access_token}) @app.get("/site", summary="获取目录") async def get_site(user: User = Depends(get_current_active_user)): """ 获取左侧导航栏 :param user: :return: """ global INIT_PERMISSION app = settings.app # 初始化permission if not INIT_PERMISSION: await init_permission(app.site_schema, list(await Permission.all())) INIT_PERMISSION = True permissions = await user.perms site = get_site_from_permissionschema(app.site_schema, permissions, "", user.is_superuser) if site: return {"pages": [site]} else: return {"pages": []}
2.15625
2
algorithms/dqn.py
GambuzX/sokoban-rl
0
12798295
import gym import gym_sokoban from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.deepq.policies import MlpPolicy from stable_baselines import DQN def run(): # hyperparameters gamma = 0.99 #discount factor learning_rate = 0.00025 #learning rate for adam optimizer buffer_size = 50000 #size of the replay buffer exploration_fraction=0.1 #fraction of entire training period over which the exploration rate is annealed exploration_final_eps=0.02 #final value of random action probability exploration_initial_eps=1.0 #initial value of random action probability train_freq=1 #update the model every train_freq steps. set to None to disable printing batch_size=32 #size of a batched sampled from replay buffer for training double_q=True #whether to enable Double-Q learning or not. learning_starts=100 #how many steps of the model to collect transitions for before learning starts timesteps = 1000#2000 verbose = 1 env = gym.make('Boxoban-Train-v1') model = DQN(MlpPolicy, env, gamma=gamma, learning_rate=learning_rate, buffer_size=buffer_size, exploration_fraction=exploration_fraction, exploration_final_eps=exploration_final_eps, exploration_initial_eps=exploration_initial_eps, train_freq=train_freq, batch_size=batch_size, double_q=double_q, learning_starts=learning_starts, verbose=1) model.learn(total_timesteps=timesteps) model.save("trained_models/dqn_sokoban_model") # Enjoy trained agent obs = env.reset() print(model.action_probability(obs)) while True: action, _states = model.predict(obs) obs, rewards, done, info = env.step(action) env.render() if __name__ == "__main__": run()
2.390625
2
Python/hardware/Arms.py
marcostrullato/RoobertV2
0
12798296
#!/usr/bin/env python # Roobert V2 - second version of home robot project # ________ ______ _____ # ___ __ \______________ /_______________ /_ # __ /_/ / __ \ __ \_ __ \ _ \_ ___/ __/ # _ _, _// /_/ / /_/ / /_/ / __/ / / /_ # /_/ |_| \____/\____//_.___/\___//_/ \__/ # # Project website: http://roobert.springwald.de # # ######## # # Arms # # ######## # # Licensed under MIT License (MIT) # # Copyright (c) 2018 <NAME> | <EMAIL> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import division import time, sys, os my_file = os.path.abspath(__file__) my_path ='/'.join(my_file.split('/')[0:-1]) sys.path.insert(0,my_path + "/../DanielsRasPiPythonLibs/multitasking") sys.path.insert(0,my_path + "/../DanielsRasPiPythonLibs/hardware") from MultiProcessing import * from array import array from SharedInts import SharedInts from SharedFloats import SharedFloats from LX16AServos import LX16AServos from SmartServoManager import SmartServoManager import atexit clear = lambda: os.system('cls' if os.name=='nt' else 'clear') class Arms(): _servoManager = None; _released = False; _armHanging = [[1,185],[3,273],[5,501],[6,541],[7,495],[8,499]] _lookAtHand = [[1,226],[3,680],[5,346],[6,802],[7,830],[8,499]] _wink1 = [[1,476],[3,770],[5,396],[6,866],[7,542],[8,499]] _wink2 = [[1,459],[3,639],[5,396],[6,739],[7,601],[8,499]] _stretchSide = [[1,335],[3,442],[5,542],[6,593],[7,770],[8,499]] #_rightCenteredValues = [[1,370],[3,685],[5,510],[6,460],[7,495],[8,500]] def __init__(self, smartServoManager, leftHandOpen=480, leftHandClose=580, rightHandOpen=540, rightHandClose=430): self._servoManager = smartServoManager self._leftHandOpen = leftHandOpen self._leftHandClose = leftHandClose self._rightHandOpen = rightHandOpen self._rightHandClose = rightHandClose self.DefineArms() #self.SetArm(gesture=Arms._armHanging, left=False); #self.SetHand(opened=True, left=False); #self.SetArm(gesture=Arms._armHanging, left=True); #self.SetHand(opened=True, left=True); #self.WaitTillTargetsReached(); def DefineArms(self): # right arm self._servoManager.AddMasterServo(servoId=1, centeredValue=370); self._servoManager.AddSlaveServo(servoId=2, masterServoId=1, reverseToMaster=-1, centeredValue=608); self._servoManager.AddMasterServo(servoId=3, centeredValue=685); self._servoManager.AddSlaveServo(servoId=4, masterServoId=3, reverseToMaster=-1, centeredValue=352); self._servoManager.AddMasterServo(servoId=5, centeredValue=510); self._servoManager.AddMasterServo(servoId=6, centeredValue=460); self._servoManager.AddMasterServo(servoId=7, centeredValue=495); self._servoManager.AddMasterServo(servoId=8, centeredValue=500); # left arm self._servoManager.AddMasterServo(servoId=11, centeredValue=545); self._servoManager.AddSlaveServo(servoId=12, masterServoId=11, reverseToMaster=-1, centeredValue=459); self._servoManager.AddMasterServo(servoId=13, centeredValue=329); self._servoManager.AddSlaveServo(servoId=14, masterServoId=13, reverseToMaster=-1, centeredValue=700); self._servoManager.AddMasterServo(servoId=15, centeredValue=477); self._servoManager.AddMasterServo(servoId=16, centeredValue=486); self._servoManager.AddMasterServo(servoId=17, centeredValue=501); self._servoManager.AddMasterServo(servoId=18, centeredValue=503); def PrintRightArmValues(self): for id in range(1,8): self._servoManager.SetIsReadOnly(servoId=id, isReadOnly=True); self._servoManager.Start() while(True): self._servoManager.PrintReadOnlyServoValues() time.sleep(0.1) def PrintLeftArmValues(self): for id in range(11,18): self._servoManager.SetIsReadOnly(servoId=id, isReadOnly=True); self._servoManager.Start() while(True): self._servoManager.PrintReadOnlyServoValues(onlyMasterServos=False) time.sleep(0.1) def MirrorRightArmToLeftStart(self): for id in range(1,8): self._servoManager.SetIsReadOnly(servoId=id, isReadOnly=True); #self._servoManager.Start() def MirrorRightArmToLeftUpdate(self): for id in [1,3,5,6,7,8]: value = self._servoManager.ReadServo(id); #print (str(id) + ":" +str(value)) value = -(value - self._servoManager.GetCenteredValue(id)) + self._servoManager.GetCenteredValue(id+10) self._servoManager.MoveServo(id+10, pos=value); def MirrorRightArmToLeftEnd(self): for id in range(1,8): self._servoManager.SetIsReadOnly(servoId=id, isReadOnly=False); def SetArm(self, gesture, left): for p in range(0,len(gesture)): id = gesture[p][0] value = gesture[p][1] if (left == True): id = id + 10; value = -(value - self._servoManager.GetCenteredValue(id-10)) + self._servoManager.GetCenteredValue(id) self._servoManager.MoveServo(id,value); #print ("left:" + str(id)); else: self._servoManager.MoveServo(id,value); #print ("right:" + str(id)) def WaitTillTargetsReached(self): while (self._servoManager.allTargetsReached == False): time.sleep(0.1); def SetHand(self, opened, left): if (left==True): if (opened==True): self._servoManager.MoveServo(18,self._leftHandOpen) else: self._servoManager.MoveServo(18,self._leftHandClose) else: if (opened==True): self._servoManager.MoveServo(8,self._rightHandOpen); else: self._servoManager.MoveServo(8,self._rightHandClose); def Release(self): if (self._released == False): self._released = True; self.SetArm(gesture=Arms._armHanging, left=False); self.SetArm(gesture=Arms._armHanging, left=True); self.SetHand(opened=True, left=False); self.SetHand(opened=True, left=True); self.WaitTillTargetsReached(); def __del__(self): self.Release() def exit_handler(): tester.Release() servoManager.Release() servos.Release() if __name__ == "__main__": atexit.register(exit_handler) ended = False; servos = LX16AServos() servoManager = SmartServoManager(lX16AServos=servos, ramp=0, maxSpeed=1) tester = Arms(servoManager) #tester.MirrorRightArmToLeft(); #tester.PrintRightArmValues() tester.PrintLeftArmValues(); servoManager.Start(); #time.sleep(1); #tester.SetArm(gesture=Arms._rightCenteredValues, left=True); #tester.WaitTillTargetsReached(); #while(True): # print() while(True): tester.SetArm(gesture=Arms._armHanging, left=False); tester.SetArm(gesture=Arms._armHanging, left=True); tester.WaitTillTargetsReached(); tester.SetArm(gesture=Arms._lookAtHand, left=False); tester.WaitTillTargetsReached(); for i in range(1,4): tester.SetArm(gesture=Arms._wink2, left=False); tester.WaitTillTargetsReached(); tester.SetArm(gesture=Arms._wink1, left=False); tester.WaitTillTargetsReached(); tester.SetArm(gesture=Arms._armHanging, left=True); tester.WaitTillTargetsReached(); tester.SetArm(gesture=Arms._lookAtHand, left=True); tester.WaitTillTargetsReached(); for i in range(1,4): tester.SetArm(gesture=Arms._wink2, left=True); tester.WaitTillTargetsReached(); tester.SetArm(gesture=Arms._wink1, left=True); tester.WaitTillTargetsReached(); #plus = 100 #servoManager.Start() #while(True): #plus = - plus ##tester._servoManager.MoveServo(1,400+plus) #tester._servoManager.MoveServo(3,600+plus) #while (tester._servoManager.allTargetsReached == False): #time.sleep(0.1) #tester.SetHand(opened=False, left= True); #tester.SetHand(opened=False, left= False); #tester.WaitTillTargetsReached(); #time.sleep(1); #tester.SetHand(opened=True, left= True); #tester.SetHand(opened=True, left= False); #tester.WaitTillTargetsReached(); #time.sleep(1); ##while(True): ## time.sleep(1) ## print("sleep") #tester.SetArm(gesture=Arms._strechSide, left=True); #tester.WaitTillTargetsReached(); ##tester.SetArm(gesture=Arms._lookHand, left=False); ##tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._strechSide, left=True); #tester.SetArm(gesture=Arms._strechSide, left=False); #tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._wink1, left=True); #tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._wink2, left= True); #tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._wink1, left=True); #tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._wink2, left= True); #tester.WaitTillTargetsReached(); #tester.SetHand(opened=False, left= True); #tester.SetArm(gesture=Arms._ghettoFist1, left= True); #tester.WaitTillTargetsReached(); #tester.SetArm(gesture=Arms._ghettoFist2, left= True); #tester.WaitTillTargetsReached(); print("done");
1.773438
2
PyPoll/main.py
v33na/python-challenge
0
12798297
<gh_stars>0 # Modules import os import csv #Set the variables total_votes = 0 total_candidates = 0 candidates_names = [] candidate_votes = [] # Winning Candidate and Winning Count Tracker percent = [] # Set path for file poll_path = os.path.join("Resources", "election_data.csv") output_path = os.path.join("Resources", "Election Analysis") # Open and read csv with open(poll_path, newline="") as csvfile: poll_reader = csv.reader(csvfile, delimiter=",") # Read the header row first (skip this part if there is no header) poll_header = next(csvfile) #To loop through the data to collect the answers for row in poll_reader: total_votes = total_votes + 1 #read in the candidate name from column 3 row 2 of csv candidate_in = (row[2]) if candidate_in in candidates_names: candidate_index = candidates_names.index(candidate_in) candidate_votes[candidate_index] = candidate_votes[candidate_index] + 1 else: #if candidate was not found in candidates_unique list then append to list and add 1 to vote count candidates_names.append(candidate_in) candidate_votes.append(1) #print(f'Total votes {total_votes}') #print(f'Each candidate: {candidates_names}') #print(f'Index: {candidates_names.index(candidate_in)}') #print(f"candidates votes: {candidate_votes}") #The percentage of votes each candidate won for x in range(len(candidates_names)): vote_percent = round(candidate_votes[x]/total_votes *100, 4) percent.append(vote_percent) max_votes = max(candidate_votes) max_index= candidate_votes.index(max_votes) election_winner = candidates_names[max_index] #print results to terminal print("------------------------------------------------------------") print("Election Results") print("-------------------------------------------------------------") print(f"The total number of votes cast : {total_votes}") print("--------------------------------------------------------------") for x in range(len(candidates_names)): print(f"{candidates_names[x]} : {percent[x]}% ({candidate_votes[x]})") print("------------------------------------------------------------------") print(f"The Winner is : {election_winner}") print("--------------------------------------------------------------") #To export a text file with the results # Open the file using "write" mode. Specify the variable to hold the contents with open(output_path, 'w', newline='') as textfile: # Initialize csv.writer csvwriter = csv.writer(csvfile, delimiter=',') #print results to Text file textfile.write("Election Results\n") textfile.write("-------------------------------------------------------------\n") textfile.write(f"The total number of votes cast : {total_votes}\n") textfile.write("--------------------------------------------------------------\n") for x in range(len(candidates_names)): textfile.write(f"{candidates_names[x]} : {percent[x]}% ({candidate_votes[x]})\n") textfile.write("------------------------------------------------------------------\n") textfile.write(f"The Winner is : {election_winner}\n") textfile.write("--------------------------------------------------------------\n")
3.546875
4
receivers/utils.py
cosnomi/smart-mail-slacker
0
12798298
<gh_stars>0 from datetime import datetime class MessageData: keys = [('internal_date', datetime), ('subject', str), ('body', str), ('from', list), ('to', list)] def __init__(self, params): for key, expected_type in self.keys: if not key in params: raise KeyError(key) if not isinstance(params[key], expected_type): raise TypeError('expected {} to be {}, but got {}'.format( key, expected_type, type(params[key]))) setattr(self, key, params[key]) def get_value(self, key): if key not in [x[0] for x in self.keys]: raise KeyError(key) return getattr(self, key)
2.796875
3
code/backend/billing/services.py
rollethu/noe
16
12798299
<gh_stars>10-100 from typing import List from collections import defaultdict import logging from django.conf import settings from online_payments.billing.enums import Currency from online_payments.billing.models import Item, PaymentMethod, Invoice, Customer from online_payments.billing.szamlazzhu import Szamlazzhu from payments.prices import PRODUCTS, get_product_items logger = logging.getLogger(__name__) def send_seat_invoice(seat): _send_invoice(seat.appointment.billing_detail, seat.appointment.email, _get_items_for_seats([seat])) def send_appointment_invoice(appointment): _send_invoice(appointment.billing_detail, appointment.email, _get_items_for_seats(appointment.seats.all())) def _get_items_for_seats(seats) -> List[Item]: grouped_products = defaultdict(int) for seat in seats: grouped_products[seat.payment.product_type] += 1 items = [] for product_type, quantity in grouped_products.items(): items.extend(get_product_items(PRODUCTS[product_type], quantity)) return items def _send_invoice(billing_detail, email, items): customer = Customer( name=billing_detail.company_name, post_code=billing_detail.post_code, city=billing_detail.city, address=billing_detail.address_line1, email=email, tax_number=billing_detail.tax_number, ) invoice = Invoice(items=items, payment_method=PaymentMethod.CREDIT_CARD, customer=customer) szamlazzhu = Szamlazzhu(settings.SZAMLAZZHU_AGENT_KEY, Currency.HUF) logger.info("Sending invoice to: %s", email) szamlazzhu.send_invoice(invoice, settings.SZAMLAZZHU_INVOICE_PREFIX)
1.976563
2
lb_colloids/Colloids/Colloid_output.py
jdlarsen-UA/LB-colloids
1
12798300
""" The Colloid_output module contains classes to read LB Colloids simulation outputs and perform post processing. Many classes are available to provide plotting functionality. ModelPlot and CCModelPlot are useful for visualizing colloid-surface forces and colloid-colloid forces respectively. example import of the Colloid_output.py module is as follows >>> from lb_colloids import ColloidOutput >>> import matplotlib.pyplot as plt >>> >>> hdf = "mymodel.hdf5" >>> mp = ColloidOutput.ModelPlot(hdf) >>> # model plot accepts matplotlib args and kwargs!!! >>> mp.plot('edl_x', cmap='viridis') >>> plt.show() """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import h5py as H class Breakthrough(object): """ Class to prepare and plot breakthrough curve data from endpoint files. Parameters: ---------- :param str filename: <>.endpoint file Attributes: ---------- :ivar df: (pandas DataFrame): dataframe of endpoint data :ivar resolution: (float): model resolution :ivar timestep: (float): model timestep :ivar continuous: (int): interval of continuous release, 0 means pulse :ivar ncol: (float): number of colloids per release in simulation :ivar total_ncol: (int): total number of colloids in simulation """ def __init__(self, filename): if not filename.endswith('.endpoint'): raise FileTypeError('.endpoint file must be supplied') reader = ASCIIReader(filename) self.df = reader.df self.resolution = reader.resolution self.timestep = reader.timestep self.continuous = reader.continuous # todo: replace this call with something from the header later! self.ncol = reader.ncol self.total_ncol = float(self.df.shape[0]) self.__breakthrough_curve = None self.__reader = reader @property def breakthrough_curve(self): """ Property method that performs a dynamic calculation of breakthrough curve data """ max_ts = self.df['nts'].max() if self.__breakthrough_curve is None: if not self.continuous: bt_colloids = self.df.loc[self.df['flag'] == 3] bt_colloids = bt_colloids.sort_values('end-ts') ncols = [] nts = [] ncol = 0 for index, row in bt_colloids.iterrows(): ncol += 1 ncols.append(float(ncol)) nts.append(row['end-ts']) ncols.append(float(ncol)) nts.append(max_ts) df = pd.DataFrame({'nts': nts, 'ncol': ncols}).set_index('ncol') self.__breakthrough_curve = df else: bt_colloids = self.df.loc[self.df['flag'] == 3] bt_colloids = bt_colloids.sort_values('end-ts') ncols = [] nts = [] ncol = 0 ncol_per_release = [] for index, row in bt_colloids.iterrows(): lower_ts = row['end-ts'] - self.continuous upper_ts = row['end-ts'] t = bt_colloids.loc[(bt_colloids['end-ts'] >= lower_ts) & (bt_colloids['end-ts'] <= upper_ts)] ncol += 1 ncols.append(float(ncol)) ncol_per_release.append(len(t)) nts.append(row['end-ts']) ncols.append(float(ncol)) nts.append(max_ts) ncol_per_release.append(len(bt_colloids.loc[(bt_colloids['end-ts'] >= max_ts - self.continuous) & (bt_colloids['end-ts'] <= max_ts)])) df = pd.DataFrame({'nts': nts, 'ncol': ncols, 'ncpr': ncol_per_release}).set_index('ncol') self.__breakthrough_curve = df return self.__breakthrough_curve def pore_volume_conversion(self): """ Method to retrieve the pore volume calculation conversion for plotting colloids. """ pv_factor = (abs(self.__reader.uy) * self.__reader.velocity_factor) /\ (self.__reader.ylen * self.resolution) return pv_factor def plot(self, time=True, *args, **kwargs): """ Convience method to plot data into a matplotlib chart. Parameters: ---------- :param bool time: if true x-axis is time, false is nts :param *args: matplotlib args for 1d charts :param **kwargs: matplotlib keyword arguments for 1d charts """ if time: if self.continuous: plt.plot(self.breakthrough_curve['nts'] * self.timestep, self.breakthrough_curve['ncpr'] / float(self.ncol), *args, **kwargs) else: plt.plot(self.breakthrough_curve['nts'] * self.timestep, self.breakthrough_curve.index.values / float(self.ncol), *args, **kwargs) else: if self.continuous: plt.plot(self.breakthrough_curve['nts'] * self.timestep, self.breakthrough_curve['ncpr'] / float(self.ncol), *args, **kwargs) else: plt.plot(self.breakthrough_curve['nts'], self.breakthrough_curve.index.values / float(self.ncol), *args, **kwargs) plt.ylim([0, 1]) def plot_pv(self, *args, **kwargs): """ Method to plot breakthrough data with pore volumes (non-dimensional time) Parameters: ---------- :param *args: matplotlib args for 1d plotting :param **kwargs: matplotlib kwargs for 1d plotting """ pv_factor = self.pore_volume_conversion() if self.continuous: plt.plot(self.breakthrough_curve['nts'] * pv_factor * self.timestep, self.breakthrough_curve['ncpr'] / float(self.ncol), *args, **kwargs) else: plt.plot(self.breakthrough_curve['nts'] * pv_factor * self.timestep, self.breakthrough_curve.index.values / float(self.ncol), *args, **kwargs) plt.ylim([0, 1]) plt.xlim([0, max(self.breakthrough_curve['nts'] * pv_factor * self.timestep)]) class DistributionFunction(object): """ Class to plot a probablity distribution function of colloid breakthrough from endpoint files. Parameters: ---------- :param str filename: <>.endpoint file name :param int nbin: number of bins for pdf calculation Attributes: ---------- :ivar df: (pandas DataFrame): dataframe of endpoint data :ivar resolution: (float): model resolution :ivar timestep: (float): model timestep :ivar continuous: (int): interval of continuous release, 0 means pulse :ivar ncol: (float): number of colloids per release in simulation :ivar total_ncol: (int): total number of colloids in simulation :ivar pdf: (np.recarray) colloid probability distribution function """ def __init__(self, filename, nbin=1000): if not filename.endswith('.endpoint'): raise FileTypeError('.endpoint file must be supplied') reader = ASCIIReader(filename) self.df = reader.df self.resolution = reader.resolution self.timestep = reader.timestep self.continuous = reader.continuous self.ncol = float(reader.ncol) self.total_ncol = float(self.df.shape[0]) self.bin = nbin self.pdf = None self.reset_pdf(nbin) self.__normalize = False self.__reader = reader def reset_pdf(self, nbin, normalize=False): """ Method to generate a probability distribution function based upon user supplied bin size. Parameters: ---------- :param int nbin: number of time steps to base bin on :param bool normalize: method to calculate pdf by residence time or end time """ self.bin = nbin self.__normalize = normalize ts = [] ncols = [] lower_nts = 0 max_ts = self.df['nts'].max() pdf_colloids = self.df.loc[self.df['flag'] == 3] pdf_colloids = pdf_colloids.sort_values('delta-ts') for upper_nts in range(0, int(max_ts) + 1, nbin): ncol = 0 for index, row in pdf_colloids.iterrows(): if normalize: if lower_nts < row['delta-ts'] <= upper_nts: ncol += 1 else: if lower_nts < row['end-ts'] <= upper_nts: ncol += 1 ts.append(upper_nts) ncols.append(ncol) lower_nts = upper_nts arr = np.recarray((len(ts),), dtype=[('nts', np.float), ('ncol', np.float)]) for idx, value in enumerate(ts): arr[idx] = tuple([value, ncols[idx]]) self.pdf = arr def pore_volume_conversion(self): """ Method to retrieve the pore volume calculation conversion for plotting colloids. """ pv_factor = (abs(self.__reader.uy) * self.__reader.velocity_factor) /\ (self.__reader.ylen * self.resolution) return pv_factor def plot(self, time=True, *args, **kwargs): """ Method to plot data into a matplotlib chart. Parameters: ---------- :param bool time: if true x-axis is time, false is nts :param *args: matplotlib args for 1d charts :param **kwargs: matplotlib keyword arguments for 1d charts """ if time: if self.__normalize: plt.plot(self.pdf['nts'] * self.timestep, self.pdf['ncol'] / self.total_ncol, *args, **kwargs) else: plt.plot(self.pdf['nts'] * self.timestep, self.pdf['ncol'] / self.ncol, *args, **kwargs) else: if self.__normalize: plt.plot(self.pdf['nts'], self.pdf['ncol'] / self.total_ncol, *args, **kwargs) else: plt.plot(self.pdf['nts'], self.pdf['ncol'] / self.ncol, *args, **kwargs) plt.ylim([0, 1]) def plot_pv(self, *args, **kwargs): """ Method to plot pdf data with pore volumes (non-dimensional time) Parameters: ---------- :param *args: matplotlib args for 1d plotting :param **kwargs: matplotlib kwargs for 1d plotting """ pv_factor = self.pore_volume_conversion() plt.plot(self.pdf['nts'] * pv_factor * self.timestep, self.pdf['ncol'] / self.ncol, *args, **kwargs) class ADE(object): """ Class to calculate macroscopic advection dispersion equation parameters for field scale model parameterization Class needs to be re-named and updated to CDE equation Parameters: ---------- :param str filename: ascii output file name from colloid model :param int nbin: number of timesteps to bin a pdf for calculation """ def __init__(self, filename, nbin=1000): if not filename.endswith('.endpoint'): raise FileTypeError('<>.endpoint file must be supplied') reader = ASCIIReader(filename) self.timestep = reader.timestep self.resolution = reader.resolution self.ylen = reader.ylen self.ncol = reader.ncol self.total_ncol = float(reader.df.shape[0]) self.uy = reader.uy self.pdf = None self.__dist_func = DistributionFunction(filename, nbin) self.bt = Breakthrough(filename).breakthrough_curve self.reset_pdf(nbin) def __reset(self): self.pdf = self.__dist_func.pdf def reset_pdf(self, nbin, normalize=False): """ User method to reset values based on changing the pdf bin values Parameters: ---------- :param int nbin: number of timesteps to bin a pdf for calculation :param bool normalize: flag to calculate pdf by residence time or end time """ self.__dist_func.reset_pdf(nbin, normalize) self.pdf = self.__dist_func.pdf def solve_jury_1991(self, D=0.01, R=0.01, ftol=1e-10, max_nfev=1000, **kwargs): """ Scipy optimize method to solve least sqares for jury 1991. Pulse flux. Parameters: ---------- :param float D: Diffusivity initial guess. Cannot be 0 :param float R: Retardation initial guess. Cannot be 0 :param float ftol: scipy function tolerance for solution :param int max_nfev: maximum number of function iterations :param **kwargs: scipy least squares kwargs Returns: ------- :return: scipy least squares dictionary. Answer in dict['x'] """ # todo: test this method! look up references for clearer examples! from scipy.optimize import leastsq, minimize, least_squares a = self.ncol l = self.ylen * self.resolution v = self.uy pdf, t = self.__prep_data() x0 = np.array([D, R]) return least_squares(self.__jury_residuals, x0, args=(a, l, t, v, pdf), ftol=ftol, max_nfev=max_nfev, **kwargs) def __jury_residuals(self, vars, A, L, t, v, pdf): """ Method to estimate residuals from jury 1991 equation using data Parameters vars: (np.array) [dispersivity, retardation] A: ncol l: (float) ylen v: (float) mean fluid_velocity t: (float) time pdf: pd.dataframe c/co of colloid pdf """ return pdf - self.__jury_1991(vars, A, L, t, v) def __jury_1991(self, vars, A, L, t, v): """ Equation for Jury 1991 calculation of Dispersivity and Retardation Parameters vars: (np.array) [dispersivity, retardation] A: ncol l: (float) ylen v: (float) mean fluid_velocity t: (float) time """ D = vars[0] R = vars[1] eq0 = (A * L * np.sqrt(R)) eq1 = 2 * np.sqrt(np.pi * D * t ** 3) eq2 = -(R * L - v * t) ** 2 eq3 = 4 * R * D * t x = (eq0 / eq1) * np.exp(eq2 / eq3) x[0] = 0 return x def solve_van_genuchten_1986(self, D=0.01, R=0.01, ftol=1e-10, max_nfev=1000, **kwargs): """ Scipy optimize method to solve least squares for van genuchten 1986. Miscable displacement. Parameters: ---------- :param float D: Diffusivity initial guess. Cannot be 0 :param float R: Retardation initial guess. Cannot be 0 :param float ftol: scipy function tolerance for solution :param int max_nfev: maximum number of function iterations :param **kwargs: scipy least squares kwargs Returns: ------- :return: scipy least squares dictionary. Answer in dict['x'] """ from scipy.optimize import least_squares l = self.ylen * self.resolution v = self.uy t = self.bt['nts'].as_matrix() * self.timestep bt = self.bt['ncpr'].as_matrix() / self.ncol x0 = np.array([D, R]) return least_squares(self.__van_genuchten_residuals, x0, args=(l, v, t, bt), ftol=ftol, max_nfev=max_nfev, **kwargs) def __van_genuchten_residuals(self, vars, l, v, t, bt): """ Method to estimate residuals from vanGenuchten and Winerega 1986 Parameters: vars: (np.array) [dispersivity, retardation] x: (float) column length v: (float) mean fluid velocity t: (float) time bt: (np.array) breakthrough curve """ return bt - self.__van_genuchten_1986(vars, l, v, t) def __van_genuchten_1986(self, vars, l, v, t): """ Equation for <NAME> and Winerega 1986 to calculate Dispersivity and Retardation from breakthrough data. Parameters: vars: (np.array) [dispersivity, retardation] x: (float) column length v: (float) mean fluid velocity t: (float) time """ from scipy import special D = vars[0] R = vars[1] eq0 = R * l - v * t eq1 = np.sqrt(4 * D * R * t) x = 0.5 * special.erfc(eq0/eq1) if np.isnan(x[0]): x[0] = 0 return x def __prep_data(self): """ Prepares breakthrough data by stripping off trailing zeros. Returns: pdf = (np.array) stripped pdf t = (np.array) times """ strip_idx = None seq = False bt = False for idx, rec in enumerate(self.pdf): if not bt: if rec['ncol'] != 0: bt = True else: pass else: if rec['ncol'] == 0: if not seq: strip_idx = idx seq = True else: pass else: seq = False strip_idx = None if strip_idx is not None: pdf = self.pdf['ncol'][:strip_idx + 1] time = self.pdf['nts'][:strip_idx + 1] else: pdf = self.pdf['ncol'] time = self.pdf['nts'] return pdf, time class ModelPlot(object): """ Class to retrieve Colloid force arrays and plot for data analysis. Parameters: ---------- :param str hdf5: hdf5 file name """ def __init__(self, hdf5): if not hdf5.endswith('hdf') and\ not hdf5.endswith('hdf5'): raise FileTypeError('hdf or hdf5 file must be supplied') self.__hdf = Hdf5Reader(hdf5) @property def keys(self): return self.__hdf.keys def get_data(self, key): """ Get data method to view and analyze colloid force arrays Parameters: ---------- :param str key: valid dictionary key from self.keys Returns: ------- :return: data <varies> """ return self.__hdf.get_data(key) def get_data_by_path(self, path): """ Method to retrieve hdf5 data by specific path Parameters: ---------- :param str path: hdf5 directory path to data Returns: ------- :return: data <varies> """ return self.__hdf.get_data_by_path(path) def plot(self, key, ax=None, masked=False, *args, **kwargs): """ Hdf array plotting using Hdf5Reader keys Parameters: ---------- :param str key: valid dictionary key from self.keys :param object ax: matplotlib pyplot axes object (optional) :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ # todo: create a function_fmt for axis options mesh = None if ax is None: ax = plt.gca() if key in ('lvdw_x', 'lvdw_y', 'lewis_x', 'lewis_y', 'edl_x', 'edl_y', 'dlvo_x', 'dlvo_y', 'attractive_x', 'attractive_y'): x_axis = self.__hdf.get_data('distance_array') arr = self.__hdf.get_data(key) ax.plot(x_axis, arr, *args, **kwargs) elif key in ('conversion_factor', 'gravity', 'bouyancy'): raise KeyError('{}: key not valid for plotting'.format(key)) elif key in ('dlvo_fine', 'edl_fine', 'attractive_fine'): x_axis = self.__hdf.get_data('distance_fine') arr = self.__hdf.get_data(key) ax.plot(x_axis, arr, *args, **kwargs) elif key == "image": arr = self.__hdf.get_data(key) if masked: arr = np.ma.masked_where(arr == 0, a=arr) ax.imshow(arr, *args, **kwargs) else: arr = self.__hdf.get_data(key) if masked: img = self.__hdf.get_data("image") arr = np.ma.masked_where(img == 1, a=arr) mesh = ax.imshow(arr, *args, **kwargs) if mesh is not None: return mesh else: return ax def plot_velocity_magnitude(self, nbin=10, dimensional=True, masked=False, *args, **kwargs): """ Method to create a quiver plot to display the magnitude and direction of velocity vectors within the system. Parameters: ---------- :param int nbin: refinement for quiver plotting :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ if dimensional: x = self.__hdf.get_data('velocity_x') y = self.__hdf.get_data('velocity_y') else: x = self.__hdf.get_data('lb_velocity_x') y = self.__hdf.get_data('lb_velocity_y') xx = np.arange(0, x.shape[1]) yy = np.arange(0, x.shape[0]) xx, yy = np.meshgrid(xx, yy) if masked: img = self.__hdf.get_data('image') xx = np.ma.masked_where(img == 1, a=xx) yy = np.ma.masked_where(img == 1, a=yy) x = np.ma.masked_where(img == 1, a=x) y = np.ma.masked_where(img == 1, a=y) Q = plt.quiver(xx[::nbin, ::nbin], yy[::nbin, ::nbin], x[::nbin, ::nbin], y[::nbin, ::nbin], units='width', *args, **kwargs) qk = plt.quiverkey(Q, 0.9, 0.9, 0.01, r'$1 \frac{cm}{s}$', coordinates='figure') plt.xlim(0, x.shape[1]) plt.ylim(x.shape[0], 0) class CCModelPlot(object): """ Class to query colloid-colloid interactions and plot data as 1d or as a meshgrid object More sophisticated than standard ModelPlot Parameters: ---------- :param str hdf5: hdf5 file name """ data_paths = {'col_col_x': 'colloidcolloid/x', 'col_col_y': 'colloidcolloid/y', 'col_col': None, 'distance_x': 'colloid_colloid/distance/x', 'distance_y': 'colloid_colloid/distance/y', 'distance_fine_x': 'colloid_colloid/fine/distance/x', 'distance_fine_y': 'colloid_colloid/fine/distance/y', 'col_col_fine_x': 'colloid_colloid/fine/x', 'col_col_fine_y': 'colloid_colloid/fine/y', 'col_col_fine': None} def __init__(self, hdf5): if not hdf5.endswith('hdf') and\ not hdf5.endswith('hdf5'): raise FileTypeError('hdf or hdf5 file must be supplied') self.__hdf5 = Hdf5Reader(hdf5) @property def keys(self): """ Property method to return valid keys to obtain data """ return CCModelPlot.keys def get_data(self, key): """ Method to return data by key Parameters: ---------- :param str key: valid model key """ return self.__hdf5.get_data(key) def get_data_by_path(self, path): """ Method to return data by hdf5 path Parameters: ---------- :param str path: valid HDF5 data path """ return self.__hdf5.get_data_by_path(path) def plot(self, key, *args, **kwargs): """ Plotting method for 1d colloid-colloid dlvo profiles Parameters: ---------- :param str key: valid data key :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ if key not in ('col_col_x', 'col_col_y', 'col_col_fine_x', 'col_col_fine_y'): raise KeyError("{} is not a valid key".format(key)) colcol = self.__hdf5.get_data(key) shape = colcol.shape center = shape[0] // 2 if key == "<KEY>": x = self.__hdf5.get_data('distance_x') x = x[center, center:] y = colcol[center, center:] elif key == "col_col_y": x = self.__hdf5.get_data('distance_y') x = x.T[center, center:] y = colcol.T[center, center:] elif key == "col_col_fine_x": x = self.__hdf5.get_data('distance_fine_x') x = x[center, center:] # * 1e-6 y = colcol[center, center:] else: x = self.__hdf5.get_data('distance_fine_y') x = x[center, center:] # * 1e-6 y = colcol[center, center:] plt.plot(x, y * -1, *args, **kwargs) def plot_mesh(self, key, ax=None, *args, **kwargs): """ Plotting method for 2d representation of colloid-colloid dlvo profiles. Parameters: ---------- :param str key: valid data key :param object ax: matplotlib axes object (optional) :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ from matplotlib.colors import LogNorm if ax is None: ax = plt.gca() if key not in ('col_col', 'col_col_fine', 'col_col_x', 'col_col_y', 'col_col_fine_x', 'col_col_fine_y'): raise KeyError("{} is not a valid key".format(key)) if key == 'col_col': ccx = np.abs(self.__hdf5.get_data('col_col_x')) ccy = np.abs(self.__hdf5.get_data('col_col_y')) mesh = ccx + ccy elif key == 'col_col_fine': ccx = np.abs(self.__hdf5.get_data('col_col_fine_x')) ccy = np.abs(self.__hdf5.get_data('col_col_fine_y')) mesh = ccx + ccy else: mesh = self.__hdf5.get_data(key) # find center and set to nearby value to prevent log scale crashing shape = mesh.shape center = shape[0] // 2 mesh[center, center] = mesh[center, center + 1] xx, yy = np.meshgrid(np.arange(0, mesh.shape[0]+1), np.arange(0, mesh.shape[1] + 1)) if mesh.max()/mesh.min() > 10: vmin = mesh.min() vmax = mesh.max() if 'vmin' in kwargs: vmin = kwargs.pop('vmin') if 'vmax' in kwargs: vamx = kwargs.pop('vmax') p = ax.pcolormesh(xx, yy, mesh, norm=LogNorm(vmin=mesh.min(), vmax=mesh.max()), *args, **kwargs) else: p = ax.pcolormesh(xx, yy, mesh, *args, **kwargs) ax.set_ylim([0, mesh.shape[0]]) ax.set_xlim([0, mesh.shape[1]]) center = mesh.shape[0] / 2. ax.plot([center], [center], 'ko') return p class ColloidVelocity(object): """ Method to return colloid velocity and statistics relating to colloid velocity for a simulation. Class needs to be rebuilt to work with timeseries and pathline files for a more precise velocity measurement Parameters: ---------- :param str filename: endpoint file name """ def __init__(self, filename): if not filename.endswith(".endpoint"): raise FileTypeError('.endpoint file must be supplied') reader = ASCIIReader(filename) self.timestep = reader.timestep self.resolution = reader.resolution self.xlen = reader.xlen self.ylen = reader.ylen self.df = reader.df self.ncol = reader.df.shape[0] self.max_time = max(reader.df['nts']) * self.timestep self.velocity = None self.__get_velocity_array() def __get_velocity_array(self): """ Built in method to calculate the mean velocity of each colloid in the simulation """ colloid = [] velocity = [] for index, row in self.df.iterrows(): if np.isnan(row['y-position']): velocity.append((self.ylen * self.resolution) / (row['delta-ts'] * self.timestep)) else: velocity.append((row['y-position'] * self.resolution) / (row['nts'] * self.timestep)) colloid.append(index) arr = np.recarray(len(colloid,), dtype=[('colloid', np.int), ('velocity', np.float)]) for idx, value in enumerate(colloid): arr[idx] = tuple([value, velocity[idx]]) self.velocity = arr @property def max(self): """ :return: maximum colloid velocity """ return self.velocity['velocity'].max() @property def min(self): """ :return: minimum colloid velocity """ return self.velocity['velocity'].min() @property def mean(self): """ :return: mean colloid velocity """ return self.velocity['velocity'].mean() @property def var(self): """ :return: variance of colloid velocities """ return np.var(self.velocity['velocity']) @property def stdev(self): """ :return: standard deviation of colloid velocities """ return np.std(self.velocity['velocity']) @property def cv(self): """ :return: coeficient of variance of colloid velocities """ return (self.stdev / self.mean) * 100 def plot(self, *args, **kwargs): """ Method to plot distribution of velocities by colloid for array of velocity. Parameters ---------- :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ plt.scatter(self.velocity['colloid'], self.velocity['velocity'], *args, **kwargs) def plot_histogram(self, nbin=10, width=0.01, *args, **kwargs): """ User method to plot a histogram of velocities using a bar chart. Parameters: ---------- :param int nbin: number of specific bins for plotting :param float width: matplotlib bar width. :param *args: matplotlib plotting args :param **kwargs: matplotlib plotting kwargs """ adjuster = 0.00001 bins = np.linspace(self.min - adjuster, self.max, nbin) ncols = [] velocity = [] lower_v = self.min - adjuster upper_v = 0 for upper_v in bins: ncol = 0 for v in self.velocity['velocity']: if lower_v < v <= upper_v: ncol += 1 velocity.append((lower_v + upper_v)/2.) ncols.append(ncol) lower_v = upper_v - adjuster velocity.append(upper_v + adjuster) ncols.append(0) plt.bar(velocity, ncols, width, *args, **kwargs) # todo: think about this one. Does it belong here? Finish class. Integrate into LB class LBOutput(object): """ Class to anaylze LB fluid/solid properties Parameters: ---------- :param str hdf: hdf5 output filename """ data_paths = {'velocity_x': None, 'velocity_y': None, 'lb_velocity_x': None, 'lb_velocity_y': None, 'resolution': None, 'porosity': None, 'pore_diameter': None, 'conversion_factor': None, 'reynolds_number': None} def __init__(self, hdf5): if not hdf5.endswith('.hdf') and not\ hdf5.endswith('.hdf5'): raise FileTypeError('hdf or hdf5 file must be supplied') self.__hdf5 = Hdf5Reader(hdf5) @property def keys(self): """ :return: Lattice boltzmann data keys """ return LBOutput.data_paths.keys() def get_data(self, key): """ Method to select data from hdf5 file based on key, instead of data path Parameters: ---------- :param str key: lattice boltzmann data key Returns: ------- :return: data """ if key in ("velocity_x", "velocity_y"): factor = self.__hdf5.get_data("conversion_factor") key = "lb_{}".format(key) data = self.__hdf5.get_data(key) * factor else: data = self.__hdf5.get_data(key) return data class ASCIIReader(object): """ Class to read in text based output files <endpoint, timestep, pathline> to a pandas dataframe Parameters: ---------- :param str filename: output filename (ie. endpoint, timestep, or pathline) """ dtypes = {'colloid': np.int, 'flag': np.int, 'nts': np.int, 'x-position': np.float, 'y-position': np.float, 'x-model': np.float, 'y-model': np.float, 'start-ts': np.int, 'end-ts': np.int, 'delta-ts': np.int, 'continuous': np.int} def __init__(self, filename): self.timestep = 0 self.ncol = 0 self.resolution = 0 self.xlen = 0 self.ylen = 0 self.ux = 0 self.uy = 0 self.velocity_factor = 1. self.continuous = 0 self.__data_startline = 0 self.__header = [] if filename.split('.')[-1] not in ('endpoint', 'timeseries', 'pathline'): raise FileTypeError("{}: not in supported filetypes".format(filename)) else: self.read_header(filename) self.df = self.read_ascii(filename) def read_header(self, filename): """ Method to read the header from ascii output files for LB-Colloids Parameters: ---------- :param str filename: colloid model output filename (ie. endpoint, timestep, or pathline) """ with open(filename) as f: for idx, line in enumerate(f): if line.startswith("Timestep"): t = line.split() self.timestep = float(t[-1].rstrip()) elif line.startswith("Ncols"): t = line.split() self.ncol = int(t[-1].rstrip()) elif line.startswith('Resolution'): t = line.split() self.resolution = float(t[-1].rstrip()) elif line.startswith('xlen'): t = line.split() self.xlen = float(t[-1].rstrip()) elif line.startswith('ylen'): t = line.split() self.ylen = float(t[-1].rstrip()) elif line.startswith('ux'): t = line.split() self.ux = float(t[-1].rstrip()) elif line.startswith('uy'): t = line.split() self.uy = float(t[-1].rstrip()) elif line.startswith('velocity_factor'): t = line.split() self.velocity_factor = float(t[-1].rstrip()) elif line.startswith('Continuous'): t = line.split() self.continuous = int(t[-1].rstrip()) elif line.startswith("#"*10): self.__data_startline = idx + 1 break else: pass def read_ascii(self, filename): """ Method to read endpoint file data from from ascii files for LB-Colloids Sets data to pandas dataframe Parameters: ---------- :param str filename: colloid model output filename (ie. endpoint, timestep, or pathline) """ with open(filename) as f: t = [] for idx, line in enumerate(f): if idx < self.__data_startline: pass elif idx == self.__data_startline: self.__header = [i.rstrip() for i in line.split() if i not in ('\t', '', ' ', '\n')] else: t.append([self.__try_float(i.rstrip()) for i in line.split() if i not in ('\t', '', ' ', '\n')]) temp = np.array(t).T temp = {self.__header[idx]: data for idx, data in enumerate(temp)} df = pd.DataFrame(temp) df = df.reindex_axis(self.__header, axis=1) df = df.set_index('colloid') return df @staticmethod def __try_float(val): try: return float(val) except ValueError: return float('nan') class Hdf5Reader(object): """ Reader object to read in HDF5 stored outputs from colloid models. Contains a data_paths dictionary which allows the user to use keys to access data Parameters: ---------- :param str hdf5: LB-Colloid hdf5 file name """ data_paths = {'ac': "colloids/model_dict/ac", 'image': 'Binary_image', 'lb_velocity_x': 'results/uarray', 'lb_velocity_y': 'results/uarray', 'lb_mean_velocity_x': 'results/mean_ux', 'lb_mean_velocity_y': 'results/mean_uy', 'conversion_factor': 'results/velocity_factor', 'pore_diameter': 'results/pore_diameter', 'porosity': 'results/porosity', 'reynolds_number': 'results/reynolds_number', 'brownian_x': 'colloids/brownian/x', 'brownian_y': 'colloids/brownian/y', 'lvdw_x': 'colloids/lvdw/x', 'lvdw_y': 'colloids/lvdw/y', 'edl_x': 'colloids/edl/x', 'edl_y': 'colloids/edl/y', 'attractive_x': 'colloids/attractive/x', 'attractive_y': 'colloids/attractive/y', 'lewis_x': 'colloids/lewis_acid_base/x', 'lewis_y': 'colloids/lewis_acid_base/y', 'velocity_x': 'colloids/ux', 'velocity_y': 'colloids/uy', 'gravity': 'colloids/gravity', 'bouyancy': 'colloids/bouyancy', 'ionic': 'colloids/chemical_dict/I', 'distance_array': 'colloids/distance_arr', 'dlvo_x': None, 'dlvo_y': None, 'col_col_x': 'colloid_colloid/x', 'col_col_y': 'colloid_colloid/y', 'col_col': None, 'distance_x': 'colloid_colloid/distance/x', 'distance_y': 'colloid_colloid/distance/y', 'distance_fine_x': 'colloid_colloid/fine/distance/x', 'distance_fine_y': 'colloid_colloid/fine/distance/y', 'col_col_fine_x': 'colloid_colloid/fine/x', 'col_col_fine_y': 'colloid_colloid/fine/y', 'col_col_fine': None, 'edl_fine': 'colloids/edl_fine', 'attractive_fine': 'colloids/attractive_fine', 'dlvo_fine': None, 'distance_fine': 'colloids/distance_fine'} def __init__(self, hdf5): if not hdf5.endswith('hdf') and\ not hdf5.endswith('hdf5'): raise FileTypeError('hdf or hdf5 file must be supplied') self.file_name = hdf5 @property def keys(self): """ :return: list of valid hdf5 data keys """ return [i for i in Hdf5Reader.data_paths] def get_data(self, key): """ Method to retrieve hdf5 data by dict. key Parameters: ---------- :param str key: valid dictionary key from self.keys Returns: ------- :return: data <varies> """ if key not in Hdf5Reader.data_paths: raise KeyError('Dictionary key not in valid keys. Use get_data_by_path') hdf = H.File(self.file_name, 'r') if key == 'lb_velocity_x': data = hdf[Hdf5Reader.data_paths[key]][()][1] elif key == 'lb_velocity_y': data = hdf[Hdf5Reader.data_paths[key]][()][0] elif key == 'dlvo_x': data = hdf[Hdf5Reader.data_paths['edl_x']][()] +\ hdf[Hdf5Reader.data_paths['attractive_x']][()] # hdf[Hdf5Reader.data_paths['lewis_x']][()] +\ # hdf[Hdf5Reader.data_paths['lvdw_x']][()] data = data[0] elif key == 'dlvo_y': data = hdf[Hdf5Reader.data_paths['edl_y']][()] +\ hdf[Hdf5Reader.data_paths['attractive_y']][()] # hdf[Hdf5Reader.data_paths['lewis_y']][()] +\ # hdf[Hdf5Reader.data_paths['lvdw_y']][()] data = data[0] elif key == 'dlvo_fine': data = hdf[Hdf5Reader.data_paths['edl_fine']][()] + \ hdf[Hdf5Reader.data_paths['attractive_fine']][()] data = data[0] elif key in ('lvdw_x', 'lvdw_y', 'lewis_x', 'lewis_y', 'edl_x', 'edl_y', 'dlvo_x', 'dlvo_y', 'attractive_x', 'attractive_y', 'distance_array', 'edl_fine', 'attractive_fine', 'distance_fine'): data = hdf[Hdf5Reader.data_paths[key]][()][0] else: data = hdf[Hdf5Reader.data_paths[key]][()] hdf.close() return data def get_data_by_path(self, path): """ Method to retrieve hdf5 data by specific hdf5 path Parameters: ---------- :param str path: hdf5 directory path to data Returns: ------ :return: data <varies> """ hdf = H.File(self.file_name, 'r') data = hdf[path][()] hdf.close() return data class FileTypeError(Exception): pass
3.375
3
tests/parse_fragment_unit_tests.py
Wynjones1/pycompile
0
12798301
import unittest import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from src import parser from src import ast class ParserTestCase(unittest.TestCase): def assertParsesTo(self, func, data, type_): self.assertIsInstance(parser.parse(data, func), type_) class Test_parse_fragment_unit_tests(ParserTestCase): def test_while_0(self): self.assertParsesTo(parser.while_, "while(x < 10){x := x + 1;}", ast.While) def test_if_0(self): self.assertParsesTo(parser.if_, "if(a){return a;}", ast.If) def test_decl_0(self): self.assertParsesTo(parser.decl, "decl(int) x := 10", ast.Declare) def test_braced_stmt_list_0(self): self.assertParsesTo(parser.braced_stmt_list, "{}", list) def test_function_0(self): self.assertParsesTo(parser.function, "function a(){}", ast.Function) def test_function_1(self): self.assertParsesTo(parser.function, "function a() -> int {}", ast.Function) def test_function_2(self): self.assertParsesTo(parser.function, "function a(int x) -> int {}", ast.Function) def test_function_3(self): self.assertParsesTo(parser.function, "function a(int x, int y) -> int {}", ast.Function) def test_func_call_0(self): self.assertParsesTo(parser.func_call, "call()", ast.FuncCall) def test_func_call_1(self): self.assertParsesTo(parser.func_call, "call(other())", ast.FuncCall) def test_func_call_2(self): self.assertParsesTo(parser.func_call, "call(1,2,3)", ast.FuncCall) def test_expression_0(self): self.assertParsesTo(parser.expression, "1 + 2", ast.Binop) def test_expression_1(self): self.assertParsesTo(parser.expression, "1 + 2 - 3 * 4 / 5 % 6", ast.Binop) def test_if_0(self): self.assertParsesTo(parser.if_, "if(x){}else{}", ast.If) def test_if_1(self): self.assertParsesTo(parser.if_, "if(x){}elif(x){}else{}", ast.If) if __name__ == '__main__': unittest.main()
3.015625
3
scripts/leviosam_utils.py
maxrossi91/levioSAM
23
12798302
<filename>scripts/leviosam_utils.py ''' Utils for levioSAM <NAME> Johns Hopkins University 2021 ''' import pysam ''' Read a FASTA file as a dict if a file name is given. If not, return an empty dict. ''' def read_fasta(ref_fn: str) -> dict: ref = {} if ref_fn != '': f = pysam.FastaFile(ref_fn) for r in f.references: ref[r] = f[r].upper() return ref
2.734375
3
conf/path_config.py
atom-zh/SA_Classification
2
12798303
# -*- coding: UTF-8 -*- # !/usr/bin/python # @time :2019/6/5 21:04 # @author :Mo # @function :file of path import os # 项目的根目录 path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) path_root = path_root.replace('\\', '/') # train out path_out = path_root + "/out/" # path of embedding path_embedding = path_out + 'data/embeddings' path_embedding_user_dict = path_embedding + '/user_dict.txt' path_embedding_random_char = path_embedding + '/term_char.txt' path_embedding_random_word = path_embedding + '/term_word.txt' path_embedding_vector_word2vec_char = path_embedding + '/multi_label_char.vec' path_embedding_vector_word2vec_word = path_embedding + '/multi_label_word.vec' path_embedding_vector_word2vec_char_bin = path_embedding + '/multi_label_char.bin' path_embedding_vector_word2vec_word_bin = path_embedding + '/multi_label_word.bin' path_dataset = path_root +'/dataset' path_category = path_dataset + '/category2labels.json' path_l2i_i2l = path_dataset + '/l2i_i2l.json' # classfiy multi labels 2021 path_multi_label = path_out + 'data/multi_label' path_multi_label_train = path_multi_label + '/train.csv' path_multi_label_valid = path_multi_label + '/valid.csv' path_multi_label_labels = path_multi_label + '/labels.csv' path_multi_label_tests = path_multi_label + '/tests.csv' path_multi_label_error = path_multi_label + '/error.csv' # 路径抽象层 path_label = path_multi_label_labels path_train = path_multi_label_train path_valid = path_multi_label_valid path_tests = path_multi_label_tests path_edata = path_multi_label_error # 模型目录 path_model_dir = path_out + "data/model" # 语料地址 path_model = path_model_dir + '/model_fast_text.h5' # 超参数保存地址 path_hyper_parameters = path_model_dir + '/hyper_parameters.json' # embedding微调保存地址 path_fineture = path_model_dir + "/embedding_trainable.h5"
2.3125
2
12403/save_setu.py
sc458/uHunt-solutions
0
12798304
res = 0 T = int(input()) for i in range(0,T): inp = input() if(inp == 'report'): print(res) else: inp_arr = inp.split(' ') res += int(inp_arr[1])
3.421875
3
config.py
ajith-ramanath/AzureCognitiveSearch
0
12798305
<gh_stars>0 from os import environ as env from azure.identity import ClientSecretCredential from azure.keyvault.secrets import SecretClient __tenant_id = env.get("AZURE_TENANT_ID", "") __client_id = env.get("AZURE_CLIENT_ID", "") __client_secret = env.get("AZURE_CLIENT_SECRET", "") __key_vault_name = env.get("AZURE_KEYVAULT_NAME", "") def get_kv_client(kv_uri): _credential = ClientSecretCredential( tenant_id=__tenant_id, client_id=__client_id, client_secret=__client_secret ) return SecretClient(vault_url=kv_uri, credential=_credential) def retreive_secret(key): kv_uri = f"https://{__key_vault_name}.vault.azure.net" client = get_kv_client(kv_uri) return client.get_secret(key).value COG_SEARCH_KEY = retreive_secret("cog-search-admin-key") STORAGE_CONN_STR = retreive_secret("storage-conn-string") COG_SEARCH_END_POINT = env.get("AZURE_COG_SEARCH_END_POINT", "") COG_SEARCH_API_VERSION = "?api-version=2020-06-30" COG_SEARCH_API_HEADERS = {'Content-Type': 'application/json', 'api-key': COG_SEARCH_KEY} COG_SEARCH_API_PARAMS = { 'api-version': '2020-06-30' } BLOB_CONTAINER = "collateral"
2.125
2
isimip_data/caveats/tests/test_admin.py
ISI-MIP/isimip-data
3
12798306
<filename>isimip_data/caveats/tests/test_admin.py<gh_stars>1-10 from django.conf import settings from django.core import mail from django.urls import reverse from isimip_data.caveats.models import Caveat, Comment def test_annotation_add_get(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_add') response = client.get(url) assert response.status_code == 200 def test_annotation_add_post(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_add') response = client.post(url, { 'title': 'New Caveat', 'description': 'Lorem ipsum dolor sit amet, consetetur sadipscing elitr', 'creator': 1, 'severity': 'low', 'status': 'new', 'specifiers_model': 'model', 'Caveat_figures-TOTAL_FORMS': 0, 'Caveat_figures-INITIAL_FORMS': 0, 'Caveat_figures-MIN_NUM_FORMS': 0, 'Caveat_figures-MAX_NUM_FORMS': 1000, 'Caveat_figures-__prefix__-id': '', 'Caveat_figures-__prefix__-caveat': '', 'Caveat_figures-__prefix__-figure': '', 'Caveat_downloads-TOTAL_FORMS': 0, 'Caveat_downloads-INITIAL_FORMS': 0, 'Caveat_downloads-MIN_NUM_FORMS': 0, 'Caveat_downloads-MAX_NUM_FORMS': 1000, 'Caveat_downloads-__prefix__-id': '', 'Caveat_downloads-__prefix__-caveat': '', 'Caveat_downloads-__prefix__-download': '' }) assert response.status_code == 302 assert Caveat.objects.get(title='New Caveat').specifiers == { 'model': ['model'] } def test_annotation_change_get(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_change', args=[1]) response = client.get(url) assert response.status_code == 200 def test_annotation_change_post(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_change', args=[1]) response = client.post(url, { 'title': 'Caveat', 'description': 'Lorem ipsum dolor sit amet, consetetur sadipscing elitr', 'creator': 1, 'severity': 'low', 'status': 'new', 'specifiers_model': 'model3', 'Caveat_figures-TOTAL_FORMS': 0, 'Caveat_figures-INITIAL_FORMS': 0, 'Caveat_figures-MIN_NUM_FORMS': 0, 'Caveat_figures-MAX_NUM_FORMS': 1000, 'Caveat_figures-__prefix__-id': '', 'Caveat_figures-__prefix__-caveat': '', 'Caveat_figures-__prefix__-figure': '', 'Caveat_downloads-TOTAL_FORMS': 0, 'Caveat_downloads-INITIAL_FORMS': 0, 'Caveat_downloads-MIN_NUM_FORMS': 0, 'Caveat_downloads-MAX_NUM_FORMS': 1000, 'Caveat_downloads-__prefix__-id': '', 'Caveat_downloads-__prefix__-caveat': '', 'Caveat_downloads-__prefix__-download': '' }) assert response.status_code == 302 assert Caveat.objects.get(pk=1).specifiers == { 'model': ['model3'] } def test_caveat_add_get(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_change', args=[1]) response = client.get(url) assert response.status_code == 200 def test_caveat_send_get(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_send', args=[1]) response = client.get(url) assert response.status_code == 200 def test_caveat_send_post(db, client): client.login(username='admin', password='<PASSWORD>') caveat = Caveat.objects.get(pk=1) caveat.email = False caveat.save() url = reverse('admin:caveats_caveat_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\n<EMAIL>', '_send': 'Send email' }) assert response.status_code == 302 assert len(mail.outbox) == 2 assert mail.outbox[0].subject == 'Subject' assert mail.outbox[0].body == 'Message' assert mail.outbox[0].from_email == settings.DEFAULT_FROM_EMAIL assert mail.outbox[0].to == ['<EMAIL>'] assert mail.outbox[1].to == ['<EMAIL>'] assert mail.outbox[0].cc == [] assert mail.outbox[0].bcc == [] assert mail.outbox[0].attachments == [] def test_caveat_send_post_error(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\n<EMAIL>', '_send': 'Send email' }) assert response.status_code == 200 assert b'No email can been send, since the email flag was set before.' in response.content assert len(mail.outbox) == 0 def test_caveat_send_post_back(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_caveat_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\n<EMAIL>', '_back': 'Back' }) assert response.status_code == 302 assert len(mail.outbox) == 0 def test_comment_send_get(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_comment_send', args=[1]) response = client.get(url) assert response.status_code == 200 def test_comment_send_post(db, client): client.login(username='admin', password='<PASSWORD>') comment = Comment.objects.get(pk=1) comment.email = False comment.save() url = reverse('admin:caveats_comment_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\n<EMAIL>', '_send': 'Send email' }) assert response.status_code == 302 assert len(mail.outbox) == 2 assert mail.outbox[0].subject == 'Subject' assert mail.outbox[0].body == 'Message' assert mail.outbox[0].from_email == settings.DEFAULT_FROM_EMAIL assert mail.outbox[0].to == ['<EMAIL>'] assert mail.outbox[1].to == ['<EMAIL>'] assert mail.outbox[0].cc == [] assert mail.outbox[0].bcc == [] assert mail.outbox[0].attachments == [] def test_comment_send_post_error(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_comment_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\<EMAIL>', '_send': 'Send email' }) assert response.status_code == 200 assert b'No email can been send, since the email flag was set before.' in response.content assert len(mail.outbox) == 0 def test_comment_send_post_back(db, client): client.login(username='admin', password='<PASSWORD>') url = reverse('admin:caveats_comment_send', args=[1]) response = client.post(url, { 'subject': 'Subject', 'message': 'Message', 'recipients': '<EMAIL>\<EMAIL>', '_back': 'Back' }) assert response.status_code == 302 assert len(mail.outbox) == 0
2.15625
2
backend/common/tests.py
marcosflp/commitz
1
12798307
from rest_framework.authtoken.models import Token from rest_framework.test import APITestCase from users.models import User, GitHubProfile class BaseTestCase(APITestCase): USER = 'admin' PASSWORD = '<PASSWORD>' EMAIL = '<EMAIL>' def setUp(self): super(BaseTestCase, self).setUp() user_authentication_token = Token.objects.create(user=self.user) self.client.credentials(HTTP_AUTHORIZATION=f'Token {user_authentication_token.key}') @classmethod def setUpTestData(cls): cls.user = User.objects.create_user(username=cls.USER, password=cls.PASSWORD, email=cls.EMAIL) GitHubProfile.objects.create(user=cls.user)
2.0625
2
docs/examples/ckan.py
Defra-Data-Science-Centre-of-Excellence/sdg-build
7
12798308
""" This is an example of importing data from a CKAN instance and converting it into the JSON output suitable for the Open SDG reporting platform. """ import os import sdg import pandas as pd # Input data from CKAN endpoint = 'https://inventory.data.gov/api/action/datastore_search' indicator_id_map = { # The resource ID for indicator 4.2.2. 'f78445b3-e017-43b2-857f-b39d2004546b': '4-2-2' } data_input = sdg.inputs.InputCkan( endpoint=endpoint, indicator_id_map=indicator_id_map ) # The data in this example is not exactly what sdg-build expects, so we need to # add a "data alteration" function to correct it. def data_alteration(df): # The data in this example is in a "wide" format, so we need to convert it # to the "tidy" format expected by sdg-build. df = pd.melt(df, id_vars=['year'], var_name='gender', value_name='value') # We also rename some columns to match what sdg-build expects. df = df.rename(columns={'year': 'Year', 'value': 'Value'}) return df data_input.add_data_alteration(data_alteration) # Combine the inputs into one list. inputs = [data_input] # Use a Prose.io file for the metadata schema. schema_path = os.path.join('tests', '_prose.yml') schema = sdg.schemas.SchemaInputOpenSdg(schema_path=schema_path) # Use SDG Translations for translations tag = '0.8.1' translations = sdg.translations.TranslationInputSdgTranslations(tag=tag) # Create an "output" from these inputs and schema, for JSON for Open SDG. opensdg_output = sdg.outputs.OutputOpenSdg( inputs=inputs, schema=schema, output_folder='_site', translations=translations) # Validate the indicators. validation_successful = opensdg_output.validate() # If everything was valid, perform the build. if validation_successful: # Here are several ways you can generate the build: # 1. Translated into a single language, like English: opensdg_output.execute('en') # (the build will appear in '_site/en') # 2. Translated into several languages: opensdg_output.execute_per_language(['es', 'ru', 'en']) # (three builds will appear in '_site/es', '_site/ru', and '_site/en') # 3. Untranslated: opensdg_output.execute() # (the build will appear in '_site') opensdg_output.execute_per_language(['es', 'ru', 'en']) else: raise Exception('There were validation errors. See output above.')
2.984375
3
prep_pop_points.py
ITDP/two_step_access
1
12798309
import geopandas as gpd # required for MAUP: https://github.com/geopandas/geopandas/issues/2199 gpd.options.use_pygeos = False import pandas as pd import numpy as np import shapely import shapely.geometry from shapely.geometry import Polygon, Point from tqdm import tqdm import maup import os #INTRO - need to edit values here for new city deployment data_source = "census" #"census" or "ghsl" city_crs = 32712 blocks_gdf_crs = gpd.read_file('prep_pop/tabblock2010_04_pophu.zip').to_crs(city_crs) block_groups_gdf_crs = gpd.read_file('prep_pop/tl_2019_04_bg.zip').to_crs(city_crs) veh_avail = pd.read_csv('prep_pop/B25044.csv').iloc[1:,] bounds_gdf_latlon = gpd.GeoDataFrame(geometry = [ shapely.geometry.box(-111.124649,32.059300,-110.690002,32.366043)], crs = 4326) bounds_gdf_crs = bounds_gdf_latlon.to_crs(city_crs) #define exception polygon #this is the are within which the grid will be higher-resolution point = Point(-71.411479,41.823544) point_latlon = gpd.GeoDataFrame(geometry=[point], crs = 4326) point_crs = point_latlon.to_crs(city_crs) poly_crs = point_crs.buffer(1000).unary_union exception_gdf_crs = gpd.GeoDataFrame(geometry = [poly_crs], crs=city_crs) high_res = 250 #m to a side low_res = 1000 #m to a side # END INTRO actual code def summarize_veh_avail(row): total_pop = int(row['B25044_001E']) if total_pop < 1: return 0,0,1 #if no population, assume all 0 households have 2 cars pct_carfree = (int(row['B25044_003E']) + int(row['B25044_010E'])) / total_pop pct_onecar = (int(row['B25044_004E']) + int(row['B25044_011E'])) / total_pop pct_twopluscars = 1 - pct_carfree - pct_onecar return pct_carfree, pct_onecar, pct_twopluscars def build_grid(bounds_poly_crs, low_resolution, exception_gdf_crs=None, high_resolution=None): xmin,ymin,xmax,ymax = bounds_poly_crs.bounds # thank you Faraz (https://gis.stackexchange.com/questions/269243/creating-polygon-grid-using-geopandas) rows = int(np.ceil((ymax-ymin) / low_resolution)) cols = int(np.ceil((xmax-xmin) / low_resolution)) XleftOrigin = xmin XrightOrigin = xmin + low_resolution YtopOrigin = ymax YbottomOrigin = ymax - low_resolution lowres_cells = [] exception_cells = [] for i in range(cols): Ytop = YtopOrigin Ybottom = YbottomOrigin for j in range(rows): cell = Polygon([(XleftOrigin, Ytop), (XrightOrigin, Ytop), (XrightOrigin, Ybottom), (XleftOrigin, Ybottom)]) cell = cell.intersection(bounds_poly_crs) if exception_gdf_crs is not None: if not cell.intersects(exception_gdf_crs.unary_union): lowres_cells.append(cell) else: exception_cells.append(cell) else: lowres_cells.append(cell) Ytop = Ytop - low_resolution Ybottom = Ybottom - low_resolution XleftOrigin = XleftOrigin + low_resolution XrightOrigin = XrightOrigin + low_resolution highres_cells = [] if exception_gdf_crs is not None: for exception_cell in exception_cells: highres_cells += build_grid(exception_cell, high_resolution) return lowres_cells + highres_cells def populate_grid(grid, blocks, block_groups): #blocks first, for simple population blocks_pieces = maup.intersections(blocks, grid, area_cutoff=0) blocks_weights = blocks['POP10'].groupby(maup.assign(blocks, blocks_pieces)).sum() blocks_weights = maup.normalize(blocks_weights, level=0) grid['POP10'] = maup.prorate( blocks_pieces, blocks['POP10'], weights=blocks_weights, ) #then block groups for car ownership bg_pieces = maup.intersections(block_groups, grid) bg_weights = grid['POP10'].groupby(maup.assign(grid, bg_pieces)).sum() bg_weights = maup.normalize(bg_weights, level=0) columns = ['pct_carfree', 'pct_onecar','pct_twopluscars'] grid[columns] = maup.prorate( bg_pieces, block_groups[columns], weights=bg_weights, aggregate_by='mean', ) return grid #clip blocks and block groups blocks_gdf_crs = gpd.clip(blocks_gdf_crs, bounds_gdf_crs) block_groups_gdf_crs = gpd.clip(block_groups_gdf_crs, bounds_gdf_crs) #assign veh_avail and block_groups the same index block_groups_gdf_crs.index = block_groups_gdf_crs.GEOID newidx = [] for bgidx in veh_avail.GEO_ID: newidx.append(bgidx[9:]) veh_avail.index = newidx for bgidx in block_groups_gdf_crs.index: pct_carfree, pct_onecar, pct_twopluscars = summarize_veh_avail(veh_avail.loc[bgidx]) total_pop = float(veh_avail.loc[bgidx,'B25044_001E']) block_groups_gdf_crs.loc[bgidx,'total_pop'] = total_pop block_groups_gdf_crs.loc[bgidx,'pct_carfree'] = pct_carfree block_groups_gdf_crs.loc[bgidx,'pct_onecar'] = pct_onecar block_groups_gdf_crs.loc[bgidx,'pct_twopluscars'] = pct_twopluscars grid_cells = build_grid(bounds_gdf_crs.unary_union, 1000, exception_gdf_crs, 250) grid_gdf_crs = gpd.GeoDataFrame(geometry=grid_cells, crs=city_crs) grid_gdf_latlon = grid_gdf_crs.to_crs(4326) grid_pop_gdf_crs = populate_grid( grid_gdf_crs, blocks_gdf_crs, block_groups_gdf_crs, ) grid_pop_gdf_crs['pop_dens'] = grid_pop_gdf_crs['POP10'] / grid_pop_gdf_crs.geometry.area grid_pop_gdf_latlon = grid_pop_gdf_crs.to_crs(4326) points = pd.DataFrame() for idx in grid_pop_gdf_latlon.index: if not np.isnan(grid_pop_gdf_latlon.loc[idx,'POP10']): grid_pop_gdf_latlon.loc[idx,'id'] = idx points.loc[idx,'id'] = idx centroid = grid_pop_gdf_latlon.loc[idx,'geometry'].centroid points.loc[idx,'lat'] = centroid.y points.loc[idx,'lon'] = centroid.x for col in ['POP10','pct_carfree','pct_onecar','pct_twopluscars','pop_dens']: points.loc[idx, col] = grid_pop_gdf_latlon.loc[idx, col] points.to_csv('pop_points.csv') grid_pop_gdf_latlon.to_file('grid_pop.geojson',driver='GeoJSON')
2.296875
2
examples/Lists.py
mnishitha/INF502-Fall2020
8
12798310
<reponame>mnishitha/INF502-Fall2020 list_of_numbers = [1,2,3,4,5] len(list_of_numbers) list_of_numbers[0] print(list_of_numbers) list_of_numbers[4] print(list_of_numbers) list_of_numbers[-2] print(list_of_numbers) #extending it list_of_numbers.extend([6,7,8]) print(list_of_numbers) #slicing it piece = list_of_numbers[:4] #beginning to 4 print (piece) piece = list_of_numbers[2:6] #from position 2 to 6 print (piece) #shrinking it del list_of_numbers [2:5] print(list_of_numbers) #merging list1 = [1,2,3] list2 = [4,5,6] list3 = list1 + list2 print(list3) list1.extend(list2) print(list1) #sorting list1 = [-1,4,0,9,2,7] list1.sort() print (list1)
4.03125
4
backend/app/company/permissions.py
adithyanps/djangoAuthorization
0
12798311
from rest_framework import permissions BASE_SAFE_METHODS = ['GET','HEAD','OPTIONS'] MEDIUM_SAFE_METHODS = ['GET', 'PUT','PATCH','HEAD','OPTIONS'] TOP_SAFE_METHODS = ['GET','DELETE','PUT','PATCH','HEAD','OPTIONS'] class Permission(permissions.BasePermission): """manage permissions based on user choice""" def has_object_permission(self, request, view, obj): print(request.method in permissions.SAFE_METHODS,'--') if obj.user.user_choice == "BASE": print('base') if (request.method in BASE_SAFE_METHODS ): return True elif obj.user.user_choice == "MEDIUM": print('medium') if (request.method in MEDIUM_SAFE_METHODS ): return True elif obj.user.user_choice == "TOP": print('Top') if (request.method in TOP_SAFE_METHODS ): return True
2.640625
3
lib/fama/pe_functional_pipeline.py
aekazakov/FamaProfiling
0
12798312
<reponame>aekazakov/FamaProfiling """Runs Fama functional profiling pipeline""" import os import gzip from fama.utils.const import ENDS, STATUS_GOOD from fama.se_functional_pipeline import run_fastq_pipeline from fama.utils.utils import run_external_program from fama.project.sample import Sample from fama.diamond_parser.diamond_parser import DiamondParser from fama.output.report import generate_fastq_report, generate_sample_report from fama.output.pdf_report import generate_pdf_report from fama.output.krona_xml_writer import make_functions_chart from fama.output.json_util import export_annotated_reads, export_sample from fama.third_party.microbe_census import run_pipeline, report_results from fama.diamond_parser.hit_utils import parse_fastq_seqid def run_ref_search(parser, command): """Runs pre-selection DIAMOND search Args: parser (:obj:DiamondParser): parser object processing an input sequence file command (str): either 'blastx' or 'blastp' (see DIAMOND manual) """ print('Starting DIAMOND') diamond_args = [parser.config.diamond_path, command, '--db', parser.config.get_reference_diamond_db( parser.options.get_collection(parser.sample.sample_id) ), '--query', parser.options.get_fastq_path(parser.sample.sample_id, parser.end), '--out', os.path.join( parser.options.get_project_dir(parser.sample.sample_id), parser.sample.sample_id + '_' + parser.end + '_' + parser.options.ref_output_name ), '--max-target-seqs', '50', '--evalue', str(parser.config.get_evalue_cutoff( parser.options.get_collection(parser.sample.sample_id) )), # '--threads', # parser.config.threads, '--outfmt', '6', 'qseqid', 'sseqid', 'pident', 'length', 'mismatch', 'slen', 'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore'] run_external_program(diamond_args) print('DIAMOND finished') def run_bgr_search(parser, command): """Runs classification DIAMOND search Args: parser (:obj:DiamondParser): parser object processing an input sequence file command (str): either 'blastx' or 'blastp' (see DIAMOND manual) """ print('Starting DIAMOND') diamond_args = [parser.config.diamond_path, command, '--db', parser.config.get_background_diamond_db( parser.options.get_collection(parser.sample.sample_id) ), '--query', os.path.join( parser.options.get_project_dir(parser.sample.sample_id), parser.sample.sample_id + '_' + parser.end + '_' + parser.options.ref_hits_fastq_name ), '--out', os.path.join( parser.options.get_project_dir(parser.sample.sample_id), parser.sample.sample_id + '_' + parser.end + '_' + parser.options.background_output_name ), '--max-target-seqs', '100', '--evalue', str( parser.config.get_background_db_size( parser.options.get_collection(parser.sample.sample_id) ) * parser.config.get_evalue_cutoff( parser.options.get_collection(parser.sample.sample_id) ) / parser.config.get_reference_db_size( parser.options.get_collection(parser.sample.sample_id) )), # '--threads', # parser.config.threads, '--outfmt', '6', 'qseqid', 'sseqid', 'pident', 'length', 'mismatch', 'slen', 'qstart', 'qend', 'sstart', 'send', 'evalue', 'bitscore'] run_external_program(diamond_args) print('DIAMOND finished') def run_microbecensus(sample, config): """Runs MicrobeCensus Args: sample (:obj:Sample): sample analyzed config (:obj:ProgramConfig): program configuration object """ args = {} if sample.is_paired_end: args['seqfiles'] = [sample.fastq_fwd_path, sample.fastq_rev_path] else: args['seqfiles'] = [sample.fastq_fwd_path] args['verbose'] = True args['diamond'] = config.diamond_path args['data_dir'] = config.microbecensus_datadir args['outfile'] = os.path.join(sample.work_directory, 'microbecensus.out.txt') args['threads'] = int(config.threads) args['no_equivs'] = True if sample.fastq_fwd_readcount < 1500000: # MicrobeCensus subsamples 2M reads by default, but sequence library # must have more reads as some reads are always discarded by filtering args['nreads'] = sample.fastq_fwd_readcount // 2 elif sample.fastq_fwd_readcount < 3000000: args['nreads'] = sample.fastq_fwd_readcount - 1000000 else: args['nreads'] = 2000000 print(args) est_ags, args = run_pipeline(args) report_results(args, est_ags, None) def import_fastq_pe(parser1, parser2): """Reads uncompressed or gzipped FASTQ file, finds sequences of selected reads and stores them Returns: read_count (int): number of reads in the file base_count (int): total number of bases in all reads """ fastq_file1 = parser1.options.get_fastq_path(parser1.sample.sample_id, parser1.end) line_counter = 0 read_count1 = 0 base_count1 = 0 current_read = None infile_handle = None if fastq_file1.endswith('.gz'): infile_handle = gzip.open(fastq_file1, 'rb') else: infile_handle = open(fastq_file1, 'rb') for line in infile_handle: # count lines as each FASTQ entry has exactly four lines line_counter += 1 if line_counter == 5: line_counter = 1 line = line.decode('utf8').rstrip('\n\r') if line_counter == 1: read_count1 += 1 (read_id, _) = parse_fastq_seqid(line) current_read = read_id if current_read in parser1.reads: parser1.reads[current_read].read_id_line = line if current_read in parser2.reads: parser2.reads[current_read].pe_id = line elif line_counter == 2: base_count1 += len(line) if current_read in parser1.reads: parser1.reads[current_read].sequence = line if current_read in parser2.reads: parser2.reads[current_read].pe_sequence = line elif line_counter == 3: if current_read in parser1.reads: parser1.reads[current_read].line3 = line if current_read in parser2.reads: parser2.reads[current_read].pe_line3 = line elif line_counter == 4: if current_read in parser1.reads: parser1.reads[current_read].quality = line if current_read in parser2.reads: parser2.reads[current_read].pe_quality = line infile_handle.close() fastq_file2 = parser1.options.get_fastq_path(parser2.sample.sample_id, parser2.end) line_counter = 0 read_count2 = 0 base_count2 = 0 current_read = None if fastq_file2.endswith('.gz'): infile_handle = gzip.open(fastq_file2, 'rb') else: infile_handle = open(fastq_file2, 'rb') for line in infile_handle: # count lines as each FASTQ entry has exactly four lines line_counter += 1 if line_counter == 5: line_counter = 1 line = line.decode('utf8').rstrip('\n\r') if line_counter == 1: read_count2 += 1 (read_id, _) = parse_fastq_seqid(line) current_read = read_id if current_read in parser1.reads: parser1.reads[current_read].pe_id = line if current_read in parser2.reads: parser2.reads[current_read].read_id_line = line elif line_counter == 2: base_count2 += len(line) if current_read in parser1.reads: parser1.reads[current_read].pe_sequence = line if current_read in parser2.reads: parser2.reads[current_read].sequence = line elif line_counter == 3: if current_read in parser1.reads: parser1.reads[current_read].pe_line3 = line if current_read in parser2.reads: parser2.reads[current_read].line3 = line elif line_counter == 4: if current_read in parser1.reads: parser1.reads[current_read].pe_quality = line if current_read in parser2.reads: parser2.reads[current_read].quality = line infile_handle.close() return (parser1, parser2, read_count1, read_count2, base_count1, base_count2) def export_paired_end_reads_fastq(parser): """ For paired-end sequence reads, write paired-end reads for pre-selected reads into a separate FASTQ file """ outdir = parser.sample.work_directory read_ids = {} for read_id in sorted(parser.reads.keys()): read_ids[read_id] = read_id fastq_outfile = os.path.join(outdir, parser.sample.sample_id + '_' + parser.end + '_' + parser.options.pe_reads_fastq_name + '.gz') with gzip.open(fastq_outfile, 'wt') as outfile: for read_id in sorted(parser.reads.keys()): outfile.write(parser.reads[read_id].pe_id + '\n') outfile.write(parser.reads[read_id].pe_sequence + '\n') outfile.write(parser.reads[read_id].pe_line3 + '\n') outfile.write(parser.reads[read_id].pe_quality + '\n') def fastq_pe_pipeline(project, sample_identifier=None, end_identifier=None): """Functional profiling pipeline for entire project Args: project (:obj:Project): current project sample_identifier (str, optional): sample identifier end_identifier (str, optional): end identifier """ for sample_id in project.list_samples(): if sample_identifier and sample_identifier != sample_id: continue sample = Sample(sample_id) sample.load_sample(project.options) project.samples[sample_id] = sample if end_identifier: project.samples[sample_id].reads[end_identifier] = \ run_fastq_pipeline(project, sample=project.samples[sample_id], end_id=end_identifier) else: project.samples[sample_id].reads = \ run_pe_fastq_pipeline(project, sample=project.samples[sample_id]) export_sample(project.samples[sample_id]) # Generate output for the sample or delete sample from memory project.options.set_sample_data(project.samples[sample_id]) metric = None for sample_id in project.list_samples(): if project.is_paired_end(): metric = 'efpkg' for sample_id in project.list_samples(): if project.samples[sample_id].rpkg_scaling_factor == 0.0: metric = 'fragmentcount' else: metric = 'erpkg' for sample_id in project.list_samples(): if project.samples[sample_id].rpkg_scaling_factor == 0.0: metric = 'readcount' # Generate output for all samples for sample_id in project.list_samples(): generate_sample_report(project, sample_id, metric=metric) # Generate output for the project if sample_identifier is None: # Skip project report if the pipeline is running for only one sample project.generate_report() # Rename existing project file and save current version project.save_project_options() return project def run_pe_fastq_pipeline(project, sample): """Functional profiling pipeline for single FASTQ file processing Args: project (:obj:Project): current project sample (:obj:Sample): current sample """ result = {} parser1 = DiamondParser(config=project.config, options=project.options, taxonomy_data=project.taxonomy_data, ref_data=project.ref_data, sample=sample, end=ENDS[0]) parser2 = DiamondParser(config=project.config, options=project.options, taxonomy_data=project.taxonomy_data, ref_data=project.ref_data, sample=sample, end=ENDS[1]) if not os.path.isdir(project.options.get_project_dir(sample.sample_id)): os.makedirs(project.options.get_project_dir(sample.sample_id), exist_ok=True) if not os.path.isdir(os.path.join(project.options.get_project_dir(sample.sample_id), project.options.get_output_subdir(sample.sample_id))): os.mkdir(os.path.join(project.options.get_project_dir(sample.sample_id), project.options.get_output_subdir(sample.sample_id))) # Search in reference database if not os.path.exists( os.path.join( parser1.options.get_project_dir(parser1.sample.sample_id), parser1.sample.sample_id + '_' + parser1.end + '_' + parser1.options.ref_output_name ) ): run_ref_search(parser1, 'blastx') if not os.path.exists( os.path.join( parser2.options.get_project_dir(parser2.sample.sample_id), parser2.sample.sample_id + '_' + parser2.end + '_' + parser2.options.ref_output_name ) ): run_ref_search(parser2, 'blastx') # Process output of reference DB search parser1.parse_reference_output() parser2.parse_reference_output() # Import sequence data for selected sequence reads print('Reading FASTQ file') (parser1, parser2, read_count1, read_count2, base_count1, base_count2) = import_fastq_pe( parser1, parser2 ) if sample.fastq_fwd_readcount == 0: sample.fastq_fwd_readcount = read_count1 if sample.fastq_fwd_basecount == 0: sample.fastq_fwd_basecount = base_count1 if sample.fastq_rev_readcount == 0: sample.fastq_rev_readcount = read_count2 if sample.fastq_rev_basecount == 0: sample.fastq_rev_basecount = base_count2 if sample.rpkg_scaling_factor == 0.0: sample.import_rpkg_scaling_factor() if sample.rpkg_scaling_factor == 0.0: run_microbecensus(sample=sample, config=project.config) sample.import_rpkg_scaling_factor() project.options.set_sample_data(sample) if parser1.reads: parser1.export_hit_fastq() print('Hits for forward end reads exported in FASTQ format') parser1.export_hit_list() print('List of hits fo forward end reads exported') if not os.path.exists( os.path.join( parser1.options.get_project_dir(parser1.sample.sample_id), parser1.sample.sample_id + '_' + parser1.end + '_' + parser1.options.background_output_name ) ): run_bgr_search(parser1, 'blastx') print('Classification DB search finished') parser1.parse_background_output() print('Classification DB search results imported') parser1.export_read_fastq() print('Classified forward end reads exported in FASTQ format') export_paired_end_reads_fastq(parser1) print('Paired reads for classified forward end reads exported') export_annotated_reads(parser1) print('Classified forward end reads exported in JSON format') generate_fastq_report(parser1) print('Text report for forward end reads created') generate_pdf_report(parser1) print('PDF report for forward end reads created') make_functions_chart(parser1) print('Krona chart for forward end reads created') result[ENDS[0]] = {read_id: read for (read_id, read) in parser1.reads.items() if read.status == STATUS_GOOD} else: # No hits found print('Pre-selection search did not find any hits for forward end reads') result[ENDS[0]] = {} if parser2.reads: parser2.export_hit_fastq() print('Hits for reverse end reads exported in FASTQ format') parser2.export_hit_list() print('List of hits for reverse end reads exported') if not os.path.exists( os.path.join( parser2.options.get_project_dir(parser2.sample.sample_id), parser2.sample.sample_id + '_' + parser2.end + '_' + parser2.options.background_output_name ) ): run_bgr_search(parser2, 'blastx') print('Classification DB search for reverse end reads finished') parser2.parse_background_output() print('Classification DB search results for reverse end reads imported') parser2.export_read_fastq() print('Classified reverse end reads exported in FASTQ format') export_paired_end_reads_fastq(parser2) print('Paired reads for classified reverse end reads exported') export_annotated_reads(parser2) print('Classified reverse end reads exported in JSON format') generate_fastq_report(parser2) print('Text report for reverse end reads created') generate_pdf_report(parser2) print('PDF report for reverse end reads created') make_functions_chart(parser2) print('Krona chart for reverse end reads created') result[ENDS[1]] = {read_id: read for (read_id, read) in parser2.reads.items() if read.status == STATUS_GOOD} else: # No hits found print('Pre-selection search did not find any hits for reverse end reads') result[ENDS[1]] = {} return result def main(): """Main function""" print('This program is not intended to run directly.') if __name__ == '__main__': main()
2.140625
2
Python3/1287.py
rakhi2001/ecom7
854
12798313
<reponame>rakhi2001/ecom7 __________________________________________________________________________________________________ sample 76 ms submission class Solution: def findSpecialInteger(self, arr: List[int]) -> int: for idx, num in enumerate(arr): if arr[idx] == arr[idx+len(arr)//4]: return num __________________________________________________________________________________________________ sample 80 ms submission class Solution: def findSpecialInteger(self, arr: List[int]) -> int: size = int((len(arr)) / 4) loose = max(1, size) for index in range(0, len(arr), loose): candidate = arr[index] left = bisect.bisect_left(arr, candidate, max(0, index - loose), min(len(arr), index + loose)) right = bisect.bisect_right(arr, candidate, max(0, index - loose), min(len(arr), index + loose)) if right - left > size: return arr[index] assert(False) __________________________________________________________________________________________________
2.703125
3
IntroProblems/Permutations/source.py
0x5eba/CSES-solutions
27
12798314
N=int(input()) if N==4:print("2 4 1 3");exit() if N==1:print("1");exit() if N<4:print("NO SOLUTION");exit() [print(i) for i in range(1,N+1,2)] [print(i) for i in range(2,N+1,2)]
3.46875
3
8 kyu/Remove First and Last Character.py
mwk0408/codewars_solutions
6
12798315
<filename>8 kyu/Remove First and Last Character.py def remove_char(s): s2=s[1:len(s)-1] return s2
3.40625
3
laas/actions/actions/parse_network_data.py
opnfv/laas-reflab
1
12798316
############################################################################## # Copyright 2018 <NAME> and Others # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # ############################################################################## import json from st2actions.runners.pythonrunner import Action class ParseNetworkAction(Action): def run(self, task_data): task_data.pop("lab_token", None) # We dont care, just remove if there if len(task_data) > 1: print("There should only be one host here!") return None ret = { 'host': list(task_data.keys())[0], # hostname 'mappings': '+'.join(self.get_mappings(task_data)), # mappings as understood by host task 'default': self.get_default_interface(task_data), # interface that should be def route 'empty': self.detect_empty(task_data) } return ret def detect_empty(self, task_data): for hostname, iface_dict in task_data.items(): for mac, vlan_list in iface_dict.items(): if vlan_list: return False return True def get_mappings(self, task_data): mappings = [] for hostname, iface_dict in task_data.items(): for mac, vlan_list in iface_dict.items(): for vlan in vlan_list: if vlan['tagged']: mapping = mac + "-" + str(vlan['vlan_id']) mappings.append(mapping) return mappings def get_default_vlans(self): vlan_list = json.loads( self.action_service.get_value("default_vlans", local=False) ) return vlan_list def get_default_interface(self, task_data): default = set(self.get_default_vlans()) for hostname, iface_dict in task_data.items(): for mac, vlan_list in iface_dict.items(): for vlan in vlan_list: if int(vlan['vlan_id']) in default: default_interface = mac if vlan['tagged']: default_interface += "." + str(vlan['vlan_id']) return default_interface
2.140625
2
serving_agent/model_agent.py
HughWen/ServingAgent
19
12798317
import time import pickle import redis class ModelAgent: def __init__( self, redis_broker='localhost:6379', redis_queue='broker', model_class=None, model_config={}, batch_size=64, model_sleep=0.1, collection=False, collection_limit=6000, ): parse = lambda x: {'host': x.split(':')[0], 'port': int(x.split(':')[1])} self.db = redis.StrictRedis(**parse(redis_broker)) self.redis_queue = redis_queue assert 'predict' in dir(model_class), 'No predict function in model class' self.model_class = model_class self.model_config = model_config self.batch_size = batch_size self.model_sleep = model_sleep self.collection = collection self.collection_limit = collection_limit def run(self, pre_process=lambda x: x, post_process=lambda x: x): model = self.model_class(**self.model_config) mq_miss = 0 print('model init') while True: with self.db.pipeline() as pipe: pipe.lrange(self.redis_queue, 0, self.batch_size - 1) pipe.ltrim(self.redis_queue, self.batch_size, -1) queue, _ = pipe.execute() if queue: mq_miss = 0 if not model: model = self.model_class(**self.model_config) messages = [pickle.loads(x) for x in queue] keys = [message.get('key') for message in messages] model_inputs = [pre_process(message.get('model_input')) for message in messages] results = [post_process(x) for x in model.predict(model_inputs)] self.db.mset({key: pickle.dumps(result) for key, result in zip(keys, results)}) else: mq_miss += 1 if mq_miss and mq_miss % self.collection_limit == 0: mq_miss = 0 if self.collection and model: model = None print('model is collected') time.sleep(self.model_sleep)
2.1875
2
nautobot_golden_config/utilities/graphql.py
chadell/nautobot-plugin-golden-config
0
12798318
<filename>nautobot_golden_config/utilities/graphql.py<gh_stars>0 """Example code to execute GraphQL query from the ORM.""" import logging from django.utils.module_loading import import_string from graphene_django.settings import graphene_settings from graphql import get_default_backend from graphql.error import GraphQLSyntaxError from nautobot_golden_config.models import GoldenConfigSettings from .constant import PLUGIN_CFG LOGGER = logging.getLogger(__name__) def graph_ql_query(request, device, query): """Function to run graphql and transposer command.""" LOGGER.debug("GraphQL - request for `%s`", str(device)) backend = get_default_backend() schema = graphene_settings.SCHEMA LOGGER.debug("GraphQL - set query variable to device.") variables = {"device": device} try: LOGGER.debug("GraphQL - test query: `%s`", str(query)) document = backend.document_from_string(schema, query) except GraphQLSyntaxError as error: LOGGER.warning("GraphQL - test query Failed: `%s`", str(query)) return (400, {"error": str(error)}) LOGGER.debug("GraphQL - execute query with variables") result = document.execute(context_value=request, variable_values=variables) if result.invalid: LOGGER.warning("GraphQL - query executed unsuccessfully") return (400, result.to_dict()) data = result.data global_settings = GoldenConfigSettings.objects.get(id="aaaaaaaa-0000-0000-0000-000000000001") if global_settings.shorten_sot_query is True: data = data["devices"][0] if PLUGIN_CFG.get("sot_agg_transposer"): LOGGER.debug("GraphQL - tansform data with function: `%s`", str(PLUGIN_CFG.get("sot_agg_transposer"))) try: data = import_string(PLUGIN_CFG.get("sot_agg_transposer"))(data) except Exception as error: # pylint: disable=broad-except return (400, {"error": str(error)}) LOGGER.debug("GraphQL - request successful") return (200, data)
2.53125
3
etc/tf_tutorial/Tensorflow-101-master/cnn_mnist_simple.py
zhangbo2008/facenet
0
12798319
#!/usr/bin/env python # coding: utf-8 # ## SIMPLE CONVOLUTIONAL NEURAL NETWORK # In[1]: import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data get_ipython().run_line_magic('matplotlib', 'inline') print ("PACKAGES LOADED") # # LOAD MNIST # In[2]: mnist = input_data.read_data_sets('data/', one_hot=True) trainimg = mnist.train.images trainlabel = mnist.train.labels testimg = mnist.test.images testlabel = mnist.test.labels print ("MNIST ready") # # SELECT DEVICE TO BE USED # In[3]: device_type = "/gpu:1" # # DEFINE CNN # In[4]: with tf.device(device_type): # <= This is optional n_input = 784 n_output = 10 weights = { 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)), 'wd1': tf.Variable(tf.random_normal([14*14*64, n_output], stddev=0.1)) } biases = { 'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)), 'bd1': tf.Variable(tf.random_normal([n_output], stddev=0.1)) } def conv_simple(_input, _w, _b): # Reshape input _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) # Convolution _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') # Add-bias _conv2 = tf.nn.bias_add(_conv1, _b['bc1']) # Pass ReLu _conv3 = tf.nn.relu(_conv2) # Max-pooling _pool = tf.nn.max_pool(_conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Vectorize _dense = tf.reshape(_pool, [-1, _w['wd1'].get_shape().as_list()[0]]) # Fully-connected layer _out = tf.add(tf.matmul(_dense, _w['wd1']), _b['bd1']) # Return everything out = { 'input_r': _input_r, 'conv1': _conv1, 'conv2': _conv2, 'conv3': _conv3 , 'pool': _pool, 'dense': _dense, 'out': _out } return out print ("CNN ready") # # DEFINE COMPUTATIONAL GRAPH # In[5]: # tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) # Parameters learning_rate = 0.001 training_epochs = 10 batch_size = 100 display_step = 1 # Functions! with tf.device(device_type): # <= This is optional _pred = conv_simple(x, weights, biases)['out'] cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) optm = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) _corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) # Count corrects accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # Accuracy init = tf.initialize_all_variables() # Saver save_step = 1; savedir = "nets/" saver = tf.train.Saver(max_to_keep=3) print ("Network Ready to Go!") # # OPTIMIZE # ## DO TRAIN OR NOT # In[6]: do_train = 1 sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) sess.run(init) # In[7]: if do_train == 1: for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optm, feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch # Display logs per epoch step if epoch % display_step == 0: print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost)) train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys}) print (" Training accuracy: %.3f" % (train_acc)) test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel}) print (" Test accuracy: %.3f" % (test_acc)) # Save Net if epoch % save_step == 0: saver.save(sess, "nets/cnn_mnist_simple.ckpt-" + str(epoch)) print ("Optimization Finished.") # # RESTORE # In[8]: if do_train == 0: epoch = training_epochs-1 saver.restore(sess, "nets/cnn_mnist_simple.ckpt-" + str(epoch)) print ("NETWORK RESTORED") # # LET'S SEE HOW CNN WORKS # In[9]: with tf.device(device_type): conv_out = conv_simple(x, weights, biases) input_r = sess.run(conv_out['input_r'], feed_dict={x: trainimg[0:1, :]}) conv1 = sess.run(conv_out['conv1'], feed_dict={x: trainimg[0:1, :]}) conv2 = sess.run(conv_out['conv2'], feed_dict={x: trainimg[0:1, :]}) conv3 = sess.run(conv_out['conv3'], feed_dict={x: trainimg[0:1, :]}) pool = sess.run(conv_out['pool'], feed_dict={x: trainimg[0:1, :]}) dense = sess.run(conv_out['dense'], feed_dict={x: trainimg[0:1, :]}) out = sess.run(conv_out['out'], feed_dict={x: trainimg[0:1, :]}) # # Input # In[10]: # Let's see 'input_r' print ("Size of 'input_r' is %s" % (input_r.shape,)) label = np.argmax(trainlabel[0, :]) print ("Label is %d" % (label)) # Plot ! plt.matshow(input_r[0, :, :, 0], cmap=plt.get_cmap('gray')) plt.title("Label of this image is " + str(label) + "") plt.colorbar() plt.show() # # Conv1 (convolution) # In[11]: # Let's see 'conv1' print ("Size of 'conv1' is %s" % (conv1.shape,)) # Plot ! for i in range(3): plt.matshow(conv1[0, :, :, i], cmap=plt.get_cmap('gray')) plt.title(str(i) + "th conv1") plt.colorbar() plt.show() # # Conv2 (+bias) # In[12]: # Let's see 'conv2' print ("Size of 'conv2' is %s" % (conv2.shape,)) # Plot ! for i in range(3): plt.matshow(conv2[0, :, :, i], cmap=plt.get_cmap('gray')) plt.title(str(i) + "th conv2") plt.colorbar() plt.show() # # Conv3 (ReLU) # In[13]: # Let's see 'conv3' print ("Size of 'conv3' is %s" % (conv3.shape,)) # Plot ! for i in range(3): plt.matshow(conv3[0, :, :, i], cmap=plt.get_cmap('gray')) plt.title(str(i) + "th conv3") plt.colorbar() plt.show() # # Pool (max_pool) # In[14]: # Let's see 'pool' print ("Size of 'pool' is %s" % (pool.shape,)) # Plot ! for i in range(3): plt.matshow(pool[0, :, :, i], cmap=plt.get_cmap('gray')) plt.title(str(i) + "th pool") plt.colorbar() plt.show() # # Dense # In[15]: # Let's see 'dense' print ("Size of 'dense' is %s" % (dense.shape,)) # Let's see 'out' print ("Size of 'out' is %s" % (out.shape,)) # # Convolution filters # In[16]: # Let's see weight! wc1 = sess.run(weights['wc1']) print ("Size of 'wc1' is %s" % (wc1.shape,)) # Plot ! for i in range(3): plt.matshow(wc1[:, :, 0, i], cmap=plt.get_cmap('gray')) plt.title(str(i) + "th conv filter") plt.colorbar() plt.show()
3.234375
3
src/view/view_analisys.py
jcemelanda/PyGPA2.0
0
12798320
<filename>src/view/view_analisys.py from PyQt4 import QtGui, QtCore from widgets.window_analisys import Analysis_Window class Analise_View(QtGui.QMainWindow): def __init__(self, controle): QtGui.QMainWindow.__init__(self) self.controle = controle self.ui = Analysis_Window() self.ui.setup(self) self.count = 3 self.shortcut_right = QtGui.QShortcut(QtGui.QKeySequence("l"), self, self.controle.incrementa_view) self.shortcut_left = QtGui.QShortcut(QtGui.QKeySequence("j"), self, self.controle.decrementa_view) self.shortcut_end = QtGui.QShortcut(QtGui.QKeySequence("end"), self, self.controle.last_view) self.shortcut_home = QtGui.QShortcut(QtGui.QKeySequence("home"), self, self.controle.first_view) QtCore.QObject.connect(self.ui.actionAbrir_Conjunto_de_Matrizes, QtCore.SIGNAL( 'triggered()'), self.controle.abrir_arquivo) QtCore.QObject.connect(self.ui.horizontalSlider, QtCore.SIGNAL( 'valueChanged(int)'), self.controle.set_view) QtCore.QObject.connect(self.ui.Tabs, QtCore.SIGNAL( 'currentChanged(int)'), self.controle.set_current_tab) if __name__ == '__main__': import sys app = QtGui.QApplication(sys.argv) av = Analise_View() av.add_widgets() av.showMaximized() sys.exit(app.exec_())
2.359375
2
M1/Aula1.py
DouglasCarvalhoPereira/Interact-OS-PYTHON
0
12798321
<reponame>DouglasCarvalhoPereira/Interact-OS-PYTHON<filename>M1/Aula1.py name = input('Digite se nome: ') cont = 0 while cont < 10: print(f'Hello word {name}') cont+=1
3.15625
3
Sudoku.py
lavieduynguyen/Sudoku
0
12798322
import kivy kivy.require('1.10.0') from kivy.app import App from kivy.uix.label import Label from kivy.uix.button import Button from kivy.uix.checkbox import CheckBox from kivy.uix.dropdown import DropDown from kivy.uix.gridlayout import GridLayout from kivy.uix.screenmanager import Screen, ScreenManager from sudokuboard import SudokuBoard class GameScreen(Screen): pass class SolverScreen(Screen): pass class HelpScreen(Screen): pass class CreditsScreen(Screen): pass class MenuScreen(Screen): pass class Numpad(GridLayout): def __init__(self, **kwargs): super().__init__(**kwargs) self.cols = 3 self.rows = 3 for i in range(self.cols * self.rows): button = Button(text=str(i + 1)) button.font_size = button.height * 0.25 self.add_widget(button) class ColorFilter(GridLayout): def __init__(self, **kwargs): super().__init__(**kwargs) self.spacing = 8 self.padding = 10 self.cols = 8 self.rows = 5 for i in range(20): self.add_widget(CheckBox(active=True, size_hint=(None, None), height=20, width=20)) self.add_widget(Button(size_hint=(0.5, None),size_hint_max_x=60, height=20)) class SudokuApp(App): def build(self): sm = ScreenManager() sm.add_widget(MenuScreen(name='menu')) sm.add_widget(GameScreen(name='game')) sm.add_widget(HelpScreen(name='help')) sm.add_widget(CreditsScreen(name='credits')) sm.current = 'menu' return sm if __name__ == '__main__': SudokuApp().run()
2.984375
3
src/bfg/module.py
rvrsh3ll/bl-bfg
6
12798323
import argparse import inspect import re def bindSignatureArgs(func, src:dict) -> dict: ''' Args: func: Function/method from which the signature will be sourced. src: Source dictionary that will provide values for dest. Returns: A new dictionary with argument values from src set in dest. ''' dest = {} # Iterate over paramaters and values in the function's # signature for k,v in inspect.signature(func).parameters.items(): # Skip "self" references if k == 'self': continue # Extract the user supplied value when provided if k in src: dest[k]=src[k] # Use the default value other wise else: dest[k]=v return dest class Module: '''# Base Module Class This class serves as a template for brute force modules. It builds the interface subcommands by inspecting the __init__ method while also enforcing restrictions on the __call__ method to ensure BruteLoops can make authentication callbacks. # The __init__ Method This method can be used to set static values supporting a brute force module. It's useful in situations when an upstream server needs to be targeted. # The __call__ Method This method is called for each authentication attempt by BruteLoops and should check the validity of a username and password. The method signature must look like: ``` def __call__(self, username, password, *args, **kwargs): success = False # Do authentication and update success to True if successful if success: return dict(outcome=1,username=username,password=password) else: return dict(outcome=0,username=username,password=password, ``` Note the structure returned in the declaration above. The leading integer value determines if authentication was successful, indicating valid credentials: 1 means success, 0 means failure. ''' # Name for the module that'll be shown in logging name = None # Brief description to display in the help menu brief_description = None # Description of the module that'll be shown in the interface description = None @classmethod def initialize(cls, args): '''Initialize and return the underlying brute force module. ''' print('Initializing module!') # Translate the argparse arguments to a dictionary args = vars(args) # Initialize a dictionary to hold all of the necessary argument # to initialize the brute force module. dct = bindSignatureArgs(func=cls.__init__, src=args) # Initialize and return the module instance = cls(**dct) if hasattr(instance, '__post_init__'): instance.__post_init__( **bindSignatureArgs( func=instance.__post_init__, src=args)) return instance @classmethod def validate(cls): # ============================== # VALIDATING THE __call__ METHOD # ============================== # Ensure that it's declared assert getattr(cls,'__call__'),('Modules must be callable. ' 'Declare a __call__ method on the module: ' \ f'{cls.get_handle}') # Get a list of parameter names call_params = list(inspect.signature(cls.__call__).parameters \ .keys()) if call_params and call_params[0] == 'self': call_params = call_params[1:3] # Ensure there are two or greater params to be received assert len(call_params) == 2,('__call__ must receive at ' \ 'least two arguments: username, password') # Ensure that the first two are 'username' and 'password' assert ['username','password'] == call_params,('__call__ ' \ 'must receive the first two arguments as username, ' \ f'password -- not: {call_params}') @classmethod def get_handle(cls): '''Return a simple string to use as a module identifier. ''' return '.'.join(cls.__module__.split('.')[-3:][:2]) @classmethod def build_interface(cls, subparsers: 'Argparse subparsers that will receive the subcommand') \ -> argparse.ArgumentParser: '''Use the inspect module to iterate over each parameter declared in __init__ and build an interface via argparse. ''' epilog = None if hasattr(cls, 'contributors'): # ========================== # FORMAT MODULE CONTRIBUTORS # ========================== epilog = 'Contributors:\n\n' if not isinstance(cls.contributors, list): raise ValueError( 'Module contributors must be a list of dictionary ' f'values, not {type(cls.contributors)}') for cont in cls.contributors: if not isinstance(cont, dict): raise ValueError( 'contributor records must be dictionaries, ' f'not {type(cont)}') name = cont.get('name') additional = cont.get('additional') if not name: raise ValueError( 'contributor records must have a "name" field') epilog += f'\n- {name}' if additional: if not isinstance(additional, dict): raise ValueError( 'additional field of contributor records ' f'must be a dict, not {type(additional)}') for k,v in additional.items(): epilog += f'\n {k}: {v}' epilog += '\n' if hasattr(cls, 'references'): # ======================== # FORMAT MODULE REFERENCES # ======================== epilog += f'\nReferences:\n' references = cls.references if not isinstance(references, list): raise ValueError( f'References must be a list, got {type(references)}') for ref in references: epilog += f'\n- {ref}' # ====================== # BUILD MODULE ARGUMENTS # ====================== '''Here we create a new argparse argument parser for the command assoicated with the newly created module. This is how we bind the name that the user will refernce at the commandline, along with providing a mechanism to assign values to module parameters. ''' parser = subparsers.add_parser(cls.get_handle(), description=cls.description, help=cls.brief_description, parents=cls.args, formatter_class=argparse.RawDescriptionHelpFormatter, epilog=epilog) parser.set_defaults(module=cls) parser.add_argument('--database', '-db', required=True, help='Database to target.') return parser
3.125
3
oraexec.py
bakink/oracle-imagecopy-backup
20
12798324
import os, sys from subprocess import Popen, PIPE from backupcommon import BackupLogger, info, debug, error, exception from datetime import datetime, timedelta from tempfile import mkstemp, TemporaryFile class OracleExec(object): oraclehome = None tnspath = None oraclesid = None def __init__(self, oraclehome, tnspath, sid=None): self.oraclehome = oraclehome self.tnspath = tnspath if sid is not None: self.oraclesid = sid debug("Oracle home: %s" % self.oraclehome) def _setenv(self): if self.oraclesid is None and os.environ.get('ORACLE_SID'): del os.environ['ORACLE_SID'] if self.oraclesid is not None: os.environ['ORACLE_SID'] = self.oraclesid os.environ['ORACLE_HOME'] = self.oraclehome os.environ['NLS_DATE_FORMAT'] = 'yyyy-mm-dd hh24:mi:ss' os.environ['TNS_ADMIN'] = self.tnspath def rman(self, finalscript): self._setenv() debug("RMAN execution starts") BackupLogger.close() starttime = datetime.now() with TemporaryFile() as f: p = Popen([os.path.join(self.oraclehome, 'bin', 'rman'), "log", BackupLogger.logfile, "append"], stdout=f, stderr=f, stdin=PIPE) # Send the script to RMAN p.communicate(input=finalscript) endtime = datetime.now() BackupLogger.init() debug("RMAN execution time %s" % (endtime-starttime)) # If RMAN exists with any code except 0, then there was some error if p.returncode != 0: error("RMAN execution failed with code %d" % p.returncode) raise Exception('rman', "RMAN exited with code %d" % p.returncode) else: debug("RMAN execution successful") def sqlplus(self, finalscript, silent=False): self._setenv() with TemporaryFile() as f: args = [os.path.join(self.oraclehome, 'bin', 'sqlplus')] if silent: args.append('-S') args.append('/nolog') debug("SQL*Plus execution starts") BackupLogger.close() p = Popen(args, stdout=f, stderr=f, stdin=PIPE) p.communicate(input=finalscript) BackupLogger.init() if p.returncode != 0: error("SQL*Plus exited with code %d" % p.returncode) raise Exception('sqlplus', "sqlplus exited with code %d" % p.returncode) else: debug("SQL*Plus execution successful") if silent: f.seek(0,0) return f.read() def sqlldr(self, login, finalscript): self._setenv() debug("SQLLDR execution starts") f1 = mkstemp(suffix=".ctl") ftmp = os.fdopen(f1[0], "w") ftmp.write(finalscript) ftmp.close() f2 = mkstemp(suffix=".log") os.close(f2[0]) with TemporaryFile() as f: p = Popen([os.path.join(self.oraclehome, 'bin', 'sqlldr'), login, "control=%s" % f1[1], "log=%s" % f2[1], "errors=0", "silent=all"], stdout=f, stderr=None, stdin=None) p.communicate() if p.returncode != 0: error("SQLLDR exited with code %d" % p.returncode) raise Exception('sqlldr', "sqlldr exited with code %d" % p.returncode) else: debug("SQLLDR execution successful") os.unlink(f1[1]) os.unlink(f2[1]) def adrci(self, inputscriptfilename, outputfilehandle): self._setenv() p = Popen([os.path.join(self.oraclehome, 'bin', 'adrci'), "script=%s" % inputscriptfilename], stdout=outputfilehandle, stderr=None, stdin=None) p.wait() if p.returncode != 0: raise Exception('adrci','Exit code was not 0.')
2.328125
2
example/XGB.py
abhineet123/paramparse
0
12798325
class XGB: class Params: def __init__(self): self.max_depth = 2 self.eta = 1 self.objective = 'binary:logistic' self.nthread = 4 self.eval_metric = 'auc' self.num_round = 10 self.verbose = 1 self.help = { }
2.078125
2
final_project/main.py
DroogieDroog/python
0
12798326
<filename>final_project/main.py<gh_stars>0 """ pirple/python/final_project/main.py Final Project Create a Go Fish game """ from random import (shuffle, randint) from time import sleep from os import system, name class Player: def __init__(self, name, computer = False): self.Name = name self.Computer = computer self.new_hand() def new_hand(self): self.Hand = {} self.HandCounts = {} self.Sets = [] self.Wishes = [] def hand_counts(self): for denom in self.Hand.keys(): self.HandCounts.update({denom: len(self.Hand[denom])}) def check_wishes(self): if set(self.Wishes) == set(self.Hand.keys()): self.Wishes = [] elif len(self.Wishes) == 5: self.Wishes.pop(0) def print_hand(self): if self.Name.upper().endswith('S'): print('{}\' hand: '.format(self.Name), end=' ') else: print('{}\'s hand: '.format(self.Name), end=' ') for denom in sorted(self.Hand): for suit in self.Hand[denom]: if self.Computer: print('\u2733', end=' ') else: print(card_map[denom] + suit, end=' ') print() if self.Sets != []: self.print_sets() def print_sets(self): if self.Name.upper().endswith('S'): print('{}\' sets: '.format(self.Name), end=' ') else: print('{}\'s sets: '.format(self.Name), end=' ') for denom in sorted(self.Sets): print(card_map[denom] + 's', end=' ') print() def cast(self, opp_hand, card_deck, wish): if wish in opp_hand.keys(): print('Fish, fish, you got your wish!') opp_cards = opp_hand.pop(wish) if wish in self.Hand.keys(): for card in opp_cards: self.Hand[wish].append(card) else: self.Hand.update({wish: opp_cards}) return True else: print('Nope! Go fish.') sleep(2) got_wish = self.fish(card_deck, wish) return got_wish def fish(self, card_deck, wish): draw_card = card_deck.pop() if draw_card[0] in self.Hand.keys(): self.Hand[draw_card[0]].append(draw_card[1]) else: self.Hand.update({draw_card[0]: [draw_card[1]]}) if draw_card[0] == wish: print('Fish, fish, you got your wish!') return True else: print('Booooo, you didn\'t get your wish.') sleep(3) return False def lay_set(self): new_set = -1 for card, suits in self.Hand.items(): if len(suits) == 4: new_set = card if new_set != -1: self.Hand.pop(new_set) self.Sets.append(new_set) if len(self.Hand) == 0: return True else: return False def clear_screen(): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') def create_deck(): deck = [] map = {} card_denominations = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] #suits = [hearts, diamonds, spades, clubs] suits = ['\u2665', '\u2666', '\u2660', '\u2663'] for card in range(13): map.update({card: card_denominations[card]}) for suit in suits: deck.append([card, suit]) shuffle(deck) return deck, map def choose_dealer(new_game, winner): if new_game or winner == 2: r = randint(1, 100) if r <= 50: dealer = 0 else: dealer = 1 else: if winner == 0: dealer = 1 else: dealer = 0 return dealer def deal_hand(deck, players, new_game=True, winner=None): hands = [] hands.append({}) hands.append({}) for card in range(10): for hand in range(2): top_card = deck.pop() if top_card[0] in hands[hand].keys(): hands[hand][top_card[0]].append(top_card[1]) else: hands[hand].update({top_card[0]: [top_card[1]]}) dealer = choose_dealer(new_game, winner) if dealer == 0: print('{} is the dealer. {} goes first. Dealing the hands . . .'.format(players[0].Name, players[1].Name)) sleep(2) return dealer, hands[1], hands[0] else: print('{} is the dealer. {} goes first. Dealing the hands . . .'.format(players[1].Name, players[0].Name)) sleep(2) return dealer, hands[0], hands[1] def start_new_game(): while(True): player_name = '--help' while player_name.upper() == '--HELP': player_name = input('Please enter your name (or --help for the rules): ') if player_name.upper() == '--HELP': print_rules() yn = input('You\'ve chosen {} for your name. Is that correct (y/n)? '.format(player_name)) if yn.upper() == 'Y': print('OK, then let\'s play!') break else: print('Oops! Try again.') players = [Player(player_name), Player('Computer', True)] card_deck, card_map = create_deck() dealer, players[0].Hand, players[1].Hand = deal_hand(card_deck, players) return players, dealer, card_deck, card_map def play_again(players, winner): players[0].new_hand() players[1].new_hand() card_deck, card_map = create_deck() dealer, players[0].Hand, players[1].Hand = deal_hand(card_deck, players, False, winner) return dealer, card_deck, card_map def display_current_status(players, card_deck): break_line = '\u274C' * 25 cards_left = len(card_deck) clear_screen() print(break_line + '\n') players[1].print_hand() print() print('Draw pile: {} cards'.format(cards_left)) print() players[0].print_hand() print('\n' + break_line) def determine_winner(players, card_deck): display_current_status(players, card_deck) sets0 = len(players[0].Sets) sets1 = len(players[1].Sets) if sets0 > sets1: print('{} wins, {} sets to {}'.format(players[0].Name, sets0, sets1)) winner = 0 elif sets1 > sets0: print('{} wins, {} sets to {}'.format(players[1].Name, sets1, sets0)) winner = 1 else: print('It\'s a tie!') winner = 2 print('Good game!') return winner def play_game(players, dealer, card_deck): game_over = False if dealer == 0: current_player = 1 else: current_player = 0 while not game_over: game_over = play_hand(players, current_player, card_deck, card_map) if players[current_player].Computer: while True: wait = input('Enter a C to continue . . .') if wait.upper() == 'C': break if current_player == 0: current_player = 1 else: current_player = 0 return determine_winner(players, card_deck) def play_hand(players, current_player, card_deck, card_map): got_wish = True game_over = False card_map_keys = list(card_map.keys()) card_map_values = list(card_map.values()) if current_player == 0: opp_hand = players[1].Hand opp_sets = players[1].Sets else: opp_hand = players[0].Hand opp_sets = players[0].Sets display_current_status(players, card_deck) player = players[current_player] print('Your turn, {}.'.format(player.Name)) if player.Computer: player.HandCounts = {} while got_wish and not game_over: if player.Computer: player.hand_counts() wish = generate_wish(player, opp_sets, card_map) else: wish = request_wish(player, card_map, card_map_values) got_wish = player.cast(opp_hand, card_deck, card_map_keys[wish]) if card_deck == []: game_over = True else: game_over = player.lay_set() if got_wish and not game_over and not player.Computer: player.print_hand() return game_over def request_wish(player, card_map, card_map_values): while True: wish = input('What is your wish? ') if wish.upper() not in card_map.values(): print('You must wish for a valid card value (2-10, J, Q, K, A)') else: value_position = card_map_values.index(wish.upper()) if value_position not in player.Hand.keys(): print('You must wish for a card value in your hand.') else: break return value_position def generate_wish(player, opp_sets, card_map): player.check_wishes() highest_count = 0 most_cards = -1 while most_cards == -1: for denom, count in player.HandCounts.items(): if (count > highest_count) and (denom not in player.Wishes)\ and (denom not in opp_sets) and (denom not in player.Sets): most_cards = denom highest_count = count if most_cards == -1: player.Wishes = [] player.HandCounts = {} player.hand_counts() player.Wishes.append(most_cards) print('{} is wishing for a {}.'.format(player.Name, card_map[most_cards])) return most_cards def print_rules(): clear_screen() with open('data/rules.txt', 'r') as rules: rules_text = rules.read() print(rules_text) while True: wait = input('Enter an R to return to the game . . .') if wait.upper() == 'R': clear_screen() break def main(): global card_deck, card_map clear_screen() print('Welcome to JFL Go Fish! This is a one-player game against the Computer.') players, dealer, card_deck, card_map = start_new_game() play = True while play: winner = play_game(players, dealer, card_deck) yn = input('Would you like to play again (y/n)? ') if yn.upper() != 'Y': play = False else: dealer, card_deck, card_map = play_again(players, winner) print('Goodbye!') if __name__ == '__main__': main()
3.875
4
micadoparser/parser.py
micado-scale/micado-parser
0
12798327
<filename>micadoparser/parser.py import logging from toscaparser.tosca_template import ToscaTemplate from toscaparser.common.exception import ValidationError as TOSCAParserError from yaml.error import YAMLError from micadoparser import validator from micadoparser.exceptions import ValidationError from micadoparser.utils.csar import handle_csar from micadoparser.utils.yaml import handle_yaml from micadoparser.utils.utils import resolve_get_functions logger = logging.getLogger("micadoparser." + __name__) def set_template(path, parsed_params=None): """Parses any ADT and returns a ToscaTemplate :params: path, parsed_params :type: string, dictionary :return: template | parsed_params: dictionary containing the input to change | path: local or remote path to the file to parse """ errors = None if path.endswith(".csar"): template = handle_csar(path, parsed_params) else: template = handle_yaml(path, parsed_params) validator.validation(template) _find_other_inputs(template) _normalise_node_names(template) return template def get_template(path, parsed_params): """Return a ToscaTemplate object Args: path (string): path to the saved ADT parsed_params (dict): tosca inputs Raises: ValueError: If the tosca-parser has trouble parsing Returns: ToscaTemplate: Parsed template object """ error = "" try: template = ToscaTemplate( path=path, parsed_params=parsed_params, a_file=True ) except TOSCAParserError as e: error = [ line for line in e.message.splitlines() if all([line, not line.startswith("\t\t")]) ] error = "\n".join(error) except AttributeError as e: error = f"{e}\n HINT: This might be due to a wrong type - check your imports." except YAMLError as e: error = f"YAML Error\n {e}" except Exception as e: error = ( f"Unknown Error:\n {e}\n\n" "Please raise a ticket at https://github.com/micado-scale/ansible-micado/issues." ) if error: raise ValidationError(error, "TOSCA Parser could not parse the ADT...") return template def _find_other_inputs(template): """Find `get_input` tags in the template, then resolve and update""" resolve_get_functions( template.tpl, "get_input", lambda x: x is not None, _get_input_value, template, ) # Update nodetemplate properties for node in template.nodetemplates: node._properties = node._create_properties() def _get_input_value(key, template): """Custom get_input resolution using parsed_params""" try: return template.parsed_params[key] except (KeyError, TypeError): logger.debug(f"Input '{key}' not given, using default") try: return [ param.default for param in template.inputs if param.name == key ][0] except IndexError: logger.error(f"Input '{key}' has no default") def _normalise_node_names(template): """Remove underscores and periods from node names and refs""" # tpl and entity_tpl are not ever (I think) used to pull node names # so update the name property of the nodetemplate object for node in template.nodetemplates: node.name = node.name.replace("_", "-").replace(".", "-") _normalise_requirement_node_refs(node._requirements) # the targets property just looks at entity_tpl, so update that # references to renamed nodes exist in targets_list, so use that for policy in template.policies: policy.entity_tpl["targets"] = [ node.name for node in policy.targets_list ] def _normalise_requirement_node_refs(requirements): """Remove underscores and periods from node references""" for requirement in requirements: key = list(requirement)[0] # for shorthand requirement notation, just replace the string try: requirement[key] = ( requirement[key].replace("_", "-").replace(".", "-") ) # otherwise get the key and update 'node' in the inner dictionary except AttributeError: requirement[key]["node"] = ( requirement[key]["node"].replace("_", "-").replace(".", "-") )
2.5
2
database.py
Anve94/DiscordBot-public
0
12798328
<reponame>Anve94/DiscordBot-public import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, Boolean from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine Base = declarative_base() # Abuser class to insert people abusing the bugreporting feature class Abuser(Base): __tablename__ = 'abusers' id = Column(Integer, primary_key = True) discord_id = Column(String, nullable = False) # Entry class for voice-related giveaway entries class Entry(Base): __tablename__ = 'entries' # Table column definitions id = Column(Integer, primary_key = True) discord_id = Column(String, nullable = False) score = Column(Integer, nullable = False) # EventMessage class for stuff_happening messages class EventMessage(Base): __tablename__ = 'message' id = Column(Integer, primary_key = True) token = Column(String, nullable = False) content = Column(String, nullable = False) image_url = Column(String, nullable = True) position = Column(Integer, nullable = False) # Giveaway class to keep track of community giveaways class Giveaway(Base): __tablename__ = 'giveaway' id = Column(Integer, primary_key = True) discord_id = Column(String, nullable = False) # Create the engine to the sqlite database engine = create_engine('sqlite:///database/database.sqlite') # Handles the creation of tables (if none exist etc.) Base.metadata.create_all(engine)
2.4375
2
speech_recognition/cmusphinx-code/sphinxtrain/python/cmusphinx/fstutils.py
Ohara124c41/TUB-MSc_Thesis
1
12798329
<reponame>Ohara124c41/TUB-MSc_Thesis<filename>speech_recognition/cmusphinx-code/sphinxtrain/python/cmusphinx/fstutils.py #!/usr/bin/env python # Copyright (c) 2010 Carnegie Mellon University # # You may copy and modify this freely under the same terms as # Sphinx-III """ FST utility functions """ __author__ = "<NAME> <<EMAIL>>" __version__ = "$Revision $" import sys import os import tempfile import openfst import sphinxbase import subprocess class AutoFst(openfst.StdVectorFst): """ FST class which automatically adds states, input and output symbols as required. This is meant to behave somewhat like the Dot language. """ def __init__(self, isyms=None, osyms=None, ssyms=None): openfst.StdVectorFst.__init__(self) if isyms == None: isyms = openfst.SymbolTable("inputs") isyms.AddSymbol("&epsilon;") if osyms == None: osyms = openfst.SymbolTable("outputs") osyms.AddSymbol("&epsilon;") if ssyms == None: ssyms = openfst.SymbolTable("states") ssyms.AddSymbol("__START__") self.ssyms = ssyms self.SetInputSymbols(isyms) self.SetOutputSymbols(osyms) self.SetStart(self.AddState()) def AddArc(self, src, isym, osym, weight, dest): if not isinstance(isym, int): isym = self.isyms.AddSymbol(isym) if not isinstance(osym, int): osym = self.osyms.AddSymbol(osym) if not isinstance(src, int): src = self.ssyms.AddSymbol(src) if not isinstance(dest, int): dest = self.ssyms.AddSymbol(dest) while src >= self.NumStates(): self.AddState() while dest >= self.NumStates(): self.AddState() openfst.StdVectorFst.AddArc(self, src, isym, osym, weight, dest) def Write(self, *args): openfst.StdVectorFst.SetInputSymbols(self, self.isyms) openfst.StdVectorFst.SetOutputSymbols(self, self.osyms) openfst.StdVectorFst.Write(self, *args) def SetFinal(self, state, weight=0): if not isinstance(state, int): state = self.ssyms.AddSymbol(state) openfst.StdVectorFst.SetFinal(self, state, weight) def SetInputSymbols(self, isyms): self.isyms = isyms openfst.StdVectorFst.SetInputSymbols(self, self.isyms) def SetOutputSymbols(self, osyms): self.osyms = osyms openfst.StdVectorFst.SetOutputSymbols(self, self.osyms) def add_mgram_states(fst, symtab, lm, m, sidtab, bo_label=0): """ Add states and arcs for all M-grams in the language model, where M<N. """ for mg in lm.mgrams(m): wsym = symtab.Find(mg.words[m]) if wsym == -1: continue # skip mgrams ending in OOV if m > 0 and mg.words[0] == '</s>': continue # skip >1-grams starting with </s> if m == 0: src = 0 # 1-grams start in backoff state elif tuple(mg.words[0:m]) not in sidtab: continue # this means it has an OOV else: src = sidtab[tuple(mg.words[0:m])] if mg.words[m] == '</s>': # only one final state is allowed final = True newstate = False if ('</s>',) in sidtab: dest = sidtab[('</s>',)] else: dest = fst.AddState() fst.SetFinal(dest, 0) sidtab[('</s>',)] = dest #print "Final state", dest #print "Entered state ID mapping (</s>,) =>", dest else: final = False newstate = True dest = fst.AddState() if mg.words[m] == '<s>': # <s> is a non-event if m == 0: # The destination state will be the initial state fst.SetStart(dest) #print "Initial state", dest else: fst.AddArc(src, openfst.StdArc(wsym, wsym, -mg.log_prob, dest)) #print "Added %d-gram arc %d => %d %s/%.4f" % (m+1, src, dest, #mg.words[m], -mg.log_prob) if newstate: # Add a new state to the mapping if needed sidtab[tuple(mg.words)] = dest #print "Entered state ID mapping", tuple(mg.words), "=>", dest if not final: # Create a backoff arc to the suffix M-1-gram # Note taht if mg.log_bowt == 0 it's particularly important to do this! if m == 0: bo_state = 0 # backoff state elif tuple(mg.words[1:]) in sidtab: bo_state = sidtab[tuple(mg.words[1:])] else: continue # Not a 1-gram, no suffix M-gram fst.AddArc(dest, openfst.StdArc(bo_label, bo_label, -mg.log_bowt, bo_state)) #print "Adding backoff arc %d => %d %.4f" % (dest, bo_state, -mg.log_bowt) def add_ngram_arcs(fst, symtab, lm, n, sidtab): """ Add states and arcs for all N-grams in the language model, where N=N (the order of the model, that is). """ for ng in lm.mgrams(n-1): wsym = symtab.Find(ng.words[n-1]) if wsym == -1: # OOV continue if ng.words[n-1] == '<s>': # non-event continue if '</s>' in ng.words[0:n-1]: continue for w in ng.words[:n-1]: # skip OOVs if symtab.Find(w) == -1: #print w, "not found" continue src = sidtab[tuple(ng.words[:n-1])] # Find longest suffix N-gram that exists spos = 1 while tuple(ng.words[spos:]) not in sidtab: spos += 1 if spos == n: raise RuntimeError, "Unable to find suffix N-gram for", ng.wids dest = sidtab[tuple(ng.words[spos:])] fst.AddArc(src, openfst.StdArc(wsym, wsym, -ng.log_prob, dest)) #print "Adding %d-gram arc %d => %d %s/%.4f" % (n, src, dest, ng.words[n-1], -ng.log_prob) def build_lmfst(lm, use_phi=False): """ Build an FST recognizer from an N-gram backoff language model. """ fst = openfst.StdVectorFst() symtab = openfst.SymbolTable("words") epsilon = symtab.AddSymbol("&epsilon;") if use_phi: phi = symtab.AddSymbol("&phi;") bo_label = phi else: bo_label = epsilon for ug in lm.mgrams(0): wsym = symtab.AddSymbol(ug.words[0]) fst.SetInputSymbols(symtab) fst.SetOutputSymbols(symtab) # The algorithm goes like this: # # Create a backoff state # For M in 1 to N-1: # For each M-gram w(1,M): # Create a state q(1,M) # Create an arc from state q(1,M-1) to q(1,M) with weight P(w(1,M)) # Create an arc from state q(1,M) to q(2,M) with weight bowt(w(1,M-1)) # For each N-gram w(1,N): # Create an arc from state q(1,N-1) to q(2,N) with weight P(w(1,N)) # Table holding M-gram to state mappings sidtab = {} fst.AddState() # guaranteed to be zero (we hope) for m in range(lm.get_size() - 1): add_mgram_states(fst, symtab, lm, m, sidtab, bo_label) add_ngram_arcs(fst, symtab, lm, lm.get_size(), sidtab) # Connect and arc-sort the resulting FST openfst.Connect(fst) openfst.ArcSortInput(fst) return fst class SphinxProbdef(object): """ Probability definition file used for Sphinx class language models. """ def __init__(self, infile=None): self.classes = {} if infile != None: self.read(infile) def read(self, infile): """ Read probability definition from a file. """ if not isinstance(infile, file): infile = file(infile) inclass = None for spam in infile: spam = spam.strip() if spam.startswith('#') or spam.startswith(';'): continue if spam == "": continue if inclass: parts = spam.split() if len(parts) == 2 \ and parts[0] == "END" and parts[1] == classname: inclass = None else: prob = 1.0 if len(parts) > 1: prob = float(parts[1]) self.add_class_word(inclass, parts[0], prob) else: if spam.startswith('LMCLASS'): foo, classname = spam.split() self.add_class(classname) inclass = classname def add_class(self, name): """ Add a class to this probability definition. """ self.classes[name] = {} def add_class_word(self, name, word, prob): """ Add a word to a class in this probability definition. """ self.classes[name][word] = prob def write(self, outfile): """ Write out probability definition to a file. """ if not isinstance(outfile, file): outfile = file(outfile) for c in self.classes: outfile.write("LMCLASS %s\n" % c) for word, prob in self.classes[c]: outfile.write("%s %g\n" % (word, prob)) outfile.write("END %s\n" % c) outfile.write("\n") def normalize(self): """ Normalize probabilities. """ for c in self.classes: t = sum(self.classes[c].itervalues()) if t != 0: for w in self.classes[c]: self.classes[c][w] /= t def build_classfst(probdef, isyms=None): """ Build an FST from the classes in a Sphinx probability definition file. This transducer maps words to classes, and can either be composed with the input, or pre-composed with the language model. In the latter case you can project the resulting transducer to its input to obtain an equivalent non-class-based model. """ if not isinstance(probdef, SphinxProbdef): probdef = SphinxProbdef(probdef) fst = openfst.StdVectorFst() if isyms: symtab = isyms else: symtab = openfst.SymbolTable("words") symtab.AddSymbol("&epsilon;") st = fst.AddState() fst.SetStart(st) fst.SetFinal(st, 0) for word, label in symtab: if label == openfst.epsilon: continue fst.AddArc(st, label, label, 0, st) for c in probdef.classes: clabel = symtab.AddSymbol(c) for word, prob in probdef.classes[c].iteritems(): wlabel = symtab.AddSymbol(word) fst.AddArc(st, wlabel, clabel, -math.log(prob), st) fst.SetOutputSymbols(symtab) fst.SetInputSymbols(symtab) return fst def build_class_lmfst(lm, probdef, use_phi=False): """ Build an FST from a class-based language model. By default this returns the lazy composition of the class definition transducer and the language model. To obtain the full language model, create a VectorFst from it and project it to its input. """ lmfst = build_lmfst(lm, use_phi) classfst = build_classfst(probdef, lmfst.InputSymbols()) openfst.ArcSortInput(lmfst) openfst.ArcSortInput(classfst) return openfst.StdComposeFst(classfst, lmfst) def build_dictfst(lmfst): """ Build a character-to-word FST based on the symbol table of lmfst. """ insym = openfst.SymbolTable("letters") insym.AddSymbol("&epsilon;") outsym = lmfst.InputSymbols() fst = openfst.StdVectorFst() start = fst.AddState() fst.SetStart(start) final = fst.AddState() fst.SetFinal(final, 0) for w, wsym in outsym: if wsym == 0: continue # Use a single symbol for end-of-sentence if w == '</s>': w = [w,] for c in w: csym = insym.AddSymbol(c) for w, wsym in outsym: if wsym == 0: continue wsym = outsym.Find(w) # Add an epsilon:word arc to the first state of this word prev = fst.AddState() fst.AddArc(start, openfst.StdArc(0, wsym, 0, prev)) # Use a single symbol for end-of-sentence if w == '</s>': w = [w,] for c in w: csym = insym.Find(c) next = fst.AddState() fst.AddArc(prev, openfst.StdArc(csym, 0, 0, next)) prev = next # And an epsilon arc to the final state fst.AddArc(prev, openfst.StdArc(0, 0, 0, final)) fst.SetInputSymbols(insym) fst.SetOutputSymbols(outsym) return fst def fst2pdf(fst, outfile, acceptor=False): """ Draw an FST as a PDF using fstdraw and dot. """ tempdir = tempfile.mkdtemp() fstfile = os.path.join(tempdir, "output.fst") fst.Write(fstfile) if acceptor: acceptor = "--acceptor" else: acceptor = "" rv = os.system("fstdraw %s '%s' | dot -Tpdf > '%s'" % (acceptor, fstfile, outfile)) os.unlink(fstfile) os.rmdir(tempdir) return rv def sent2fst(txt, fstclass=openfst.StdVectorFst, isyms=None, omitstart=True): """ Convert a list of words, or a string of whitespace-separated tokens, to a sentence FST. """ fst = fstclass() start = fst.AddState() fst.SetStart(start) if isyms: symtab = isyms else: symtab = openfst.SymbolTable("words") symtab.AddSymbol("&epsilon;") prev = start if isinstance(txt, str): txt = txt.split() for c in txt: if omitstart and c == '<s>': continue nxt = fst.AddState() if isyms: sym = isyms.Find(c) if sym == -1: #print "Warning, unknown word", c continue else: sym = symtab.AddSymbol(c) #print prev, sym, nxt fst.AddArc(prev, sym, sym, 0, nxt) prev = nxt fst.SetFinal(nxt, 0) fst.SetInputSymbols(symtab) fst.SetOutputSymbols(symtab) return fst def str2fst(txt, fstclass=openfst.StdVectorFst): """ Convert a text string to an FST. """ fst = fstclass() start = fst.AddState() fst.SetStart(start) symtab = openfst.SymbolTable("chars") symtab.AddSymbol("&epsilon;") prev = start for c in txt: nxt = fst.AddState() sym = symtab.AddSymbol(c) fst.AddArc(prev, sym, sym, 0, nxt) prev = nxt fst.SetFinal(nxt, 0) fst.SetInputSymbols(symtab) fst.SetOutputSymbols(symtab) return fst def strset2fst(strs, fstclass=openfst.StdVectorFst): """ Build a dictionary lookup FST for a set of strings. """ fst = fstclass() isyms = openfst.SymbolTable("chars") osyms = openfst.SymbolTable("words") isyms.AddSymbol("&epsilon;") osyms.AddSymbol("&epsilon;") start = fst.AddState() fst.SetStart(start) for s in strs: prev = start for c in s: nxt = fst.AddState() isym = isyms.AddSymbol(c) fst.AddArc(prev, isym, 0, 0, nxt) prev = nxt nxt = fst.AddState() osym = osyms.AddSymbol(s) fst.AddArc(prev, 0, osym, 0, nxt) fst.SetFinal(nxt, 0) dfst = fstclass() openfst.Determinize(fst, dfst) openfst.RmEpsilon(dfst) dfst.SetInputSymbols(isyms) dfst.SetOutputSymbols(osyms) return dfst import math def lmfst_eval(lmfst, sent): sentfst = sent2fst(sent, openfst.StdVectorFst, lmfst.InputSymbols()) phi = lmfst.InputSymbols().Find("&phi;") if phi != -1: opts = openfst.StdPhiComposeOptions() opts.matcher1 = openfst.StdPhiMatcher(sentfst, openfst.MATCH_NONE) opts.matcher2 = openfst.StdPhiMatcher(lmfst, openfst.MATCH_INPUT, phi) c = openfst.StdComposeFst(sentfst, lmfst, opts) else: c = openfst.StdComposeFst(sentfst, lmfst) o = openfst.StdVectorFst() openfst.ShortestPath(c, o, 1) st = o.Start() ll = 0 while st != -1 and o.NumArcs(st): a = o.GetArc(st, 0) # print o.InputSymbols().Find(a.ilabel), \ # o.OutputSymbols().Find(a.olabel), \ # -a.weight.Value() / math.log(10) ll -= a.weight.Value() st = a.nextstate return ll def lm_eval(lm, sent): sent = [x for x in sent.split() if not x.startswith('++')] ll = 0 for i in xrange(len(sent)): if sent[i] == '<s>': continue prob = lm.prob(sent[i::-1]) #print sent[i::-1], prob / math.log(10), bo ll += prob return ll if __name__ == '__main__': lmf, fstf = sys.argv[1:] lm = sphinxbase.NGramModel(lmf) fst = build_lmfst(lm) fst.Write(fstf)
2.125
2
python/lab/ref.py
tao12345666333/Talk-Is-Cheap
4
12798330
#!/usr/bin/env python # coding=utf-8 def add(a, b): return a + b c = add(288, 500)
2.390625
2
tests/testconfig.py
neurosis69/chia-blockchain
0
12798331
<gh_stars>0 from __future__ import annotations from typing import List, Union from typing_extensions import Literal Oses = Literal["macos", "ubuntu", "windows"] # Github actions template config. oses: List[Oses] = ["macos", "ubuntu", "windows"] # Defaults are conservative. parallel: Union[bool, int, Literal["auto"]] = False checkout_blocks_and_plots = False install_timelord = False check_resource_usage = False job_timeout = 30 custom_vars: List[str] = [] os_skip: List[Oses] = []
1.8125
2
example/rcnn/rcnn/metric.py
Liuxg16/BrainMatrix
4
12798332
import mxnet as mx import numpy as np from rcnn.config import config class LogLossMetric(mx.metric.EvalMetric): def __init__(self): super(LogLossMetric, self).__init__('LogLoss') def update(self, labels, preds): pred_cls = preds[0].asnumpy() label = labels[0].asnumpy().astype('int32') cls = pred_cls[np.arange(label.shape[0]), label] cls += config.EPS cls_loss = -1 * np.log(cls) cls_loss = np.sum(cls_loss) self.sum_metric += cls_loss self.num_inst += label.shape[0] class SmoothL1LossMetric(mx.metric.EvalMetric): def __init__(self): super(SmoothL1LossMetric, self).__init__('SmoothL1Loss') def update(self, labels, preds): bbox_loss = preds[0].asnumpy() label = labels[0].asnumpy() bbox_loss = np.sum(bbox_loss) self.sum_metric += bbox_loss self.num_inst += label.shape[0]
2.328125
2
mblogger/soa_app_ml/soa_app_ml.py
mlatcl/fbp-vs-oop
6
12798333
<reponame>mlatcl/fbp-vs-oop import requests from mblogger.record_types import * base_url = 'http://127.0.0.1:5000/' class App(): def evaluate(self): followers = self._get_followers() followings = self._get_followings() timelines = self._get_timelines() generated_posts = self._get_generated_posts() return self.get_outputs(followers, followings, timelines, generated_posts) # Client to get list of followers def _get_followers(self): url = base_url + 'author-request/list_followers' response = requests.post(url, json={}) followers = response.json() return followers # Client to get list of followings def _get_followings(self): url = base_url + 'author-request/list_followings' response = requests.post(url, json={}) followings = response.json() return followings # Client to get list of followings def _get_timelines(self): url = base_url + 'post-request/get_timelines' response = requests.post(url, json={}) followings = response.json() return followings # Client to get list of generated posts def _get_generated_posts(self): url = base_url + 'post-request/get_generated_posts' response = requests.post(url, json={}) generated_posts = response.json() return generated_posts def add_data(self, followings, followers, follow_requests, posts, input_record): self._add_follow_requests(follow_requests) self._add_posts(posts) self._add_generated_post(input_record) # Client to add follows data def _add_follow_requests(self, follow_requests): if len(follow_requests) > 0: follows = [] for follow in follow_requests: f = follow.to_dict() follows.append(f) url = base_url + 'author-request/follows' response = requests.post(url, json=follows) # print(response.json()) # Client to add follows data def _add_posts(self, posts): if len(posts) > 0: ps = [] for post in posts: p = post.to_dict() p['timestamp'] = str(post.timestamp) ps.append(p) url = base_url + 'post-request/create_posts' response = requests.post(url, json=ps) # print(response.json()) # Client to add a generated post def _add_generated_post(self, input_record): for ir in input_record: req = {} req['user_id'] = ir.user_id req['length'] = ir.length url = base_url + 'post-request/generate_post' response = requests.post(url, json=req) # Parsing data for main program def get_outputs(self, followers, followings, timelines, generated_posts): followers = self._parse_followers(followers) followings = self._parse_followings(followings) timelines = self._parse_timelines(timelines) generated_posts = self._parse_generated_posts(generated_posts) return followers, followings, timelines, generated_posts # Parses followers def _parse_followers(self, followers): fs = [] for follower in followers: fls = follower['followers'] f = FollowersRecord.from_dict(follower) f.followers = fls fs.append(f) return fs # Parses followings def _parse_followings(self, followings): fs = [] for following in followings: fls = following['followings'] f = FollowingsRecord.from_dict(following) f.followings = fls fs.append(f) return fs # Parses timelines def _parse_timelines(self, timelines): ts = [] for timeline in timelines: posts = timeline['posts'] for post in posts: post['timestamp'] = datetime.strptime(post['timestamp'], '%Y-%m-%d %H:%M:%S.%f') timeline['posts'] = posts t = Timeline.from_dict(timeline) ts.append(t) return ts # Parses generated posts def _parse_generated_posts(self, generated_posts): ps = [] for post in generated_posts: post['timestamp'] = datetime.strptime(post['timestamp'], '%Y-%m-%d %H:%M:%S.%f') p = Post.from_dict(post) ps.append(p) return ps if __name__ == "__main__": app = App()
2.71875
3
conv/inc/data_class.py
Kdy0115/simulation
0
12798334
import pandas as pd import os class DataFile: # 1日分のデータが格納された辞書 data_files = {} def __init__(self,df,filepath,outpath,kind): # 1ファイルの内容 self.df = df # 入力ファイルパス self.filename = filepath # 出力先パス self.output_dir = outpath # データの種類 self.data_kind = kind def edit_columns(self,column,start): rem_list = [] for i in range(column-2): rem_list.append(i) for j in range(i+2,start-2): rem_list.append(j) edit_df = self.df.drop(self.df.index[rem_list]) edit_df.columns = edit_df.iloc[0].values self.df = edit_df.drop(edit_df.index[0]) def conversion_time_column(self,time_name): df = self.df.rename(columns={time_name: '時間'}) # 信号名称カラムが時間なので名前を変換 df['時間'] = pd.to_datetime(df['時間']) # 新しく時間列として定義 df = df.set_index('時間') # 時間列をインデックスとして定義 start_time = df.index[0] # 開始時間 end_time = df.index[-1] # 終了時間 day_gap = (end_time - start_time).days # 開始~終了までの日数を取得 df = pd.concat( # 最終整形データの定義 [ df.loc[str(start_time.year)+"-"+str(start_time.month)+"-"+str(start_time.day):str(end_time.year)+"-"+str(end_time.month)+"-"+str(end_time.day)].between_time('0:00','23:59',include_end=True) ] ) print(df.index,start_time,end_time) self.df = df def select_input_data(self,floor): print(self.df.columns) df_C5F = self.df.loc[:,self.df.columns.str.contains('{}|信号名称|外気温'.format(floor))] # 5Fのカラムのみ抽出 df_bems = df_C5F.loc[:,df_C5F.columns.str.contains('吸込温度|設定温度|_運転|省エネレベル|運転モード|信号名称|風速|外気温')] # 5Fの中の特定のカラムのみ抽出 df_bems = df_bems.loc[:,df_bems.columns.str.contains('中|南|東|信号名称|省エネレベル|外気温')] # 抽出した中でもさらに絞り込み self.df = df_bems self.conversion_time_column('信号名称') def control_mode_edit(self): air_con_area = ['C5F 事務室中ペリ PACG_','C5F 事務室中 PACG_','C5F 事務室南ペリ PACG_','C5F 事務室南 PACG_','C5F 事務室東南 PAC_'] # 全てのカラムに含まれる接頭辞 for one in air_con_area: self.df.loc[self.df[one+'運転']==0,one+'運転モード'] = 0 # 運連状態が0なら電源OFF(0) self.df.loc[(self.df[one+'運転']==1) & ((self.df['C館 5F G50_省エネレベル'] == 2) | (self.df['C館 5F G50_省エネレベル'] == 3) | (self.df[one+'運転モード'] == 3)),one+'運転モード'] = 3 # 運転状態が1で省エネレベルが2,3または運転モードが3なら送風(3) if self.df.index[0].month == 8: # 8月の場合 self.df.loc[(self.df[one+'運転']==1) & (self.df['C館 5F G50_省エネレベル'] == 1),one+'運転モード'] = 1 # 運転状態が1で省エネレベルが1の場合は冷房(1) else: # 8月以外のとき self.df.loc[(self.df[one+'運転']==1) & ((self.df['C館 5F G50_省エネレベル'] == 1) & (self.df[one+'運転モード'] == 2)),one+'運転モード'] = 2 # 運転状態が1で省エネレベルが1で運転モードが2のとき暖房(2) if (one == 'C5F 事務室中 PACG_') or (one == 'C5F 事務室南 PACG_'): # 冬季のインペリ側 self.df.loc[(self.df[one+'運転']==1) & (self.df[one+'運転モード'] == 2),one+'吸込温度'] += 4 # インペリ側で運転ONかつ暖房のときは+4℃アップ制御 def convesion_airconditioning_data(self): for column,data in self.df.iteritems(): if 'C5F 事務室南 PACG_' in column: self.df.insert(self.df.columns.get_loc(column)+1,column+'_2',data) self.df.insert(self.df.columns.get_loc(column)+2,column+'_3',data) elif 'C5F 事務室東南 PAC_' not in column and 'B館 RF 外気温度' not in column: self.df.insert(self.df.columns.get_loc(column)+1,column+'_2',data) self.df.rename(columns={ "B館 RF 外気温度":"外気温", "C5F 事務室中ペリ PACG_吸込温度":"吸込温度0", "C5F 事務室中ペリ PACG_設定温度":"設定温度0", "C5F 事務室中ペリ PACG_運転モード":"運転モード0", "C5F 事務室中ペリ PACG_風速":"風速0", "C5F 事務室中ペリ PACG_吸込温度_2":"吸込温度1", "C5F 事務室中ペリ PACG_設定温度_2":"設定温度1", "C5F 事務室中ペリ PACG_運転モード_2":"運転モード1", "C5F 事務室中ペリ PACG_風速_2":"風速1", "C5F 事務室中 PACG_吸込温度":"吸込温度2", "C5F 事務室中 PACG_設定温度":"設定温度2", "C5F 事務室中 PACG_運転モード":"運転モード2", "C5F 事務室中 PACG_風速":"風速2", "C5F 事務室中 PACG_吸込温度_2":"吸込温度3", "C5F 事務室中 PACG_設定温度_2":"設定温度3", "C5F 事務室中 PACG_運転モード_2":"運転モード3", "C5F 事務室中 PACG_風速_2":"風速3", "C5F 事務室南ペリ PACG_吸込温度":"吸込温度4", "C5F 事務室南ペリ PACG_設定温度":"設定温度4", "C5F 事務室南ペリ PACG_運転モード":"運転モード4", "C5F 事務室南ペリ PACG_風速":"風速4", "C5F 事務室南ペリ PACG_吸込温度_2":"吸込温度5", "C5F 事務室南ペリ PACG_設定温度_2":"設定温度5", "C5F 事務室南ペリ PACG_運転モード_2":"運転モード5", "C5F 事務室南ペリ PACG_風速_2":"風速5", "C5F 事務室南 PACG_吸込温度":"吸込温度6", "C5F 事務室南 PACG_設定温度":"設定温度6", "C5F 事務室南 PACG_運転モード":"運転モード6", "C5F 事務室南 PACG_風速":"風速6", "C5F 事務室南 PACG_吸込温度_2":"吸込温度7", "C5F 事務室南 PACG_設定温度_2":"設定温度7", "C5F 事務室南 PACG_運転モード_2":"運転モード7", "C5F 事務室南 PACG_風速_2":"風速7", "C5F 事務室南 PACG_吸込温度_3":"吸込温度8", "C5F 事務室南 PACG_設定温度_3":"設定温度8", "C5F 事務室南 PACG_運転モード_3":"運転モード8", "C5F 事務室南 PACG_風速_3":"風速8", "C5F 事務室東南 PAC_吸込温度":"吸込温度9", "C5F 事務室東南 PAC_設定温度":"設定温度9", "C5F 事務室東南 PAC_運転モード":"運転モード9", "C5F 事務室東南 PAC_風速":"風速9" }, inplace=True) self.df = self.df.reindex(columns=[ "吸込温度0", "設定温度0", "運転モード0", "風速0", "吸込温度1", "設定温度1", "運転モード1", "風速1", "吸込温度2", "設定温度2", "運転モード2", "風速2", "吸込温度3", "設定温度3", "運転モード3", "風速3", "吸込温度4", "設定温度4", "運転モード4", "風速4", "吸込温度5", "設定温度5", "運転モード5", "風速5", "吸込温度6", "設定温度6", "運転モード6", "風速6", "吸込温度7", "設定温度7", "運転モード7", "風速7", "吸込温度8", "設定温度8", "運転モード8", "風速8", "吸込温度9", "設定温度9", "運転モード9", "風速9", "外気温", ]) def create_result_folder(self,month,day): print("Creating a data output destination directory.........") print("-------------------------------------------------------") if month < 10: month = "0" + str(month) if day < 10: day = "0" + str(day) folder_name = "{0}-{1}".format(month,day) output = "{0}\\{1}".format(self.output_dir,folder_name) try: os.makedirs(output) print('Created folder' + output) except FileExistsError: pass print("-------------------------------------------------------") return output def create_conversion_file(self,output,data,index): def conversion_index(df): df.index = list(map(lambda x:x[11:16],df.index.astype(str))) df.index.name = '時間' return df print(output) for key,value in data.items(): if key == "init_bems" and index == False: result = value result['時間'] = list(map(lambda x:x[11:16],result['時間'].astype(str))) result.iloc[-1] = "EOF" result.to_csv(output+"\\{}.csv".format(key),encoding='shift-jis',mode='w',index=index) else: result = conversion_index(value) result.to_csv(output+"\\{}.csv".format(key),encoding='shift-jis',mode='w') print("作成フォルダ:{}\nBEMSデータ整形完了しました".format(output)) print("Outputing formatted input data...") print("-------------------------------------------------------") def create_no_operation_conversion_data(self): def formatted_no_operation_init_bems(df): init_bems_list_time = [] for i in range(1,len(df)): if i == 1: pre_time = df.index[0] curr_time = df.index[1] init_bems_list_time.append(0) else: curr_time = df.index[i] date_gap = (curr_time - pre_time).days time_gap = (curr_time - pre_time).seconds if date_gap != 0 or time_gap != 60: init_bems_list_time.append(i) pre_time = curr_time df_re_index = df.reset_index() df_re_index = df_re_index.loc[init_bems_list_time] df_re_index.loc[-1] = "EOF" # time_array = df_re_index['時間'] # time_array.append("EOF") # df_re_index = df_re_index.drop('時間',axis=1) # df_re_index.index = time_array print(df_re_index) return df_re_index df_bems_control_list = [] self.df = self.df.loc[:,~self.df.columns.str.contains('ロスナイ|省エネ')] self.convesion_airconditioning_data() self.df = self.df[ (self.df['運転モード0'] == 0) & (self.df['運転モード1'] == 0) & (self.df['運転モード2'] == 0) & (self.df['運転モード3'] == 0) & (self.df['運転モード4'] == 0) & (self.df['運転モード5'] == 0) & (self.df['運転モード6'] == 0) & (self.df['運転モード7'] == 0) & (self.df['運転モード8'] == 0) & (self.df['運転モード9'] == 0) ] for month in range(1,13): for day in range(1,32): one_day_df = self.df[(self.df.index.month == month) & (self.df.index.day == day)] # 含まれている時間がある時だけ処理 if len(one_day_df) > 1: output_path_folder = self.create_result_folder(month,day) df_bems_control = one_day_df.loc[:,one_day_df.columns.str.contains('設定温度|運転モード|風速')] # 制御ファイル df_bems_init = one_day_df.loc[:,one_day_df.columns.str.contains('吸込温度|外気温')] # 初期ファイル df_bems_init = formatted_no_operation_init_bems(df_bems_init) # 連続しない時間帯は初期値を先頭に設定する df_bems_eval = one_day_df.loc[:,one_day_df.columns.str.contains('吸込温度')] # 評価用ファイル result_data = { 'no_operation':df_bems_control, 'init_bems':df_bems_init, 'evaluation':df_bems_eval } self.create_conversion_file(output_path_folder,result_data,False) def create_conversion_data(self): df_bems_control_list = [] self.df = self.df.loc[:,~self.df.columns.str.contains('ロスナイ|省エネ')] self.convesion_airconditioning_data() for month in range(1,13): for day in range(1,32): one_day_df = self.df[(self.df.index.month == month) & (self.df.index.day == day)] # 含まれている時間がある時だけ処理 if len(one_day_df) > 1: output_path_folder = self.create_result_folder(month,day) df_bems_control = one_day_df.loc[:,one_day_df.columns.str.contains('設定温度|運転モード|風速')] # 制御ファイル df_bems_init = one_day_df.loc[:,one_day_df.columns.str.contains('吸込温度|外気温')] # 初期ファイル df_bems_init = df_bems_init[df_bems_init.index.astype(str).str.contains(':00:00|:30:00')] df_bems_eval = one_day_df.loc[:,one_day_df.columns.str.contains('吸込温度')] # 評価用ファイル result_data = { 'control':df_bems_control, 'init_bems':df_bems_init, 'evaluation':df_bems_eval } self.create_conversion_file(output_path_folder,result_data,True) class MeasureDataFile(DataFile): def remove_null_data(self): self.df = self.df.drop('@date()',axis=1).dropna(how='all') def conversion_columns_name(self): columns_list = [] for column in self.df.columns: columns_list.append('温度取り_' + column) self.df.columns = columns_list def create_conversion_data(self): print("Outputing formatted input data...") print("-------------------------------------------------------") df_bems_control_list = [] for month in range(1,13): for day in range(1,32): one_day_df = self.df[(self.df.index.month == month) & (self.df.index.day == day)] # 含まれている時間がある時だけ処理 if len(one_day_df) > 1: output_path_folder = self.create_result_folder(month,day) result_data = { 'measure':one_day_df } self.create_conversion_file(output_path_folder,one_day_df,True)
3.109375
3
molecules/ml/unsupervised/vae/vae.py
hengma1001/molecules
0
12798335
<reponame>hengma1001/molecules<filename>molecules/ml/unsupervised/vae/vae.py import torch from torch import nn from torch.nn import functional as F from .resnet import ResnetVAEHyperparams from .symmetric import SymmetricVAEHyperparams from molecules.ml.hyperparams import OptimizerHyperparams, get_optimizer __all__ = ['VAE'] class VAEModel(nn.Module): def __init__(self, input_shape, hparams): super(VAEModel, self).__init__() # Select encoder/decoder models by the type of the hparams if isinstance(hparams, SymmetricVAEHyperparams): from .symmetric import SymmetricEncoderConv2d, SymmetricDecoderConv2d self.encoder = SymmetricEncoderConv2d(input_shape, hparams) self.decoder = SymmetricDecoderConv2d(input_shape, hparams, self.encoder.encoder_dim) elif isinstance(hparams, ResnetVAEHyperparams): from .resnet import ResnetEncoder, ResnetDecoder self.encoder = ResnetEncoder(input_shape, hparams) self.decoder = ResnetDecoder(input_shape, hparams) else: raise TypeError(f'Invalid hparams type: {type(hparams)}.') def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def forward(self, x): mu, logvar = self.encoder(x) x = self.reparameterize(mu, logvar) x = self.decoder(x) # TODO: see if we can remove this to speed things up # or find an inplace way. Only necessary for bad # hyperparam config such as optimizer learning rate # being large. #x = torch.where(torch.isnan(x), torch.zeros_like(x), x) return x, mu, logvar def encode(self, x): # mu layer return self.encoder.encode(x) def decode(self, embedding): return self.decoder.decode(embedding) def save_weights(self, enc_path, dec_path): self.encoder.save_weights(enc_path) self.decoder.save_weights(dec_path) def load_weights(self, enc_path, dec_path): self.encoder.load_weights(enc_path) self.decoder.load_weights(dec_path) def vae_loss(recon_x, x, mu, logvar): """ Effects ------- Reconstruction + KL divergence losses summed over all elements and batch See Appendix B from VAE paper: Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 https://arxiv.org/abs/1312.6114 """ BCE = F.binary_cross_entropy(recon_x, x, reduction='sum') # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD # TODO: set weight initialization hparams class VAE: """ Provides high level interface for training, testing and saving VAE models. Takes arbitrary encoder/decoder models specified by the choice of hyperparameters. Assumes the shape of the data is square. Attributes ---------- input_shape : tuple shape of incomming data. model : torch.nn.Module (VAEModel) Underlying Pytorch model with encoder/decoder attributes. optimizer : torch.optim.Optimizer Pytorch optimizer used to train model. loss_func : function Loss function used to train model. Methods ------- train(train_loader, valid_loader, epochs=1, checkpoint='', callbacks=[]) Train model encode(x) Embed data into the latent space. decode(embedding) Generate matrices from embeddings. save_weights(enc_path, dec_path) Save encoder/decoder weights. load_weights(enc_path, dec_path) Load saved encoder/decoder weights. """ def __init__(self, input_shape, hparams=SymmetricVAEHyperparams(), optimizer_hparams=OptimizerHyperparams(), loss=None, cuda=True, verbose=True): """ Parameters ---------- input_shape : tuple shape of incomming data. Note: For use with SymmetricVAE use (1, num_residues, num_residues) For use with ResnetVAE use (num_residues, num_residues) hparams : molecules.ml.hyperparams.Hyperparams Defines the model architecture hyperparameters. Currently implemented are SymmetricVAEHyperparams and ResnetVAEHyperparams. optimizer_hparams : molecules.ml.hyperparams.OptimizerHyperparams Defines the optimizer type and corresponding hyperparameters. loss: : function, optional Defines an optional loss function with inputs (recon_x, x, mu, logvar) and ouput torch loss. cuda : bool True specifies to use cuda if it is available. False uses cpu. verbose : bool True prints training and validation loss to stdout. """ hparams.validate() optimizer_hparams.validate() self.input_shape = input_shape self.verbose = verbose # TODO: consider passing in device (this will allow the ability to set the train/test # data to cuda as well, since device will be a variable in the user space) self.device = torch.device('cuda' if cuda and torch.cuda.is_available() else 'cpu') self.model = VAEModel(input_shape, hparams).to(self.device) # TODO: consider making optimizer_hparams a member variable # RMSprop with lr=0.001, alpha=0.9, epsilon=1e-08, decay=0.0 self.optimizer = get_optimizer(self.model, optimizer_hparams) self.loss_fnc = vae_loss if loss is None else loss def __repr__(self): return str(self.model) def train(self, train_loader, valid_loader, epochs=1, checkpoint='', callbacks=[]): """ Train model Parameters ---------- train_loader : torch.utils.data.dataloader.DataLoader Contains training data valid_loader : torch.utils.data.dataloader.DataLoader Contains validation data epochs : int Number of epochs to train for checkpoint : str Path to checkpoint file to load and resume training from the epoch when the checkpoint was saved. callbacks : list Contains molecules.utils.callback.Callback objects which are called during training. """ if callbacks: logs = {'model': self.model, 'optimizer': self.optimizer} else: logs = {} start_epoch = 1 if checkpoint: start_epoch += self._load_checkpoint(checkpoint) for callback in callbacks: callback.on_train_begin(logs) for epoch in range(start_epoch, epochs + 1): for callback in callbacks: callback.on_epoch_begin(epoch, logs) self._train(train_loader, epoch, callbacks, logs) self._validate(valid_loader, callbacks, logs) for callback in callbacks: callback.on_epoch_end(epoch, logs) for callback in callbacks: callback.on_train_end(logs) def _train(self, train_loader, epoch, callbacks, logs): """ Train for 1 epoch Parameters ---------- train_loader : torch.utils.data.dataloader.DataLoader Contains training data epoch : int Current epoch of training callbacks : list Contains molecules.utils.callback.Callback objects which are called during training. logs : dict Filled with data for callbacks """ self.model.train() train_loss = 0. for batch_idx, data in enumerate(train_loader): if callbacks: pass # TODO: add more to logs for callback in callbacks: callback.on_batch_begin(batch_idx, epoch, logs) data = data.to(self.device) self.optimizer.zero_grad() recon_batch, mu, logvar = self.model(data) loss = self.loss_fnc(recon_batch, data, mu, logvar) loss.backward() train_loss += loss.item() self.optimizer.step() if callbacks: logs['train_loss'] = loss.item() / len(data) logs['global_step'] = (epoch - 1) * len(train_loader) + batch_idx for callback in callbacks: callback.on_batch_end(batch_idx, epoch, logs) if self.verbose: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item() / len(data))) train_loss /= len(train_loader.dataset) if callbacks: logs['train_loss'] = train_loss logs['global_step'] = epoch if self.verbose: print('====> Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss)) def _validate(self, valid_loader, callbacks, logs): """ Test model on validation set. Parameters ---------- valid_loader : torch.utils.data.dataloader.DataLoader Contains validation data callbacks : list Contains molecules.utils.callback.Callback objects which are called during training. logs : dict Filled with data for callbacks """ self.model.eval() valid_loss = 0 with torch.no_grad(): for data in valid_loader: data = data.to(self.device) recon_batch, mu, logvar = self.model(data) valid_loss += self.loss_fnc(recon_batch, data, mu, logvar).item() valid_loss /= len(valid_loader.dataset) if callbacks: logs['valid_loss'] = valid_loss if self.verbose: print('====> Validation loss: {:.4f}'.format(valid_loss)) def _load_checkpoint(self, path): """ Loads checkpoint file containing optimizer state and encoder/decoder weights. Parameters ---------- path : str Path to checkpoint file Returns ------- Epoch of training corresponding to the saved checkpoint. """ cp = torch.load(path) self.model.encoder.load_state_dict(cp['encoder_state_dict']) self.model.decoder.load_state_dict(cp['decoder_state_dict']) self.optimizer.load_state_dict(cp['optimizer_state_dict']) return cp['epoch'] def encode(self, x): """ Embed data into the latent space. Parameters ---------- x : torch.Tensor Data to encode, could be a batch of data with dimension (batch-size, input_shape) Returns ------- torch.Tensor of embeddings of shape (batch-size, latent_dim) """ return self.model.encode(x) def decode(self, embedding): """ Generate matrices from embeddings. Parameters ---------- embedding : torch.Tensor Embedding data, could be a batch of data with dimension (batch-size, latent_dim) Returns ------- torch.Tensor of generated matrices of shape (batch-size, input_shape) """ return self.model.decode(embedding) def save_weights(self, enc_path, dec_path): """ Save encoder/decoder weights. Parameters ---------- enc_path : str Path to save the encoder weights. dec_path : str Path to save the decoder weights. """ self.model.save_weights(enc_path, dec_path) def load_weights(self, enc_path, dec_path): """ Load saved encoder/decoder weights. Parameters ---------- enc_path : str Path to save the encoder weights. dec_path : str Path to save the decoder weights. """ self.model.load_weights(enc_path, dec_path)
2.109375
2
tests/test_all.py
avidale/compress-fasttext
111
12798336
import os import gensim import pytest import compress_fasttext from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from compress_fasttext.feature_extraction import FastTextTransformer BIG_MODEL_FILE = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'data/test_data/ft_leipzig_ru_mini.bin') BASE_MODEL_URL = 'https://github.com/avidale/compress-fasttext/releases/download/' def cosine_sim(x, y): return sum(x * y) / (sum(x**2) * sum(y**2)) ** 0.5 @pytest.mark.parametrize('method, params', [ (compress_fasttext.quantize_ft, dict(qdim=32)), (compress_fasttext.prune_ft_freq, dict(pq=False, new_ngrams_size=10_000, new_vocab_size=10_000)), (compress_fasttext.prune_ft_freq, dict(pq=True, new_ngrams_size=10_000, new_vocab_size=10_000, qdim=16)), (compress_fasttext.prune_ft, dict(new_ngrams_size=10_000, new_vocab_size=10_000)), (compress_fasttext.svd_ft, dict(n_components=32)), ]) def test_prune_save_load(method, params): word1 = 'синий' word2 = 'белый' big_ft = gensim.models.fasttext.FastTextKeyedVectors.load(BIG_MODEL_FILE) vec0 = big_ft[word1] small_model = method(big_ft, **params) assert cosine_sim(vec0, small_model[word1]) > 0.75 out1 = small_model.most_similar(word1) assert word2 in {w for w, sim in out1} small_model.save('tmp_small.bin') small_model2 = compress_fasttext.models.CompressedFastTextKeyedVectors.load('tmp_small.bin') assert cosine_sim(vec0, small_model2[word1]) > 0.75 out2 = small_model2.most_similar(word1) assert word2 in {w for w, sim in out2} assert out1[0][1] == pytest.approx(out2[0][1]) @pytest.mark.parametrize('word1, word2, model_name', [ ('белый', 'черный', 'gensim-4-draft/geowac_tokens_sg_300_5_2020-100K-20K-100.bin'), ('white', 'black', 'gensim-4-draft/ft_cc.en.300_freqprune_50K_5K_pq_100.bin'), ('white', 'black', 'v0.0.4/cc.en.300.compressed.bin'), ]) def test_loading_existing_models(word1, word2, model_name): ft = compress_fasttext.models.CompressedFastTextKeyedVectors.load(BASE_MODEL_URL + model_name) out = ft.most_similar(word1) assert word2 in {w for w, sim in out} def test_sklearn_wrapper(): small_model = compress_fasttext.models.CompressedFastTextKeyedVectors.load( 'https://github.com/avidale/compress-fasttext/releases/download/v0.0.4/cc.en.300.compressed.bin' ) classifier = make_pipeline( FastTextTransformer(model=small_model), LogisticRegression() ).fit( ['banana', 'soup', 'burger', 'car', 'tree', 'city'], [1, 1, 1, 0, 0, 0] ) assert (classifier.predict(['jet', 'train', 'cake', 'apple']) == [0, 0, 1, 1]).all()
2.375
2
URI/1-Beginner/1074.py
vicenteneto/online-judge-solutions
0
12798337
# -*- coding: utf-8 -*- for i in range(int(raw_input())): x = int(raw_input()) if x == 0: print 'NULL' elif x < 0: if x % 2 == 0: print 'EVEN NEGATIVE' else: print 'ODD NEGATIVE' else: if x % 2 == 0: print 'EVEN POSITIVE' else: print 'ODD POSITIVE'
4.125
4
tests/parser_test.py
malanb5/py_requirements_installer
0
12798338
import unittest, yaml from pyreqgen.ReqParser import * class TestParser(unittest.TestCase): def test_files(self): with open("../config.yaml", 'r+') as config_f: configs = yaml.load(config_f, Loader=yaml.FullLoader) print(configs) py_files = ReqParser.__get_py_files(configs) reqs = ReqParser.__get_reqs(py_files) with open("requirements.txt", 'w+') as req_f: req_f.write('\n'.join(reqs)) with open("requirements.txt", "r") as req_f: lines = req_f.readlines() print(lines.sort()) exp_lines = ['IPython\n', 'altair\n', 'bayes_opt\n', 'catboost\n', 'category_encoders\n', 'collections\n', 'datetime\n', 'eli5\n', 'gc\n', 'itertools\n', 'joblib\n', 'json\n', 'lightgbm\n', 'matplotlib\n', 'networkx\n', 'numba\n', 'numpy\n', 'os\n', 'pandas\n', 're\n', 'seaborn\n', 'shap\n', 'sklearn\n', 'time\n', 'tqdm\n', 'typing\n', 'warnings\n', 'xgboost\n'] lines = set(map(lambda x: x.strip(), lines)) exp_lines = set(map(lambda x: x.strip(), exp_lines)) self.assertEqual(lines, exp_lines) if __name__ == "__main__": unittest.main()
2.640625
3
xcparse/Xcode/xcscheme.py
samdmarshall/xcparser
59
12798339
import os import sys import xml.etree.ElementTree as xml from ..Helpers import path_helper from ..Helpers import xcrun_helper from ..Helpers import logging_helper from .XCSchemeActions.BuildAction import BuildAction from .XCSchemeActions.TestAction import TestAction from .XCSchemeActions.LaunchAction import LaunchAction from .XCSchemeActions.ProfileAction import ProfileAction from .XCSchemeActions.AnalyzeAction import AnalyzeAction from .XCSchemeActions.ArchiveAction import ArchiveAction def XCSchemeHasSharedSchemes(path): return os.path.exists(os.path.join(path, 'xcshareddata')); def XCSchemeHasUserSchemes(path): return os.path.exists(os.path.join(path, 'xcuserdata')); def XCSchemeGetSharedPath(path): return os.path.join(path, 'xcshareddata/xcschemes'); def XCSchemeGetUserPath(path): return os.path.join(path, 'xcuserdata/'+os.getlogin()+'.xcuserdatad/xcschemes/'); def XCSchemeParseDirectory(dir_path): schemes = []; if os.path.exists(dir_path) == True: for scheme_file in os.listdir(dir_path): scheme_file_path = os.path.join(dir_path, scheme_file); if not scheme_file.startswith('.') and scheme_file_path.endswith('.xcscheme') and os.path.isfile(scheme_file_path): scheme_xml = xcscheme(scheme_file_path); if scheme_xml.isValid() == True: schemes.append(scheme_xml); else: logging_helper.getLogger().warn('[xcscheme]: Invalid scheme file at path "%s"' % scheme_file_path); else: # skipping the known management file if scheme_file != 'xcschememanagement.plist': logging_helper.getLogger().warn('[xcscheme]: "%s" is not an xcscheme file!' % scheme_file_path); else: logging_helper.getLogger().warn('[xcscheme]: "%s" path does not exist!' % dir_path); return schemes; class xcscheme(object): def __init__(self, path): self.shared = False; self.container = ''; self.path = path_helper(path, ''); self.name = os.path.basename(path).split('.xcscheme')[0]; self.contents = None; try: self.contents = xml.parse(self.path.obj_path); except: logging_helper.getLogger().error('[xcscheme]: Could not load contents of xcscheme file!'); def __repr__(self): if self.isValid(): return '(%s : %s : %s)' % (type(self), self.name, self.path); else: return '(%s : INVALID OBJECT)' % (type(self)); def __attrs(self): return (self.name, self.path); def __eq__(self, other): return isinstance(other, xcscheme) and self.name == other.name and self.path.root_path == other.path.root_path; def __hash__(self): return hash(self.__attrs()); def isValid(self): return self.contents != None; def actionLookup(self, action_name): """ This method returns the method for the passed action type, None otherwise. """ action_name = action_name.lower(); lookup = { 'build': self.buildAction, 'test': self.testAction, 'launch': self.launchAction, 'profile': self.profileAction, 'analyze': self.analyzeAction, 'archive': self.archiveAction }; action = None; if action_name in lookup.keys(): action = lookup[action_name]; return action; def getAction(self, action_type): """ This method returns all the object for the passed action type, otherwise None. """ action = None; if self.isValid(): action = filter(lambda action: action.tag == action_type, list(self.contents.getroot()))[0]; return action; def buildAction(self, container): """ Returns the 'build' action for this scheme. """ action = None; if self.isValid(): action = BuildAction(self.getAction('BuildAction')); return action; def testAction(self, container): """ Returns the 'test' action for this scheme. """ action = None; if self.isValid(): action = TestAction(self.getAction('TestAction')); action.root = BuildAction(self.getAction('BuildAction')) return action; def launchAction(self, container): """ Returns the 'launch' action for this scheme. """ action = None; if self.isValid(): action = LaunchAction(self.getAction('LaunchAction')); return action; def profileAction(self, container): """ Returns the 'profile' action for this scheme. """ action = None; if self.isValid(): action = ProfileAction(self.getAction('ProfileAction')); return action; def analyzeAction(self, container): """ Returns the 'analyze' action for this scheme. """ action = None; if self.isValid(): action = AnalyzeAction(self.getAction('AnalyzeAction')); action.root = BuildAction(self.getAction('BuildAction')) return action; def archiveAction(self, container): """ Returns the 'archive' action for this scheme. """ action = None; if self.isValid(): action = ArchiveAction(self.getAction('ArchiveAction')); action.root = BuildAction(self.getAction('BuildAction')) return action;
2.046875
2
itk_invitations/migrations/0001_initial.py
eric-scott-owens/loopla
0
12798340
<filename>itk_invitations/migrations/0001_initial.py # -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-09 18:33 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import localflavor.us.models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0008_alter_user_username_max_length'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Invitation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('key', models.CharField(max_length=64, unique=True)), ('is_coordinator', models.BooleanField(default=False)), ('sent_timestamp', models.DateTimeField(blank=True)), ('response_timestamp', models.DateTimeField(blank=True)), ('is_accepted', models.BooleanField(default=False)), ('is_declined', models.BooleanField(default=False)), ('response_message', models.TextField(blank=True)), ('confirmed_invitee', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='confirmed_invitee', to=settings.AUTH_USER_MODEL)), ('group', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='auth.Group')), ], ), migrations.CreateModel( name='Invitation_Visit', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_action_timestamp', models.DateTimeField(blank=True)), ('last_action_timestamp', models.DateTimeField(blank=True)), ('invitation', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='itk_invitations.Invitation')), ], ), migrations.CreateModel( name='InvitationMessage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('message', models.TextField()), ], ), migrations.CreateModel( name='UnregisteredUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(blank=True, max_length=30)), ('last_name', models.CharField(blank=True, max_length=30)), ('email', models.EmailField(max_length=254)), ('phone_number', localflavor.us.models.PhoneNumberField(blank=True, max_length=20)), ], ), migrations.AddField( model_name='invitation', name='invitation_message', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='itk_invitations.InvitationMessage'), ), migrations.AddField( model_name='invitation', name='invitee', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='itk_invitations.UnregisteredUser'), ), migrations.AddField( model_name='invitation', name='inviter', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='inviter', to=settings.AUTH_USER_MODEL), ), ]
1.640625
2
tests/__init__.py
Nazze/ha_best_bottrop_garbage_collection
0
12798341
"""Tests for the BEST bottrop custom component."""
1.125
1
src/basics.py
dandjo/tensorflow-playground
0
12798342
<reponame>dandjo/tensorflow-playground import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1) # Tensor("Const:0", shape=(), dtype=float32) print(node2) # Tensor("Const_1:0", shape=(), dtype=float32) node3 = node1 * node2 print(node3) # Tensor("mul:0", shape=(), dtype=float32) with tf.Session() as sess: output = sess.run([node1, node2]) print(output) # [3.0, 4.0] with tf.Session() as sess: output = sess.run(node3) print(output) # 12 file_writer = tf.summary.FileWriter('graph', sess.graph) # run `tensorboard --logdir="graph"` in command line to show the result
3.0625
3
dedupsqlfs/app/actions/recompress.py
tabulon-ext/dedupsqlfs
22
12798343
# -*- coding: utf8 -*- """ Special action to recompress all data """ __author__ = 'sergey' import sys from multiprocessing import cpu_count def do_recompress(options, _fuse): """ @param options: Commandline options @type options: object @param _fuse: FUSE wrapper @type _fuse: dedupsqlfs.fuse.dedupfs.DedupFS """ isVerbose = _fuse.getOption("verbosity") > 0 tableHash = _fuse.operations.getTable("hash") tableHashCT = _fuse.operations.getTable("hash_compression_type") tableBlock = _fuse.operations.getTable("block") tableSubvol = _fuse.operations.getTable("subvolume") hashCount = tableHash.get_count() if isVerbose: print("Ready to recompress %s blocks." % hashCount) cur = tableHash.getCursor(True) _fuse.operations.getManager().setAutocommit(False) tableBlock.begin() tableHashCT.begin() _fuse.operations.getManager().setAutocommit(True) # Every 100*100 (4x symbols) cntNth = int(hashCount/10000.0) if cntNth < 1: cntNth = 1 # Process Nth blocks and then - commit maxBatch = 1000 offBatch = 0 cnt = cntNext = upd = 0 cpu_n = cpu_count() * 4 try: toCompress = {} toCompressM = {} while cnt < hashCount: cur.execute("SELECT `id` FROM `%s` LIMIT %s OFFSET %s" % (tableHash.getName(), maxBatch, offBatch,)) offBatch += maxBatch for hashItem in iter(cur.fetchone, None): cnt += 1 hashId = hashItem["id"] blockItem = tableBlock.get(hashId) hashCT = tableHashCT.get(hashId) curMethod = _fuse.operations.getCompressionTypeName(hashCT["type_id"]) blockData = _fuse.decompressData(curMethod, blockItem["data"]) toCompress[ hashId ] = blockData toCompressM[ hashId ] = curMethod if cnt % cpu_n == 0: for hashId, item in _fuse.compressData(toCompress): cData, cMethod = item curMethod = toCompressM[ hashId ] if cMethod != curMethod: cMethodId = _fuse.operations.getCompressionTypeId(cMethod) res = tableBlock.update(hashId, cData) res2 = tableHashCT.update(hashId, cMethodId) if res and res2: upd += 1 toCompress = {} toCompressM = {} if isVerbose: if cnt >= cntNext: cntNext += cntNth prc = "%6.2f%%" % (cnt*100.0/hashCount) sys.stdout.write("\r%s " % prc) sys.stdout.flush() # For ends - blocks commit _fuse.operations.getManager().setAutocommit(False) tableBlock.commit() tableHashCT.commit() tableBlock.shrinkMemory() tableHash.shrinkMemory() tableHashCT.shrinkMemory() tableBlock.begin() tableHashCT.begin() _fuse.operations.getManager().setAutocommit(True) if len(toCompress.keys()): for hashId, item in _fuse.compressData(toCompress): cData, cMethod = item curMethod = toCompressM[hashId] if cMethod != curMethod: cMethodId = _fuse.operations.getCompressionTypeId(cMethod) res = tableBlock.update(hashId, cData) res2 = tableHashCT.update(hashId, cMethodId) if res and res2: upd += 1 except: pass if isVerbose: sys.stdout.write("\n") sys.stdout.flush() if isVerbose: print("Processed %s blocks, recompressed %s blocks." % (cnt, upd,)) if hashCount != cnt: _fuse.operations.getManager().setAutocommit(False) tableBlock.rollback() tableHashCT.rollback() _fuse.operations.getManager().setAutocommit(True) print("Something went wrong? Changes are rolled back!") return 1 _fuse.operations.getManager().setAutocommit(False) tableBlock.commit() tableHashCT.commit() _fuse.operations.getManager().setAutocommit(True) tableBlock.shrinkMemory() tableHash.shrinkMemory() tableHashCT.shrinkMemory() subvCount = tableSubvol.get_count() if isVerbose: print("Recalculate filesystem and %s subvolumes statistics." % subvCount) cur = tableSubvol.getCursor(True) cur.execute("SELECT * FROM `%s`" % tableSubvol.getName()) _fuse.operations.getManager().setAutocommit(False) tableSubvol.begin() _fuse.operations.getManager().setAutocommit(True) from dedupsqlfs.fuse.subvolume import Subvolume sv = Subvolume(_fuse.operations) cnt = cntNext = 0 cntNth = subvCount / 10000.0 / 3 if cntNth < 1: cntNth = 1 for subvItem in iter(cur.fetchone, None): sv.clean_stats(subvItem["name"]) cnt += 1 if isVerbose: if cnt >= cntNext: cntNext += cntNth prc = "%6.2f%%" % (cnt * 100.0 / subvCount / 3) sys.stdout.write("\r%s " % prc) sys.stdout.flush() sv.get_usage(subvItem["name"], True) cnt += 1 if isVerbose: if cnt >= cntNext: cntNext += cntNth prc = "%6.2f%%" % (cnt * 100.0 / subvCount / 3) sys.stdout.write("\r%s " % prc) sys.stdout.flush() sv.get_root_diff(subvItem["name"]) cnt += 1 if isVerbose: if cnt >= cntNext: cntNext += cntNth prc = "%6.2f%%" % (cnt * 100.0 / subvCount / 3) sys.stdout.write("\r%s " % prc) sys.stdout.flush() if isVerbose: sys.stdout.write("\n") sys.stdout.flush() _fuse.operations.getManager().setAutocommit(False) tableSubvol.commit() _fuse.operations.getManager().setAutocommit(True) return 0
2.3125
2
get_positions.py
gregorytadams/Model_UN
0
12798344
# get_positions.py import pandas as pd from math import ceil from sys import argv ''' Current known problems: - do schools at different times (ew) - Bias towards double delegate committees ''' class Team: def __init__(self, name, num_delegates, preferences): ''' num_delegats is an int of the total number of delegates preferences is the ranked preferences as a list, in order (all committees must be present) picks is the picks we assign to make the draft fair assigned committees will be the committees assigned to be outputted ''' self.name = name self.num_delegates = num_delegates self.preferences = preferences self.picks = self._get_picks(list(range(len(preferences))), num_delegates) self.assigned_committees = [] self.num_dels_assigned = 0 def _get_picks(self, sequence, num): ''' Intersperses picks for small delegations. Takes a list of possible rounds the number of picks and returns a list of picks that they get. Thanks stack overflow! http://stackoverflow.com/questions/9873626/choose-m-evenly-spaced-elements-from-a-sequence-of-length-n ''' picks = [] length = float(len(sequence)) for i in range(num): picks.append(sequence[int(ceil(i * length / num))]) return picks class Committee: def __init__(self, name, num_spots, delegation_size): ''' name: name of committee num_spots: maximum number of delegates that can be assigned to that committee delegation size: 1 for single, 2 for double, and so on assigned schools: the schools who have a spot on the committee ''' self.name = name self.num_spots = num_spots self.delegation_size = delegation_size self.assigned_schools = [] def read_info(school_info_filename, committee_info_filename): ''' Takes the filepaths and returns the dataframes ''' schools = pd.read_csv(school_info_filename) comms = pd.read_csv(committee_info_filename) return schools, comms def format_for_main(schools, comms): ''' Creates all the objects and fills in the information from the dataframes inputs: schools, comms: pandas dataframes from read_info outputs: teams, a list of Team objects committees, a dict mapping committee names to Committee objects ''' teams = [] committees = {} max_at_conf = 0 comms.columns = ['Committee', 'Number of Spots', 'Delegation Size'] schools.columns = ['School', 'Number of Delegates'] + \ ["Preference {}".format(str(i)) for i in range(len(comms))] for index, row in comms.iterrows(): comm = Committee(row['Committee'], row['Number of Spots'], row['Delegation Size']) committees[row['Committee']] = comm max_at_conf += row['Delegation Size'] for index, row in schools.iterrows(): prefs = [j for j in row[2:]] for i in range(ceil(row['Number of Delegates'] / max_at_conf)): # handling more delegates requested # than there are committees. num_dels = row['Number of Delegates'] - i * max_at_conf if num_dels > max_at_conf: team = Team(row['School']+str(i+2), max_at_conf, prefs) teams.append(team) else: team = Team(row['School'], row['Number of Delegates'], prefs) teams.append(team) return teams, committees def assign(teams, committees): ''' My algorithm! Draft-based assignment. Takes the teams' constraints/preferences and committees and simulates a draft. Each team got picks assigned at initialization (first round, fourth round, etc.), and it iterates through each round of the draft until either all delegates are assigned or all committees are filled. Inputs: teams, a list of Team objects from format_for_main committees, a dict of committees (name : Committee object) from format_for_main Outputs: teams, a list of Team objects with assignments committees, a dict of committees (formatted the same) with assignments ''' for r in range(len(committees)): print("round {}".format(r)) for team in teams: if r in team.picks and len(team.assigned_committees) < team.num_delegates: # print(team.name, team.preferences) for pref in team.preferences: p = team.preferences.pop(team.preferences.index(pref)) c = committees[p] if len(c.assigned_schools) < c.num_spots and team.num_dels_assigned < team.num_delegates \ - 1 + c.delegation_size: c.assigned_schools.append(team.name) team.assigned_committees.append(c.name) team.num_dels_assigned += c.delegation_size if team.num_dels_assigned > team.num_delegates: for i, val in enumerate(team.assigned_committees): if committees[val].delegation_size == 1: index_to_drop = i #no break so I can grab the last value c_to_drop = val committees[c_to_drop].assigned_schools.pop(committees[c_to_drop]\ .assigned_schools.index(team.name)) team.assigned_committees.pop(index_to_drop) print("assigned {} to {}".format(team.name, c.name)) break else: continue else: continue return teams, committees def output(teams, committees): ''' Outputs the master documents. Inputs from assign ''' all_school_assignments = [] all_comm_assignments = [] for team in teams: all_school_assignments.append([team.name, team.num_delegates] + team.assigned_committees) for comm in committees: all_comm_assignments.append([comm, committees[comm].num_spots, committees[comm].delegation_size] \ + committees[comm].assigned_schools) schools_df = pd.DataFrame(all_school_assignments) schools_df.rename(columns = {0:'School', 1:'Number of Delegates'}, inplace = True) comm_df = pd.DataFrame(all_comm_assignments) schools_df.to_csv('all_school_assignments.csv') comm_df.to_csv("all_committees_assignments.csv") for index, row in schools_df.iterrows(): row.to_csv("school_assignments/{}'s_assignments.csv".format(row['School'])) def go(school_filename, committee_filename): ''' Runs the whole darn thing. ''' schools, comms = read_info(school_filename, committee_filename) teams, committees = format_for_main(schools, comms) teams, committees = assign(teams, committees) output(teams, committees) s = 0 for i in teams: s += i.num_delegates s2 = 0 for key in committees: s2 += len(committees[key].assigned_schools)*committees[key].delegation_size if s == s2: print("It worked! :)") else: print("There's a bug. Bad computer. :(") if __name__ == "__main__": try: go(argv[1], argv[2]) except: print("Something went wrong. Please make sure your usage is correct and files are formatted correctly.") print("Usage: python3 get_positions.py [school_info_filepath] [committee info filepath]")
3.125
3
settingsmanager/base.py
rgossington/settings-manager
0
12798345
import re class BaseClass: def _get_keys(self): attrs = self.get_attributes() return attrs.keys() def get_attributes(self): attrs = self.__dict__ attrs_filtered = {k: v for k, v in attrs.items() if not k.startswith("_")} return attrs_filtered @staticmethod def convert_string_to_list(string): items = [] if string is not None and len(string) > 0: items = re.split(r", |,", string) return items @staticmethod def _is_key_or_section_name_valid(name, suppress_exceptions=False): if name is None: if not suppress_exceptions: raise ValueError(f"Key or section name must be a string, not None") else: return False if not isinstance(name, str): if not suppress_exceptions: raise ValueError(f"Key or section name must be a string. {name} is type {type(name)}") else: return False if len(name) == 0: if not suppress_exceptions: raise ValueError(f"Key or section name must not be blank.") else: return False if name[0] == "_": if not suppress_exceptions: raise ValueError(f"Key or section name must not begin with '_'") else: return False if name[0].isnumeric(): if not suppress_exceptions: raise ValueError(f"Key or section name must not begin with a number") else: return False if re.search(r"[^a-zA-Z_0-9]", name) is not None: if not suppress_exceptions: raise ValueError(f"Key or section name must only contain letters, numbers and underscores") else: return False return True @staticmethod def _is_line_a_heading(line): if len(line) <= 2: return False return line[0] == "[" and line[-1] == "]" @staticmethod def _get_heading_from_line(line): return line[1:-1] @staticmethod def _clean_line(line_raw): line_cleaned = line_raw.rstrip() line_cleaned = line_cleaned.replace("= ", "=") line_cleaned = line_cleaned.replace(" =", "=") return line_cleaned @classmethod def _is_line_an_entry(cls, line): line = cls._clean_line(line) try: equal_index = line.index("=") except ValueError: return False # check if line to left of equal sign is a valid key return cls._is_key_or_section_name_valid(line[:equal_index], suppress_exceptions=True) @classmethod def _get_key_from_line(cls, line): if not cls._is_line_an_entry(line): return None line = cls._clean_line(line) equal_index = line.index("=") return line[:equal_index] @classmethod def _get_value_from_line(cls, line, parse_bool=True, parse_float=True, parse_int=True): if not cls._is_line_an_entry(line): return None line = cls._clean_line(line) equal_index = line.index("=") value = line[equal_index + 1:] if parse_bool: value = cls._attempt_parse_bool(value) if parse_float: value = cls._attempt_parse_float(value) if parse_int and not isinstance(value, float): value = cls._attempt_parse_int(value) return value @staticmethod def _attempt_parse_bool(value): if isinstance(value, str): line_lower = value.lower() if line_lower == "true": return True if line_lower == "false": return False return value @staticmethod def _attempt_parse_int(value): if isinstance(value, str): if value.count(".") == 0: try: return int(value) except ValueError: pass return value @staticmethod def _attempt_parse_float(value): if isinstance(value, str): if value.count(".") > 0: try: return float(value) except ValueError: pass return value @staticmethod def _generate_file_line(key, value): return f"{key} = {value}\n"
2.9375
3
src/database/querys/clients.py
g4-mobile/g4-mobile-api
0
12798346
<filename>src/database/querys/clients.py from typing import List from src.database import DBConnectionHendler from src.database.db_connection import db_connector from src.database.models import Client class ClientQuerys: """Criando um novo cliente""" @classmethod def new(cls, nome): """someting""" with DBConnectionHendler() as db_connection: try: client = Client(name=nome.upper()) db_connection.session.add(client) db_connection.session.commit() except: db_connection.session.rollback() raise finally: db_connection.session.close() @classmethod def get_all(cls) -> List: """Retorna uma lista de todos os clients""" with DBConnectionHendler() as db_connection: try: return db_connection.session.query(Client).all() except: db_connection.session.rollback() raise finally: db_connection.session.close() @classmethod def get_id(cls, client_id): """someting""" with DBConnectionHendler() as db_connection: try: return ( db_connection.session.query(Client) .filter_by(id=client_id) .first() ) except: db_connection.session.rollback() raise finally: db_connection.session.close() """ Create a new user """ @classmethod @db_connector def delete(cls, connection, client_id: int) -> None: client = ( connection.session.query(Client) .filter_by(id=client_id) .first() ) connection.session.delete(client) connection.session.commit()
2.84375
3
tests/unit/test_bucket.py
Kapuca/ccxt_microservice
0
12798347
from ccxt_microservice.bucket import Bucket import pytest @pytest.fixture def the_bucket(): return Bucket(10, 1, 5) def test_state(the_bucket): assert 4.99 < the_bucket.state() < 5 def test_push(the_bucket): the_bucket.push(5) assert 9.99 < the_bucket.state() < 10 def test_timeToWait(the_bucket): assert 4.99 < the_bucket.timeToWait(10) < 5 def test_add(): pass def test_wait(): pass
2.125
2
logL.py
mkherman/HRS-logL
1
12798348
""" Author: <NAME> Created: 2020-10-28 Last Modified: 2021-05-11 Description: Calculates the 6-D log likelihood map for a series of atmospheric models cross-correlated with planetary emission spectra. Parameters are log VMR, day-night contrast, peak phase offset, scaled line contrast, orbital velocity, and systemic velocity. NOTE: Because this computes the full likelihood map, not MCMC chains, this file is very computationally expensive to run when the full parameter grid is used, and the output can be multiple Gigabytes. Either run the file on a server that can handle this or reduce the ranges and/or stepsizes for the parameter arrays. """ from astropy.io import fits import numpy as np from scipy.interpolate import interp1d from astropy.convolution import convolve, Gaussian1DKernel import argparse from scipy.optimize import curve_fit from scipy.signal import butter, sosfiltfilt def planck(wavelength,temp): """ Calculates the Planck function for a given temperature over a given wavelength range. """ c1 = 1.1911e-12 c2 = 1.439 y = 1e4/wavelength a = c1*(y**5.) tmp = c2*y/temp b = np.exp(tmp) - 1. bbsor = a/b return bbsor def remove_env(wave, spec, px): """ Subtracts the lower envelope from a model spectrum by finding the minimum value in the given stepsize, then interpolating. """ low_wave, low_spec = [], [] for i in range(len(spec)/px - 1): idx = np.nanargmin(spec[i*px:(i+1)*px]) low_spec.append(spec[idx+i*px]) low_wave.append(wave[idx+i*px]) interp = interp1d(low_wave, low_spec, fill_value='extrapolate') envelope = interp(wave) corrected = spec - envelope return corrected def butterworth(x, order, freq, filt_type='highpass'): """ Applies a high-pass Butterworth filter, with a given order and cut-off frequency, to the given model. """ butterfilt = butter(order, freq, btype=filt_type, output='sos') x_filtered = sosfiltfilt(butterfilt, x) return x_filtered def wavegrid(wavemin,wavemax,res): """ Creates a wavelength array evenly spaced in resolution. """ c=299792458. dx=np.log(1.+1./res) x=np.arange(np.log(wavemin),np.log(wavemax),dx) wavelength=np.exp(x) #waveno=1e4/wavelength return wavelength #,waveno def correlate(wave,spec,stdev,vgrid,minwave,maxwave,model_interp): """ Calculates the cross-correlation map for a given spectral order, along with the other two terms of the log likelihood equation: the spectra squared, and the base model squared. """ cmap = np.empty((len(spec),len(vgrid))) lnL_term1 = np.empty(len(spec)) lnL_term2 = np.empty((len(spec),len(vgrid))) # Isolate wavelength range and scale data w_idx = (wave[0,:] >= minwave) & (wave[0,:] <= maxwave) for frame in range(len(spec)): fixspec = spec[frame,w_idx] - np.nanmean(spec[frame,w_idx]) fixspec /= stdev[frame,w_idx] # Calculate data term for log likelihood lnL_term1[frame] = np.nansum(fixspec**2) for i, vel in enumerate(vgrid): # Shift model to desired velocity and scale redshift = 1. - vel / 3e5 shift_wave = wave[0,w_idx] * redshift mspec_shifted = model_interp(shift_wave) mspec_weighted = mspec_shifted - np.nanmean(mspec_shifted) mspec_weighted /= stdev[frame,w_idx] # Perform cross-correlation corr_top = np.nansum(mspec_weighted * fixspec) #corr_bot = np.sqrt(np.nansum(mspec_weighted**2) * np.nansum(fixspec**2)) cmap[frame,i] = corr_top #/ corr_bot # Calculate model term for log likelihood lnL_term2[frame,i] = np.nansum(mspec_weighted**2) return cmap, lnL_term1, lnL_term2 def submed(cmap): """ Subtracts the median along the velocity axis from the cross-correlation map. """ mdn = np.nanmedian(cmap,axis=1) sub = cmap - mdn[:,np.newaxis] return sub def phasefold(Kps, vgrid, vsys, cmap, phase): """ Shifts the cross-correlation map to planet's rest frame and creates the Kp-Vsys map. """ fmap = np.empty((len(Kps), len(vsys))) KTVmap = np.zeros((len(Kps), len(cmap), len(vsys))) for i, Kp in enumerate(Kps): fullmap = np.empty((len(cmap),len(vsys))) for frame in range(len(phase)): # Shift to planet's orbital velocity vp = Kp * np.sin(2.*np.pi*phase[frame]) vshift = vgrid - vp shift = interp1d(vshift, cmap[frame,:], bounds_error=False) shifted_map = shift(vsys) fullmap[frame,:] = shifted_map KTVmap[i] = fullmap fmap[i,:] = np.nansum(fullmap, axis=0) return fmap, KTVmap def chi2(cmap, merr, serr, alpha, Kps, vgrid, vsys, phase): """ Calculates the chi squared portion of the lnL from the previously computed cross-correlation map and other base terms, for a given set of scaled line contrast values. """ X2 = np.zeros((len(alpha), len(Kps), len(vsys))) # (alpha, Kps, Vsys) # Shift merr and cmap to the planet's velocity, so their axes are (Kp, time, Vsys) _, term2_shift = phasefold(Kps, vgrid, vsys, merr, phase) _, term3_shift = phasefold(Kps, vgrid, vsys, cmap, phase) # Calculate the log likelihood for each value of alpha for i,a in enumerate(alpha): X2_KTV = serr[np.newaxis,:,np.newaxis] + a**2 * term2_shift - 2 * a * term3_shift # Sum the log likelihood in time X2[i] = np.nansum(X2_KTV, axis=1) return X2 def brightvar(phase, offset_deg, contrast): """ Computes the brightness variation for a given set of day-night contrast and peak phase offset values over a given phase range. """ offset = offset_deg / 360. # Equation: Ap = 1 - C * cos^2 (pi * (phi - theta)) A_p = 1. - contrast[:,np.newaxis,np.newaxis] * \ np.cos(np.pi*(phase[np.newaxis,np.newaxis,:] - \ offset[np.newaxis,:,np.newaxis]))**2 return A_p ############################################################################### parser = argparse.ArgumentParser(description="Likelihood Mapping of High-resolution Spectra") parser.add_argument("-nights", nargs="*", help="MJD nights", type=str) parser.add_argument("-d", '--datapath', default="./", help="path to data") parser.add_argument("-m", '--modelpath', default="./", help="path to models") parser.add_argument("-o", '--outpath', default="./", help="path for output") parser.add_argument("-ext", '--extension', default=".fits", help="output file name extension") args = parser.parse_args() nights = args.nights data_path = args.datapath model_path = args.modelpath out_path = args.outpath ext = args.extension # Define parameter arrays vmrs = np.arange(-5., -2.1, 0.1) alpha = np.arange(0.5, 5., 0.1) vgrid = np.arange(-600.,601.5, 1.5) Vsys = np.arange(-150., 150., 0.5) Kps = np.arange(175.,275., 0.5) offset = np.arange(-30.,60., 1.) contrast = np.arange(0.,1.1, 0.1) lnL = np.zeros((len(vmrs),len(contrast), len(offset), len(alpha), len(Kps), len(Vsys))) # Specify number of SYSREM iterations used on spectra for each MJD night iters = {'56550': 5, '56561': 4, '56904': 4, '56915': 6, '56966': 6, '57321': 6} # Specify Butterworth filter cut-off frequency for each night bfreq = {'56550': 0.035, '56561': 0.04, '56904': 0.03, '56915': 0.025, '56966': 0.055, '57321': 0.025} for night in nights: # Read in data spec = np.load(data_path+night+'_spectra.npy')[iters[night]-1] - 1. # (orders, frames, pixels) wave = np.load(data_path+night+'_wavelength.npy') # (orders, frames, pixels) phase = np.load(data_path+night+'_phase.npy') # (frames) # Only include phases below 0.41 and above 0.59, to avoid stellar Fe signal p_ind = np.where((phase < 0.41) & (phase > -0.41))[0] phase = phase[p_ind] spec = spec[:,p_ind,:] wave = wave[:,p_ind,:] # Determine size of arrays n_orders = spec.shape[0] n_frames = spec.shape[1] n_pix = spec.shape[2] for v,vmr in enumerate(vmrs): # Get dayside model hdu = fits.open(model_path+'model_wasp33b_FeI_logvmr%.1f.fits' % (vmr)) # (wavelength, spectrum) model = hdu[0].data # Interpolate model to wavelength grid with consistent resolution m_wave = wavegrid(model[0,0], model[0,-1], 3e5) wv_interp = interp1d(model[0],model[1], kind='linear', fill_value=0, bounds_error=False) m_spec = wv_interp(m_wave) # Convolve model with 1D Gaussian kernel, then filter FWHM_inst = {'CFHT': 4.48, 'Subaru': 1.8} mspec_conv = convolve(m_spec, Gaussian1DKernel(stddev=FWHM_inst['CFHT']/2.35)) #mspec_day = remove_env(m_wave,mspec_conv, 250) mspec_bf = butterworth(mspec_conv, 1, bfreq[night]) # Create interpolator to put model onto data's wavelength grid filt_interp = interp1d(m_wave, mspec_bf, kind='linear', fill_value=0.,bounds_error=False) # Create variables/arrays for lnL components N = 0. cmap_osum = np.zeros((n_frames, len(vgrid))) merr_osum = np.zeros((n_frames, len(vgrid))) serr_osum = np.zeros((n_frames)) # Perform cross-correlation for orders redward of 600 nm, and sum together for i,o in enumerate(np.arange(24,37)): # Calculate time- and wavelength-dependent uncertainties tsigma = np.nanstd(spec[o], axis=0) wsigma = np.nanstd(spec[o], axis=1) sigma = np.outer(wsigma, tsigma) sigma /= np.nanstd(spec[o,:,:]) sigma[((sigma < 0.0005) | np.isnan(sigma))] = 1e20 # Calculate number of data points in spectra minwave, maxwave = np.nanmin(wave[o,:,:]), np.nanmax(wave[o,:,:]) minwidx, maxwidx = np.nanargmin(wave[o,0,:]), np.nanargmax(wave[o,0,:]) N += len(wave[o,0,minwidx:maxwidx]) * len(phase) # Perform cross-correlation cmap0, serr, merr = correlate(wave[o,:,:], spec[o,:,:], sigma, vgrid, minwave, maxwave, filt_interp) cmap = submed(cmap0) cmap_osum += cmap merr_osum += merr serr_osum += serr # Compute brightness variation for given contrasts and offsets variation = brightvar(phase, offset, contrast) # Apply brightness variation to lnL terms lnL_term1 = serr_osum lnL_term2 = merr_osum[np.newaxis,np.newaxis,:,:] * variation[:,:,:,np.newaxis]**2 lnL_term3 = cmap_osum[np.newaxis,np.newaxis,:,:] * variation[:,:,:,np.newaxis] # Calculate lnL for given VMR for i in range(len(contrast)): for j in range(len(offset)): X2 = chi2(lnL_term3[i,j], lnL_term2[i,j], lnL_term1, alpha, Kps, vgrid, Vsys, phase) lnL[v,i,j] += -N/2. * np.log(X2 / N) # Find highest likelihood values maximum = np.nanmax(lnL) maxes = np.where(lnL == maximum) fidx = maxes[0][0] cidx = maxes[1][0] oidx = maxes[2][0] aidx = maxes[3][0] kidx = maxes[4][0] vidx = maxes[5][0] # Print highest likelihood values print 'Location of highest likelihood:' print 'logVMR = %.1f' % (vmrs[fidx]) print 'C = %.1f' % (contrast[cidx]) print 'off = %.1f' % (offset[oidx]) print 'a = %.1f' % (alpha[aidx]) print 'Kp = %.1f' % (Kps[kidx]) print 'Vsys = %.1f' % (Vsys[vidx]) # Write lnL to fits file hdu2 = fits.PrimaryHDU(lnL) hdu2.writeto(out_path+'lnL_wasp33b_FeI%s' % (ext), overwrite=True)
2.625
3
entrypoint.py
vliz-be-opsci/rocrate-to-pages
0
12798349
#!/usr/bin/env python3 # NOTE: If you are using an alpine docker image # such as pyaction-lite, the -S option above won't # work. The above line works fine on other linux distributions # such as debian, etc, so the above line will work fine # if you use pyaction:4.0.0 or higher as your base docker image. # Steps in this action: # - check if correct files exist. # - create symlink for index.html and crate.json # - check validation? import sys import os from pathlib import Path import subprocess import logging from bs4 import BeautifulSoup log = logging.getLogger('entrypoint') class CrateObj(): def __init__(self, crate_dir): self.crate_dir = crate_dir self.metadata_path = Path(os.path.join(self.crate_dir, 'ro-crate-metadata.json')) self.metadata_exists = False self.preview_path = Path(os.path.join(self.crate_dir, 'ro-crate-preview.html')) self.preview_exists = False self.crate_valid = None self.metadata_valid = None self.preview_valid = None def check_rocrate_valid(self): # Checks if there are rocrate objects in directory log.debug('Checking that rocrate files exist...') if os.path.exists(self.metadata_path): log.debug('ROCrate metadata json file exists: {0}'.format(self.metadata_path)) self.metadata_exists = True elif os.path.exists(self.metadata_path.with_suffix('.jsonld')): self.metadata_path = self.metadata_path.with_suffix('.jsonld') log.debug('ROCrate metadata jsonld file exists: {0}'.format(self.metadata_path)) self.metadata_exists = True else: log.error('ROCrate metadata file DOES NOT exist: {0}'.format(self.metadata_path)) self.metadata_exists = False self.crate_valid = False exit(1) if os.path.exists(self.preview_path): log.debug('ROCrate preview file exists: {0}'.format(self.preview_path)) self.preview_exists = True else: log.warning('ROCrate preview file DOES NOT exist: {0}'.format(self.preview_path)) self.preview_exists = False self.check_metadata() self.check_preview() if self.metadata_valid and self.preview_valid: log.info('Crate passes validity checks.') self.crate_valid = True return def check_metadata(self): log.debug('Checking if metadata is valid...') #TODO:some test self.metadata_valid = True return def check_preview(self): log.debug('Checking if preview is valid...') #TODO:some test self.preview_valid = True return def create_symlink(dst, src): # This creates a symbolic link on python in tmp directory log.debug(f'Creating symlink between {src} and {dst}') try: os.symlink(src, dst) except Exception as err: log.warning('Problem while creating symlink:') log.warning(err) return def create_preview_html(crate_obj): ''' This uses https://github.com/UTS-eResearch/ro-crate-html-js to create a preview.html from a rocrate json file. rochtml rocrate_datacrate_test/ro-crate-metadata.json ''' log.info('Creating HTML preview file for {0}...'.format(crate_obj.metadata_path)) metadata_file = crate_obj.metadata_path subprocess.check_call(f'rochtml {metadata_file}', shell=True) # log.debug('Adding Header/Footer template to preview file...') # #TODO: Find a better way of getting the header/footer templates. # NOTE: Header/footer functionality moved to jekyll # with open(crate_obj.preview_path, 'r') as preview_file: # soup = BeautifulSoup(preview_file, 'html.parser') # #Add Header # header_path = './header.html' # with open(header_path) as header_file: # head_soup = BeautifulSoup(header_file, 'html.parser') # soup.html.body.insert_before(head_soup) # #Add Footer # footer_path = './footer.html' # with open(footer_path, 'r') as footer_file: # foot_soup = BeautifulSoup(footer_file, 'html.parser') # soup.html.body.append(foot_soup) # # Write updated page to html file # with open('./test_out.html','wb') as outfile: # outfile.write(soup.prettify("utf-8")) return def publish_rocrate(crate_dir): # steps to follow to create the correct files to publish to GH-Pages log.info('Preparing to publish ROCrate.') this_crate = CrateObj(crate_dir) this_crate.check_rocrate_valid() create_preview_html(this_crate) # create_symlink('index.html', this_crate.preview_path) # if this_crate.preview_exists: # create_preview_html(this_crate) # create_symlink('index.html', this_crate.preview_path) # else: # #Create index.html page # create_preview_html(this_crate) # create_symlink('index.html', this_crate.preview_path) if this_crate.metadata_exists: ## Create symlink between the .json >> .jsonld file extensions depending on which exists if os.path.splitext(this_crate.metadata_path) == '.json': create_symlink('ro-crate-metadata.jsonld', this_crate.metadata_path) elif os.path.splitext(this_crate.metadata_path) == '.jsonld': create_symlink('ro-crate-metadata.json', this_crate.metadata_path) log.info('ROCrate ready to publish') if __name__ == "__main__" : # Rename these variables to something meaningful crate_path = sys.argv[1] loglevel = sys.argv[2] logging.basicConfig( stream=sys.stdout, format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=getattr(logging, loglevel)) log.setLevel(getattr(logging, loglevel)) # The work: publish_rocrate(crate_path)
1.984375
2
automatization_of_data_mining_project/data_set_statistic_reporter/test/test_data_set_statistic_reporter.py
Sale1996/automatization_of_data_mining_project
0
12798350
<filename>automatization_of_data_mining_project/data_set_statistic_reporter/test/test_data_set_statistic_reporter.py import unittest from data_set_statistic_reporter.classes.statistic_generator.implementations.column_names_statistic_generator import \ ColumnNamesStatisticGenerator from data_set_statistic_reporter.classes.statistic_generator.implementations.missing_data_statistic_generator import \ MissingDataStatisticGenerator from data_set_statistic_reporter.classes.statistic_generator.implementations.range_statistic_generator import \ RangeStatisticGenerator from data_set_statistic_reporter.classes.statistic_generator.implementations.unique_impression_statistic_generator import \ UniqueImpressionStatisticGenerator from data_set_statistic_reporter.classes.statistic_generator.implementations.variance_statistic_generator import \ VarianceStatisticGenerator from data_set_statistic_reporter.classes.data_class.statistic_reporter_data_class import StatisticReporterDataClass from data_set_statistic_reporter.depedency_injector.container import Container import pandas as pd class DataSetStatisticReporterTestBase(unittest.TestCase): pass class DataSetStatisticGeneratorTestDummyCases(DataSetStatisticReporterTestBase): def setUp(self): self.data_set_statistic_reporter = Container.statistic_reporter_data_set() self.columns_statistic_generator = ColumnNamesStatisticGenerator([]) self.range_statistic_generator = RangeStatisticGenerator(['Year']) self.unique_impression_statistic_generator = UniqueImpressionStatisticGenerator(['Country Code']) self.variance_statistic_generator = VarianceStatisticGenerator(["Year"]) self.missing_data_statistic_generator = MissingDataStatisticGenerator(["Test"]) def test_given_empty_statistic_object_when_get_statistics_as_data_set_then_return_only_data_set_name_with_two_empty_arrays( self): empty_statistic_object = StatisticReporterDataClass("Test", pd.DataFrame([]), []) expected_return_value = [["Test"], [], []] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set([empty_statistic_object])) def test_given_statistic_object_with_range_generator_when_get_statistics_as_data_set_then_return_data_set_name_with_range_statistics( self): data_frame_columns, data_frame_values = self.get_test_data_frame_values_and_columns() data_set_with_range_report = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_values, columns=data_frame_columns), [self.columns_statistic_generator, self.range_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Year - Range"], ["Year, Country Code, Test", "1900-2020"]] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set([data_set_with_range_report])) def test_given_statistic_object_with_unique_impression_report_array_when_reports_statistic_then_return_data_set_name_with_unique_impression_report( self): data_frame_columns, data_frame_values = self.get_test_data_frame_values_and_columns() data_set_with_unique_impression_report = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_values, columns=data_frame_columns), [self.columns_statistic_generator, self.unique_impression_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Country Code - Unique impressions"], ["Year, Country Code, Test", 4]] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set( [data_set_with_unique_impression_report])) def test_given_statistic_object_with_missing_data_report_array_when_reports_statistic_then_return_data_set_name_with_missing_data_report( self): data_frame_columns, data_frame_values = self.get_test_data_frame_values_and_columns() data_set_with_missing_data_report = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_values, columns=data_frame_columns), [self.columns_statistic_generator, self.missing_data_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Test - Total number of data", "Test - Total number of missing data", "Test - Total percent of missing data"], ["Year, Country Code, Test", 6, 1, 16.67]] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set( [data_set_with_missing_data_report])) def test_given_statistic_object_with_variance_report_array_when_reports_statistic_then_return_data_set_name_with_normal_distribution_report( self): data_frame_columns, data_frame_values = self.get_test_data_frame_values_and_columns() data_set_with_variance_report = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_values, columns=data_frame_columns), [self.columns_statistic_generator, self.variance_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Year - Mean value", "Year - Standard deviation", "Year - Variance"], ["Year, Country Code, Test", 1978, 41, 1687.22]] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set( [data_set_with_variance_report])) def test_given_statistic_object_with_multiple_report_arrays_when_reports_statistic_then_return_data_set_name_with_required_statistics( self): data_frame_columns, data_frame_values = self.get_test_data_frame_values_and_columns() data_set_with_multiple_reports = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_values, columns=data_frame_columns), [self.columns_statistic_generator, self.range_statistic_generator, self.unique_impression_statistic_generator, self.variance_statistic_generator, self.missing_data_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Year - Range", "Country Code - Unique impressions", "Year - Mean value", "Year - Standard deviation", "Year - Variance", "Test - Total number of data", "Test - Total number of missing data", "Test - Total percent of missing data"], ["Year, Country Code, Test", "1900-2020", 4, 1978, 41, 1687.22, 6, 1, 16.67]] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set( [data_set_with_multiple_reports])) def test_given_two_statistic_object_with_multiple_report_arrays_when_reports_statistic_then_return_data_set_name_with_required_statistics( self): data_frame_1_columns, data_frame_1_values = self.get_test_data_frame_values_and_columns() data_frame_2_values = [ ["SRB", 1], ["JPN", 2], ["RUS", ], ["SRB", 4], ["ESP", 5], ["JPN", 6]] data_frame_2_columns = ['Country Code', 'Test'] data_set_1_with_multiple_reports = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_1_values, columns=data_frame_1_columns), [self.columns_statistic_generator, self.range_statistic_generator, self.unique_impression_statistic_generator, self.variance_statistic_generator, self.missing_data_statistic_generator] ) data_set_2_with_multiple_reports = StatisticReporterDataClass( "Test", pd.DataFrame(data_frame_2_values, columns=data_frame_2_columns), [self.columns_statistic_generator, self.unique_impression_statistic_generator, self.missing_data_statistic_generator] ) expected_return_value = [["Test"], ["Columns", "Year - Range", "Country Code - Unique impressions", "Year - Mean value", "Year - Standard deviation", "Year - Variance", "Test - Total number of data", "Test - Total number of missing data", "Test - Total percent of missing data"], ["Year, Country Code, Test", "1900-2020", 4, 1978, 41, 1687.22, 6, 1, 16.67], ["Test"], ["Columns", "Country Code - Unique impressions", "Test - Total number of data", "Test - Total number of missing data", "Test - Total percent of missing data"], ["Country Code, Test", 4, 6, 1, 16.67] ] self.assertEqual(expected_return_value, self.data_set_statistic_reporter.get_statistics_as_data_set( [data_set_1_with_multiple_reports, data_set_2_with_multiple_reports])) def get_test_data_frame_values_and_columns(self): data_frame_values = [ [1900, "SRB", 1], [1950, "JPN", 2], [1990, "RUS", ], [2010, "SRB", 4], [2020, "ESP", 5], [1996, "JPN", 6]] data_frame_columns = ['Year', 'Country Code', 'Test'] return data_frame_columns, data_frame_values
2.59375
3