File size: 3,349 Bytes
be991b4
 
cf7e520
 
0a8377c
cf7e520
 
 
 
19ce822
be991b4
cf7e520
 
 
19ce822
 
 
 
 
 
cf7e520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a8377c
cf7e520
fc5486c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf7e520
 
0a8377c
cf7e520
 
19ce822
cf7e520
 
19ce822
cf7e520
19ce822
cf7e520
 
 
 
 
 
 
 
 
 
19ce822
cf7e520
 
fc5486c
8651803
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: mit
task_categories:
- summarization
- text2text-generation
language:
- en
size_categories:
- 10K<n<100K
source_datasets: tomasg25/scientific_lay_summarisation
---

# scientific_lay_summarisation - PLOS - normalized

This dataset is a modified version of [tomasg25/scientific_lay_summarization](https://huggingface.co/datasets/tomasg25/scientific_lay_summarisation) and contains scientific lay summaries that have been preprocessed [with this code](https://gist.github.com/pszemraj/bd344637af7c0c10ecf4ab62c4d0ce91). The preprocessing includes fixing punctuation and whitespace problems, and calculating the token length of each text sample using a tokenizer from the T5 model.

Original dataset details:
- **Repository:** https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation
- **Paper:** [Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature](https://arxiv.org/abs/2210.09932)

## Data Cleaning

The text in both the "article" and "summary" columns was processed to ensure that punctuation and whitespace were consistent. The `fix_punct_whitespace` function was applied to each text sample to:
- Remove spaces before punctuation marks (except for parentheses)
- Add a space after punctuation marks (except for parentheses) if missing
- Handle spaces around parentheses
- Add a space after a closing parenthesis if followed by a word or opening parenthesis
- Handle spaces around quotation marks
- Handle spaces around single quotes
- Handle comma in numbers
## Tokenization

The length of each text sample was calculated in terms of tokens using the T5 tokenizer. The `calculate_token_length` function was used to encode each text sample using the tokenizer and return the number of resulting tokens. The resulting token lengths were added as new columns to the dataframes.
## Data Format

The resulting processed data files are stored in Apache parquet and can be loaded using the `pandas' library or the `datasets' library from the Hugging Face transformers package. The relevant column names and data types for summarization are



```python
DatasetDict({
    train: Dataset({
        features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
        num_rows: 24773
    })
    test: Dataset({
        features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
        num_rows: 1376
    })
    validation: Dataset({
        features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'],
        num_rows: 1376
    })
})
```
## Usage

Load the desired parquet file(s) using `pandas` or `datasets`. Here is an example using `pandas`:

```python
# download the dataset files by clicking on 'use in datasets' and cloning 
import pandas as pd

# Load train set
df = pd.read_parquet("scientific_lay_summarisation-plos-norm/train.parquet")
print(df.info())
```



And here is an example using `datasets`:

```python
from datasets import load_dataset

dataset = load_dataset("pszemraj/scientific_lay_summarisation-plos-norm")
train_set = dataset['train']
# Print the first few samples
for i in range(5):
    print(train_set[i])
```


## Token Lengths


For train split:

![train-lengths](https://i.imgur.com/EXfC9kz.png)

---