Datasets:
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- apc
- ajp
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
- topic-classification
paperswithcode_id: arsentd-lev
pretty_name: ArSenTD-LEV
dataset_info:
features:
- name: Tweet
dtype: string
- name: Country
dtype:
class_label:
names:
'0': jordan
'1': lebanon
'2': syria
'3': palestine
- name: Topic
dtype: string
- name: Sentiment
dtype:
class_label:
names:
'0': negative
'1': neutral
'2': positive
'3': very_negative
'4': very_positive
- name: Sentiment_Expression
dtype:
class_label:
names:
'0': explicit
'1': implicit
'2': none
- name: Sentiment_Target
dtype: string
splits:
- name: train
num_bytes: 1233980
num_examples: 4000
download_size: 392666
dataset_size: 1233980
Dataset Card for ArSenTD-LEV
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: ArSenTD-LEV homepage
- Paper: ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets
Dataset Summary
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
Supported Tasks and Leaderboards
Sentriment analysis
Languages
Arabic Levantine Dualect
Dataset Structure
Data Instances
{'Country': 0, 'Sentiment': 3, 'Sentiment_Expression': 0, 'Sentiment_Target': 'هاي سوالف عصابات ارهابية', 'Topic': 'politics', 'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'}
Data Fields
Tweet
: the text content of the tweet Country
: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')Topic
: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) Sentiment
: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) Sentiment_Expression
: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) Sentiment_Target
: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value.
Data Splits
No standard splits are provided
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
Make sure to read and agree to the license
Citation Information
@article{baly2019arsentd,
title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets},
author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir},
journal={arXiv preprint arXiv:1906.01830},
year={2019}
}
Contributions
Thanks to @moussaKam for adding this dataset.