|
--- |
|
annotations_creators: |
|
- crowdsourced |
|
language_creators: |
|
- found |
|
language: |
|
- apc |
|
- ajp |
|
license: |
|
- other |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 1K<n<10K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- text-classification |
|
task_ids: |
|
- sentiment-classification |
|
- topic-classification |
|
paperswithcode_id: arsentd-lev |
|
pretty_name: ArSenTD-LEV |
|
dataset_info: |
|
features: |
|
- name: Tweet |
|
dtype: string |
|
- name: Country |
|
dtype: |
|
class_label: |
|
names: |
|
'0': jordan |
|
'1': lebanon |
|
'2': syria |
|
'3': palestine |
|
- name: Topic |
|
dtype: string |
|
- name: Sentiment |
|
dtype: |
|
class_label: |
|
names: |
|
'0': negative |
|
'1': neutral |
|
'2': positive |
|
'3': very_negative |
|
'4': very_positive |
|
- name: Sentiment_Expression |
|
dtype: |
|
class_label: |
|
names: |
|
'0': explicit |
|
'1': implicit |
|
'2': none |
|
- name: Sentiment_Target |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1233980 |
|
num_examples: 4000 |
|
download_size: 392666 |
|
dataset_size: 1233980 |
|
--- |
|
|
|
# Dataset Card for ArSenTD-LEV |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [ArSenTD-LEV homepage](http://oma-project.com/) |
|
- **Paper:** [ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets](https://arxiv.org/abs/1906.01830) |
|
|
|
### Dataset Summary |
|
|
|
The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
Sentriment analysis |
|
|
|
### Languages |
|
|
|
Arabic Levantine Dualect |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
{'Country': 0, |
|
'Sentiment': 3, |
|
'Sentiment_Expression': 0, |
|
'Sentiment_Target': 'هاي سوالف عصابات ارهابية', |
|
'Topic': 'politics', |
|
'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'} |
|
|
|
### Data Fields |
|
|
|
`Tweet`: the text content of the tweet \ |
|
`Country`: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')\ |
|
`Topic`: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) \ |
|
`Sentiment`: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) \ |
|
`Sentiment_Expression`: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) \ |
|
`Sentiment_Target`: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value. |
|
|
|
### Data Splits |
|
|
|
No standard splits are provided |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
Make sure to read and agree to the [license](http://oma-project.com/ArSenL/ArSenTD_Lev_Intro) |
|
|
|
### Citation Information |
|
|
|
``` |
|
@article{baly2019arsentd, |
|
title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets}, |
|
author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir}, |
|
journal={arXiv preprint arXiv:1906.01830}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset. |