complexity
int64
1
139
fun_name
stringlengths
1
80
code
stringlengths
101
62.2k
commit_id
stringlengths
40
40
ast_errors
stringlengths
0
3.11k
ast_levels
int64
6
36
file_name
stringlengths
5
79
n_ast_nodes
int64
17
19.2k
commit_message
stringlengths
3
15.3k
d_id
int64
12
121k
n_ast_errors
int64
0
9
n_whitespaces
int64
4
10.8k
token_counts
int64
5
3.06k
vocab_size
int64
4
1.11k
id
int64
20
338k
n_words
int64
4
4.82k
repo
stringlengths
3
22
n_identifiers
int64
2
176
path
stringlengths
7
134
language
stringclasses
1 value
nloc
int64
1
413
documentation
dict
url
stringlengths
31
59
2
call_bc
def call_bc(self, other_args): parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="bc", description=, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: pycoingecko_view.display_bc(self.coin_map_df["CoinGecko"], ns_parser.export)
ea964109d654394cc0a5237e6ec5510ba6404097
11
dd_controller.py
97
Crypto menu refactor (#1119) * enabled some crypto commands in dd to be called independent of source loaded * support for coin_map_df in all dd functions + load ta and plot chart refactor * updated tests and removed coingecko scrapping where possible * removed ref of command from hugo * updated pycoingecko version * refactoring load * refactored load to fetch prices; pred can run independent of source now * load by default usd on cp/cg and usdt on cb/bin * updated to rich for formatting and updated dependencies * fixed changes requested * update docs * revert discord requirements * removed absolute from calculate change for price * fixing pr issues * fix loading issue when similar coins exist, move coins to home, fill n/a * update docs for coins * adds load to ta and pred menu
83,548
0
130
61
20
281,136
22
OpenBBTerminal
18
gamestonk_terminal/cryptocurrency/due_diligence/dd_controller.py
Python
15
{ "docstring": "Process bc command\n Blockchain explorers URLs for loaded coin. Those are sites like etherescan.io or polkascan.io\n in which you can see all blockchain data e.g. all txs, all tokens, all contracts...\n ", "language": "en", "n_whitespaces": 84, "n_words": 31, "vocab_size": 28 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
1
communicate
async def communicate(self): assert self._input.is_file() self._output.open("w").close() return (None, None)
fa2ad657482aca9dc628e6d7062b8badf2706bb6
10
conftest.py
57
v4 init
5,330
0
37
32
9
30,126
9
spotify-downloader
7
tests/conftest.py
Python
4
{ "docstring": "\n Ensure that the file has been download, and create empty output file,\n to avoid infinite loop.\n ", "language": "en", "n_whitespaces": 38, "n_words": 16, "vocab_size": 16 }
https://github.com/spotDL/spotify-downloader.git
1
test_multi_trial_reuse_with_failing
def test_multi_trial_reuse_with_failing(ray_start_4_cpus_extra): os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "2" register_trainable("foo2", MyResettableClass) [trial1, trial2, trial3, trial4] = tune.run( "foo2", config={ "fail": tune.grid_search([False, True, False, False]), "id": -1, "sleep": 2, }, reuse_actors=True, resources_per_trial={"cpu": 2}, raise_on_failed_trial=False, ).trials assert trial1.last_result["num_resets"] == 0 assert trial3.last_result["num_resets"] == 0 assert trial4.last_result["num_resets"] == 1
1510fb2cd631b2776092fb45ee4082e5e65f16f8
15
test_actor_reuse.py
183
[air/tune] Internal resource management 2 - Ray Tune to use new Ray AIR resource manager (#30016) Includes/depends on #30777 TLDR: This PR refactors Ray Tune's resource management to use a central AIR resource management package instead of the tightly coupled PlacementGroupManager. Ray Tune's resource management currently uses a tightly coupled placement group manager. This leads to a number of shortcomings: - The tight coupling on the manager side (e.g. PG manager keeps track of trials) prevents re-usability - The tight coupling on the trial executor side prevents using different resource management strategies (e.g. shared or budget-based) - It's hard to test independently. Tests for the resource management require a simulated tune setup. To improve stability, extensibility, and maintainability, this PR moves the resource management logic into a central `ray.air.execution.resources` subpackage. The resource management has a simple API that works with `ResourceRequest`s and `AllocatedResources` to manage requested and assigned resources, respectively. The actual resource management can then be anything - per default it is a placement group based manager, but this PR also introduces a PoC budget-based manager that can be plugged in. The PR does not substantially change existing tests, so we can be certain that the new resource model is a fully compatible replacement for the old placement group manager. Signed-off-by: Kai Fricke <[email protected]>
31,314
0
141
113
36
138,092
42
ray
19
python/ray/tune/tests/test_actor_reuse.py
Python
17
{ "docstring": "Test that failing trial's actors are not reused.\n\n - 2 trials can run at the same time\n - Trial 1 succeeds, trial 2 fails\n - Trial 3 will be scheduled after trial 2 failed, so won't reuse actor\n - Trial 4 will be scheduled after trial 1 succeeded, so will reuse actor\n ", "language": "en", "n_whitespaces": 67, "n_words": 52, "vocab_size": 34 }
https://github.com/ray-project/ray.git
4
size_bytes
def size_bytes(self) -> int: size = 0 has_size = False for m in self.get_metadata(): if m.size_bytes is not None: has_size = True size += m.size_bytes if not has_size: return -1 else: return size
b5b4460932505912d88d65134931e0da170fb467
11
block_list.py
84
Support creating a DatasetPipeline windowed by bytes (#22577)
33,465
0
138
50
24
145,482
33
ray
7
python/ray/data/impl/block_list.py
Python
12
{ "docstring": "Returns the total size in bytes of the blocks, or -1 if not known.", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 13 }
https://github.com/ray-project/ray.git
2
unregister
def unregister(self, name): if name in self._BUILTIN_COLOR_SEQUENCES: raise ValueError( f"Cannot unregister builtin color sequence {name!r}") self._color_sequences.pop(name, None) _color_sequences = ColorSequenceRegistry()
0abe0ce2f2748d1d0383154d045da3609a4b871b
11
colors.py
65
Add a registry for color sequences Color sequences are simply lists of colors, that we store by name in a registry. The registry is modelled similar to the ColormapRegistry to 1) support immutable builtin color sequences and 2) to return copies so that one cannot mess with the global definition of the color sequence through an obtained instance. For now, I've made the sequences used for `ListedColormap`s available as builtin sequences, but that's open for discussion. More usage documentation should be added in the color examples and/or tutorials, but I'll wait with that till after the general approval of the structure and API. One common use case will be ``` plt.rc_params['axes.prop_cycle'] = plt.cycler(color=plt.color_sequences['Pastel1') ``` Co-authored-by: Elliott Sales de Andrade <[email protected]>
23,145
0
66
31
20
108,335
20
matplotlib
8
lib/matplotlib/colors.py
Python
5
{ "docstring": "\n Remove a sequence from the registry.\n\n You cannot remove built-in color sequences.\n\n If the name is not registered, returns with no error.\n ", "language": "en", "n_whitespaces": 51, "n_words": 22, "vocab_size": 21 }
https://github.com/matplotlib/matplotlib.git
10
source_from_cache
def source_from_cache(path): if sys.implementation.cache_tag is None: raise NotImplementedError('sys.implementation.cache_tag is None') path = _os.fspath(path) head, pycache_filename = _path_split(path) found_in_pycache_prefix = False if sys.pycache_prefix is not None: stripped_path = sys.pycache_prefix.rstrip(path_separators) if head.startswith(stripped_path + path_sep): head = head[len(stripped_path):] found_in_pycache_prefix = True if not found_in_pycache_prefix: head, pycache = _path_split(head) if pycache != _PYCACHE: raise ValueError(f'{_PYCACHE} not bottom-level directory in ' f'{path!r}') dot_count = pycache_filename.count('.') if dot_count not in {2, 3}: raise ValueError(f'expected only 2 or 3 dots in {pycache_filename!r}') elif dot_count == 3: optimization = pycache_filename.rsplit('.', 2)[-2] if not optimization.startswith(_OPT): raise ValueError("optimization portion of filename does not start " f"with {_OPT!r}") opt_level = optimization[len(_OPT):] if not opt_level.isalnum(): raise ValueError(f"optimization level {optimization!r} is not an " "alphanumeric value") base_filename = pycache_filename.partition('.')[0] return _path_join(head, base_filename + SOURCE_SUFFIXES[0])
8198943edd73a363c266633e1aa5b2a9e9c9f526
15
_bootstrap_external.py
378
add python 3.10.4 for windows
55,140
0
366
212
79
218,114
121
XX-Net
33
python3.10.4/Lib/importlib/_bootstrap_external.py
Python
30
{ "docstring": "Given the path to a .pyc. file, return the path to its .py file.\n\n The .pyc file does not need to exist; this simply returns the path to\n the .py file calculated to correspond to the .pyc file. If path does\n not conform to PEP 3147/488 format, ValueError will be raised. If\n sys.implementation.cache_tag is None then NotImplementedError is raised.\n\n ", "language": "en", "n_whitespaces": 75, "n_words": 59, "vocab_size": 37 }
https://github.com/XX-net/XX-Net.git
1
test_deps_sorted
def test_deps_sorted(self): from airflow.operators.empty import EmptyOperator from airflow.sensors.external_task import ExternalTaskSensor execution_date = datetime(2020, 1, 1) with DAG(dag_id="test_deps_sorted", start_date=execution_date) as dag: task1 = ExternalTaskSensor( task_id="task1", external_dag_id="external_dag_id", mode="reschedule", ) task2 = EmptyOperator(task_id="task2") task1 >> task2 serialize_op = SerializedBaseOperator.serialize_operator(dag.task_dict["task1"]) deps = serialize_op["deps"] assert deps == [ 'airflow.ti_deps.deps.not_in_retry_period_dep.NotInRetryPeriodDep', 'airflow.ti_deps.deps.not_previously_skipped_dep.NotPreviouslySkippedDep', 'airflow.ti_deps.deps.prev_dagrun_dep.PrevDagrunDep', 'airflow.ti_deps.deps.ready_to_reschedule.ReadyToRescheduleDep', 'airflow.ti_deps.deps.trigger_rule_dep.TriggerRuleDep', ]
49e336ae0302b386a2f47269a6d13988382d975f
12
test_dag_serialization.py
186
Replace usage of `DummyOperator` with `EmptyOperator` (#22974) * Replace usage of `DummyOperator` with `EmptyOperator`
9,201
0
256
109
40
47,665
49
airflow
25
tests/serialization/test_dag_serialization.py
Python
21
{ "docstring": "\n Tests serialize_operator, make sure the deps is in order\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
https://github.com/apache/airflow.git
1
load_workflow_status
def load_workflow_status(self): return self._status_storage.load_workflow_status(self._workflow_id)
f67871c1f7e79adc727b2a15311d9332832d2e8a
8
workflow_storage.py
30
[workflow] Fast workflow indexing (#24767) * workflow indexing * simplify workflow storage API * Only fix workflow status when updating the status. * support status filter
31,892
0
18
17
4
140,203
4
ray
4
python/ray/workflow/workflow_storage.py
Python
2
{ "docstring": "Load workflow status. If we find the previous status updating failed,\n fix it with redo-log transaction recovery.", "language": "en", "n_whitespaces": 23, "n_words": 17, "vocab_size": 17 }
https://github.com/ray-project/ray.git
3
isCPythonOfficialPackage
def isCPythonOfficialPackage(): # For macOS however, it's very knowable. if isMacOS() and sys.executable.startswith( "/Library/Frameworks/Python.framework/Versions/" ): return True return False
c723f658e8c11ec92d6ef90c2f42527c67d3f318
9
PythonFlavors.py
44
Added CPython Official flavor, so far only detected on macOS
42,789
0
48
23
18
178,678
19
Nuitka
5
nuitka/PythonFlavors.py
Python
6
{ "docstring": "Official CPython download, kind of hard to detect since self-compiled doesn't change much.", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
https://github.com/Nuitka/Nuitka.git
2
update_existing_attachments
def update_existing_attachments(job): # Patch attachments that were ingested on the standalone path. with sentry_sdk.start_span(op="tasks.post_process_group.update_existing_attachments"): try: from sentry.models import EventAttachment event = job["event"] EventAttachment.objects.filter( project_id=event.project_id, event_id=event.event_id ).update(group_id=event.group_id) except Exception: logger.exception("Failed to update existing attachments")
bc59434031930199dcdc056943c2ba4a17bbd5c8
15
post_process.py
116
ref(perf-issues): Modularize post_process_group (ISP-11) (#39594) Fully modularizes `post_process_group` as final step before adding multiple event types to it.
18,118
0
126
66
33
86,527
33
sentry
18
src/sentry/tasks/post_process.py
Python
10
{ "docstring": "\n Attaches the group_id to all event attachments that were either:\n\n 1) ingested prior to the event via the standalone attachment endpoint.\n 2) part of a different group before reprocessing started.\n ", "language": "en", "n_whitespaces": 43, "n_words": 30, "vocab_size": 26 }
https://github.com/getsentry/sentry.git
1
list
def list(self, ignore_patterns): raise NotImplementedError( "subclasses of BaseFinder must provide a list() method" )
9c19aff7c7561e3a82978a272ecdaad40dda5c00
8
finders.py
25
Refs #33476 -- Reformatted code with Black.
50,701
0
46
13
14
204,338
14
django
4
django/contrib/staticfiles/finders.py
Python
4
{ "docstring": "\n Given an optional list of paths to ignore, return a two item iterable\n consisting of the relative path and storage instance.\n ", "language": "en", "n_whitespaces": 43, "n_words": 21, "vocab_size": 20 }
https://github.com/django/django.git
2
test_less_jobs
def test_less_jobs(self, api, started_job, batch): jobs = [started_job for _ in range(49)] update_in_batch(api=api, jobs=jobs) assert started_job.update_job.call_count == 49 assert len(api.new_batch.return_value) == 49 batch.execute.assert_called_once()
a3aae8017a0a40ff2006e2567f71dccb04c997a5
10
test_async_job.py
93
๐ŸŽ‰ ๐ŸŽ‰ Source FB Marketing: performance and reliability fixes (#9805) * Facebook Marketing performance improvement * add comments and little refactoring * fix integration tests with the new config * improve job status handling, limit concurrency to 10 * fix campaign jobs, refactor manager * big refactoring of async jobs, support random order of slices * update source _read_incremental to hook new state logic * fix issues with timeout * remove debugging and clean up, improve retry logic * merge changes from #8234 * fix call super _read_increment * generalize batch execution, add use_batch flag * improve coverage, do some refactoring of spec * update test, remove overrides of source * add split by AdSet * add smaller insights * fix end_date < start_date case * add account_id to PK * add notes * fix new streams * fix reversed incremental stream * update spec.json for SAT * upgrade CDK and bump version Co-authored-by: Dmytro Rezchykov <[email protected]> Co-authored-by: Eugene Kulak <[email protected]>
563
0
65
60
20
3,800
23
airbyte
16
airbyte-integrations/connectors/source-facebook-marketing/unit_tests/test_async_job.py
Python
6
{ "docstring": "Should update all jobs when number of jobs less than max size of batch", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 12 }
https://github.com/airbytehq/airbyte.git
1
test_load_global_local_flag_config
def test_load_global_local_flag_config(self): global_config = local_config = global_config_path = "/mock/home/folder/.streamlit/config.toml" local_config_path = os.path.join(os.getcwd(), ".streamlit/config.toml") global_open = mock_open(read_data=global_config) local_open = mock_open(read_data=local_config) open = mock_open() open.side_effect = [global_open.return_value, local_open.return_value] open_patch = patch("streamlit.config.open", open) # patch streamlit.*.os.* instead of os.* for py35 compat makedirs_patch = patch("streamlit.config.os.makedirs") makedirs_patch.return_value = True pathexists_patch = patch("streamlit.config.os.path.exists") pathexists_patch.side_effect = lambda path: path in [ global_config_path, local_config_path, ] with open_patch, makedirs_patch, pathexists_patch: config.get_config_options(options_from_flags={"theme.font": "monospace"}) self.assertEqual("light", config.get_option("theme.base")) self.assertEqual("#FFFFFF", config.get_option("theme.textColor")) self.assertEqual("monospace", config.get_option("theme.font"))
dd9084523e365e637443ea351eaaaa25f52d8412
13
config_test.py
292
Report sharing removal (#4260) The report sharing feature is a substantial but completely unused portion of the code in Streamlit's underlying machinery. The feature was created early on, used by just a few groups, and has not been used by anyone for a while, as indicated by no activity in the associated S3 buckets. This commit removes that code to make the remaining code easier to navigate and understand.
26,359
0
257
163
58
118,684
70
streamlit
26
lib/tests/streamlit/config_test.py
Python
31
{ "docstring": "Test that CLI flags have higher priority than both\n ~/.streamlit/config.toml and $CWD/.streamlit/config.toml at parse time.\n \n [theme]\n base = \"dark\"\n font = \"sans serif\"\n textColor = \"#FFFFFF\"\n \n [theme]\n base = \"light\"\n font = \"serif\"\n ", "language": "en", "n_whitespaces": 112, "n_words": 33, "vocab_size": 26 }
https://github.com/streamlit/streamlit.git
2
test_pickle_binary_object_compression
def test_pickle_binary_object_compression(compression): df = tm.makeDataFrame() # reference for compression with tm.ensure_clean() as path: df.to_pickle(path, compression=compression) reference = Path(path).read_bytes() # write buffer = io.BytesIO() df.to_pickle(buffer, compression=compression) buffer.seek(0) # gzip and zip safe the filename: cannot compare the compressed content assert buffer.getvalue() == reference or compression in ("gzip", "zip", "tar") # read read_df = pd.read_pickle(buffer, compression=compression) buffer.seek(0) tm.assert_frame_equal(df, read_df)
864729813a0203af8bb0d30b6c883588ae2c96f8
12
test_pickle.py
188
ENH: add support for reading .tar archives (#44787) * Add reproduction test for .tar.gz archives co-authored-by: Margarete Dippel <[email protected]> * add support for .tar archives python's `tarfile` supports gzip, xz and bz2 encoding, so we don't need to make any special cases for that. co-authored-by: Margarete Dippel <[email protected]> * update doc comments * fix: pep8 errors * refactor: flip _compression_to_extension around to support multiple extensions on same compression co-authored-by: Margarete Dippel <[email protected] y.github.com> * refactor: detect tar files using existing extension mapping co-authored-by: Margarete Dippel <[email protected]> * feat: add support for writing tar files co-authored-by: Margarete Dippel <[email protected]> * feat: assure it respects .gz endings * feat: add "tar" entry to compressionoptions * chore: add whatsnew entry * fix: test_compression_size_fh * add tarfile to shared compression docs * fix formatting * pass through "mode" via compression args * fix pickle test * add class comment * sort imports * add _compression_to_extension back for backwards compatibility * fix some type warnings * fix: formatting * fix: mypy complaints * fix: more tests * fix: some error with xml * fix: interpreted text role * move to v1.5 whatsnw * add versionadded note * don't leave blank lines * add tests for zero files / multiple files * move _compression_to_extension to tests * revert added "mode" argument * add test to ensure that `compression.mode` works * compare strings, not bytes * replace carriage returns Co-authored-by: Margarete Dippel <[email protected]>
39,808
0
114
109
44
166,376
57
pandas
20
pandas/tests/io/test_pickle.py
Python
12
{ "docstring": "\n Read/write from binary file-objects w/wo compression.\n\n GH 26237, GH 29054, and GH 29570\n ", "language": "en", "n_whitespaces": 23, "n_words": 13, "vocab_size": 11 }
https://github.com/pandas-dev/pandas.git
5
get_filtering
def get_filtering(self): self.select_date_form = SelectDateForm(self.request.GET) result = {} if self.select_date_form.is_valid(): date_from = self.select_date_form.cleaned_data.get('date_from') date_to = self.select_date_form.cleaned_data.get('date_to') if date_to: # careful: date_to must be increased by 1 day # as submit_time is a time so will always be greater date_to += datetime.timedelta(days=1) if date_from: result['submit_time__range'] = [date_from, date_to] else: result['submit_time__lte'] = date_to elif date_from: result['submit_time__gte'] = date_from return result
de3fcba9e95818e9634ab7de6bfcb1f4221f2775
15
views.py
174
Fix warnings from flake8-comprehensions.
15,592
0
265
100
42
70,980
58
wagtail
15
wagtail/contrib/forms/views.py
Python
15
{ "docstring": " Return filering as a dict for submissions queryset ", "language": "en", "n_whitespaces": 9, "n_words": 8, "vocab_size": 8 }
https://github.com/wagtail/wagtail.git
9
get_so_reservation_for_item
def get_so_reservation_for_item(args): reserved_so = None if args.get("against_sales_order"): if get_reserved_qty_for_so(args.get("against_sales_order"), args.get("item_code")): reserved_so = args.get("against_sales_order") elif args.get("against_sales_invoice"): sales_order = frappe.db.sql( , (args.get("against_sales_invoice"), args.get("item_code")), ) if sales_order and sales_order[0]: if get_reserved_qty_for_so(sales_order[0][0], args.get("item_code")): reserved_so = sales_order[0] elif args.get("sales_order"): if get_reserved_qty_for_so(args.get("sales_order"), args.get("item_code")): reserved_so = args.get("sales_order") return reserved_so
494bd9ef78313436f0424b918f200dab8fc7c20b
15
get_item_details.py
253
style: format code with black
14,622
0
25
146
26
67,799
42
erpnext
9
erpnext/stock/get_item_details.py
Python
18
{ "docstring": "select sales_order from `tabSales Invoice Item` where\n\t\tparent=%s and item_code=%s", "language": "en", "n_whitespaces": 8, "n_words": 10, "vocab_size": 10 }
https://github.com/frappe/erpnext.git
1
test_short_term_login_token
def test_short_term_login_token(self): token = self.macaroon_generator.generate_short_term_login_token( user_id="@user:tesths", auth_provider_id="oidc", auth_provider_session_id="sid", duration_in_ms=2 * 60 * 1000, ) info = self.macaroon_generator.verify_short_term_login_token(token) self.assertEqual(info.user_id, "@user:tesths") self.assertEqual(info.auth_provider_id, "oidc") self.assertEqual(info.auth_provider_session_id, "sid") # Raises with another secret key with self.assertRaises(MacaroonVerificationFailedException): self.other_macaroon_generator.verify_short_term_login_token(token) # Wait a minute self.reactor.pump([60]) # Shouldn't raise self.macaroon_generator.verify_short_term_login_token(token) # Wait another minute self.reactor.pump([60]) # Should raise since it expired with self.assertRaises(MacaroonVerificationFailedException): self.macaroon_generator.verify_short_term_login_token(token)
fe1daad67237c2154a3d8d8cdf6c603f0d33682e
11
test_macaroons.py
233
Move the "email unsubscribe" resource, refactor the macaroon generator & simplify the access token verification logic. (#12986) This simplifies the access token verification logic by removing the `rights` parameter which was only ever used for the unsubscribe link in email notifications. The latter has been moved under the `/_synapse` namespace, since it is not a standard API. This also makes the email verification link more secure, by embedding the app_id and pushkey in the macaroon and verifying it. This prevents the user from tampering the query parameters of that unsubscribe link. Macaroon generation is refactored: - Centralised all macaroon generation and verification logic to the `MacaroonGenerator` - Moved to `synapse.utils` - Changed the constructor to require only a `Clock`, hostname, and a secret key (instead of a full `Homeserver`). - Added tests for all methods.
72,365
0
240
135
39
248,585
55
synapse
17
tests/util/test_macaroons.py
Python
18
{ "docstring": "Test the generation and verification of short-term login tokens", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/matrix-org/synapse.git
6
polarity_scores
def polarity_scores(self, text): # text, words_and_emoticons, is_cap_diff = self.preprocess(text) sentitext = SentiText( text, self.constants.PUNC_LIST, self.constants.REGEX_REMOVE_PUNCTUATION ) sentiments = [] words_and_emoticons = sentitext.words_and_emoticons for item in words_and_emoticons: valence = 0 i = words_and_emoticons.index(item) if ( i < len(words_and_emoticons) - 1 and item.lower() == "kind" and words_and_emoticons[i + 1].lower() == "of" ) or item.lower() in self.constants.BOOSTER_DICT: sentiments.append(valence) continue sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments) sentiments = self._but_check(words_and_emoticons, sentiments) return self.score_valence(sentiments, text)
74bb3c28ce9f2cd2be4cd9176747d59a0d67285d
15
vader.py
218
Add a note stating that a hashtag is unsupported in VADER
7,656
0
274
138
53
42,601
70
nltk
21
nltk/sentiment/vader.py
Python
19
{ "docstring": "\n Return a float for sentiment strength based on the input text.\n Positive values are positive valence, negative value are negative\n valence.\n\n :note: Hashtags are not taken into consideration (e.g. #BAD is neutral). If you\n are interested in processing the text in the hashtags too, then we recommend\n preprocessing your data to remove the #, after which the hashtag text may be\n matched as if it was a normal word in the sentence.\n ", "language": "en", "n_whitespaces": 141, "n_words": 72, "vocab_size": 59 }
https://github.com/nltk/nltk.git
1
test_mutating_input_arrays_y_and_z
def test_mutating_input_arrays_y_and_z(fig_test, fig_ref): ax1 = fig_test.add_subplot(111, projection='3d') x = [1, 2, 3] y = [0.0, 0.0, 0.0] z = [0.0, 0.0, 0.0] ax1.plot(x, y, z, 'o-') ax1.set_ylim([0, 4]) ax1.set_zlim([0, 4]) fig_test.draw_without_rendering() # mutate y,z to get a nontrivial line y[:] = [1, 2, 3] z[:] = [1, 2, 3] # draw the same plot without mutating x and y ax2 = fig_ref.add_subplot(111, projection='3d') x = [1, 2, 3] y = [0.0, 0.0, 0.0] z = [0.0, 0.0, 0.0] ax2.plot(x, y, z, 'o-') ax2.set_ylim([0, 4]) ax2.set_zlim([0, 4]) fig_test.draw_without_rendering()
7a1df7830f7685a99291d90c5e79bfc5e7876f31
10
test_axes3d.py
277
Test that plot results aren't affected by mutating input arrays
24,166
0
150
208
46
110,450
87
matplotlib
14
lib/mpl_toolkits/mplot3d/tests/test_axes3d.py
Python
19
{ "docstring": "\n Test to see if the `z` axis does not get mutated\n after a call to `Axes3D.plot`\n\n test cases came from GH#8990\n ", "language": "en", "n_whitespaces": 34, "n_words": 21, "vocab_size": 20 }
https://github.com/matplotlib/matplotlib.git
4
dag_edges
def dag_edges(dag): # Edges to add between TaskGroup edges_to_add = set() # Edges to remove between individual tasks that are replaced by edges_to_add. edges_to_skip = set() task_group_map = dag.task_group.get_task_group_dict()
bb26f96665567325a7fbb810249820e7dac0322a
9
views.py
48
Make Grid and and Graph view work with task mapping (#21740) * Expand mapped tasks in the Scheduler Technically this is done inside DagRun.task_instance_scheduling_decisions, but the only place that is currently called is the Scheduler The way we are getting `upstream_ti` to pass to expand_mapped_task is all sorts of wrong and will need fixing, I think the interface for that method is wrong and the mapped task should be responsible for finding the right upstream TI itself. * make UI and tree work with mapped tasks * add graph tooltip and map count * simplify node label redraw logic * add utils.js and map_index to /taskInstances * use TaskInstanceState instead of strings * move map_index on /taskinstance to separate PR * check to use Task or Tasks * remove `no_status` and use TaskInstanceState Co-authored-by: Ash Berlin-Taylor <[email protected]>
8,568
0
47
115
22
45,441
29
airflow
8
airflow/www/views.py
Python
18
{ "docstring": "\n Create the list of edges needed to construct the Graph view.\n\n A special case is made if a TaskGroup is immediately upstream/downstream of another\n TaskGroup or task. Two dummy nodes named upstream_join_id and downstream_join_id are\n created for the TaskGroup. Instead of drawing an edge onto every task in the TaskGroup,\n all edges are directed onto the dummy nodes. This is to cut down the number of edges on\n the graph.\n\n For example: A DAG with TaskGroups group1 and group2:\n group1: task1, task2, task3\n group2: task4, task5, task6\n\n group2 is downstream of group1:\n group1 >> group2\n\n Edges to add (This avoids having to create edges between every task in group1 and group2):\n task1 >> downstream_join_id\n task2 >> downstream_join_id\n task3 >> downstream_join_id\n downstream_join_id >> upstream_join_id\n upstream_join_id >> task4\n upstream_join_id >> task5\n upstream_join_id >> task6\n ", "language": "en", "n_whitespaces": 233, "n_words": 132, "vocab_size": 81 }
https://github.com/apache/airflow.git
1
require_tokenizers
def require_tokenizers(test_case): return unittest.skipUnless(is_tokenizers_available(), "test requires tokenizers")(test_case)
57e6464ac9a31156f1c93e59107323e6ec01309e
10
testing_utils.py
37
Update all require decorators to use skipUnless when possible (#16999)
6,797
0
13
20
7
37,492
7
transformers
5
src/transformers/testing_utils.py
Python
2
{ "docstring": "\n Decorator marking a test that requires ๐Ÿค— Tokenizers. These tests are skipped when ๐Ÿค— Tokenizers isn't installed.\n ", "language": "en", "n_whitespaces": 24, "n_words": 17, "vocab_size": 16 }
https://github.com/huggingface/transformers.git
5
current_operation
def current_operation(self) -> str | None: modbus_control = self.device.states[OverkizState.MODBUS_CONTROL_DHW] if modbus_control and modbus_control.value_as_str == OverkizCommandParam.STOP: return STATE_OFF current_mode = self.device.states[OverkizState.MODBUS_DHW_MODE] if current_mode and current_mode.value_as_str in OVERKIZ_TO_OPERATION_MODE: return OVERKIZ_TO_OPERATION_MODE[current_mode.value_as_str] return None
1c0f9cf941f77d6e3d299f98d5174f0a2953f236
9
hitachi_dhw.py
102
Add Overkiz Hitachi DHW (#81536) * Port ha-tahome hitachi dhw * Use int for setting temperature * Use value as float when possible * Use device state for current operation * Update homeassistant/components/overkiz/water_heater_entities/hitachi_dhw.py Co-authored-by: Quentame <[email protected]> * Update homeassistant/components/overkiz/water_heater_entities/hitachi_dhw.py Co-authored-by: Quentame <[email protected]> * Use ON instead of ECO for standard operation mode Co-authored-by: Quentame <[email protected]>
90,732
0
94
65
23
291,628
30
core
15
homeassistant/components/overkiz/water_heater_entities/hitachi_dhw.py
Python
9
{ "docstring": "Return current operation ie. eco, electric, performance, ...", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
https://github.com/home-assistant/core.git
4
add_provs
def add_provs(self, reader): fileids = reader.fileids() for fileid in fileids: prov, langfile = os.path.split(fileid) file_name, file_extension = os.path.splitext(langfile) if file_extension == ".tab": lang = file_name.split("-")[-1] if lang in self.provenances.keys(): # We already have another resource for this lang, # so we need to further specify the lang id: lang = f"{lang}_{prov}" self.provenances[lang] = prov
8ffd0d8190552d45f8b92e18da3fc41639e5185d
14
wordnet.py
150
Initialize empty provenance for default English
7,546
0
210
84
41
42,453
54
nltk
16
nltk/corpus/reader/wordnet.py
Python
10
{ "docstring": "Add languages from Multilingual Wordnet to the provenance dictionary", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/nltk/nltk.git
2
site_data_dir
def site_data_dir(self) -> str: # XDG default for $XDG_DATA_DIRS; only first, if multipath is False path = os.environ.get("XDG_DATA_DIRS", "") if not path.strip(): path = f"/usr/local/share{os.pathsep}/usr/share" return self._with_multi_path(path)
f3166e673fe8d40277b804d35d77dcdb760fc3b3
11
unix.py
78
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
3,281
0
73
39
24
20,229
27
pipenv
10
pipenv/patched/notpip/_vendor/platformdirs/unix.py
Python
10
{ "docstring": "\n :return: data directories shared by users (if `multipath <platformdirs.api.PlatformDirsABC.multipath>` is\n enabled and ``XDG_DATA_DIR`` is set and a multi path the response is also a multi path separated by the OS\n path separator), e.g. ``/usr/local/share/$appname/$version`` or ``/usr/share/$appname/$version``\n ", "language": "en", "n_whitespaces": 67, "n_words": 36, "vocab_size": 27 }
https://github.com/pypa/pipenv.git
3
absorbing_probabilities
def absorbing_probabilities(self): _, _, R, _ = self.decompose() N = self.fundamental_matrix() if R is None or N is None: return None return N*R
7fe8e027ae1d7f683243c0229b961671a6cbb4c5
8
stochastic_process_types.py
67
Improved some documentation in the stats module
48,618
0
69
41
17
197,540
23
sympy
7
sympy/stats/stochastic_process_types.py
Python
6
{ "docstring": "\n Computes the absorbing probabilities, i.e.\n the ij-th entry of the matrix denotes the\n probability of Markov chain being absorbed\n in state j starting from state i.\n ", "language": "en", "n_whitespaces": 62, "n_words": 26, "vocab_size": 21 }
https://github.com/sympy/sympy.git
2
doctype_matches
def doctype_matches(text, regex): m = doctype_lookup_re.search(text) if m is None: return False doctype = m.group(1) return re.compile(regex, re.I).match(doctype.strip()) is not None
f3166e673fe8d40277b804d35d77dcdb760fc3b3
11
util.py
87
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
3,407
0
43
54
17
20,520
21
pipenv
13
pipenv/patched/notpip/_vendor/pygments/util.py
Python
6
{ "docstring": "Check if the doctype matches a regular expression (if present).\n\n Note that this method only checks the first part of a DOCTYPE.\n eg: 'html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\"'\n ", "language": "en", "n_whitespaces": 38, "n_words": 29, "vocab_size": 27 }
https://github.com/pypa/pipenv.git
1
test_converts_stats_period_start_end
def test_converts_stats_period_start_end(self): payload = self.make_payload("discover", {"statsPeriodStart": "1w", "statsPeriodEnd": "5d"}) with self.feature("organizations:discover-query"): response = self.get_success_response(self.org.slug, status_code=201, **payload) data_export = ExportedData.objects.get(id=response.data["id"]) query_info = data_export.query_info assert parse_datetime_string(query_info["start"]) == parse_datetime_string( "2020-05-12T14:00:00" ) assert parse_datetime_string(query_info["end"]) == parse_datetime_string( "2020-05-14T14:00:00" ) assert "statsPeriod" not in query_info assert "statsPeriodStart" not in query_info assert "statsPeriodSEnd" not in query_info
096b5511e244eecd8799b2a0324655207ce8985e
12
test_data_export.py
205
ref(tests): Remove `get_valid_response()` (#34822)
19,764
0
166
114
32
100,170
49
sentry
18
tests/sentry/data_export/endpoints/test_data_export.py
Python
15
{ "docstring": "\n Ensures that statsPeriodStart and statsPeriodEnd is converted to start/end.\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
https://github.com/getsentry/sentry.git
3
response_add
def response_add(self, request, obj, post_url_continue=None): # We should allow further modification of the user just added i.e. the # 'Save' button should behave like the 'Save and continue editing' # button except in two scenarios: # * The user has pressed the 'Save and add another' button # * We are adding a user in a popup if "_addanother" not in request.POST and IS_POPUP_VAR not in request.POST: request.POST = request.POST.copy() request.POST["_continue"] = 1 return super().response_add(request, obj, post_url_continue)
9c19aff7c7561e3a82978a272ecdaad40dda5c00
11
admin.py
102
Refs #33476 -- Reformatted code with Black.
50,467
0
155
61
52
203,593
77
django
9
django/contrib/auth/admin.py
Python
5
{ "docstring": "\n Determine the HttpResponse for the add_view stage. It mostly defers to\n its superclass implementation but is customized because the User model\n has a slightly different workflow.\n ", "language": "en", "n_whitespaces": 55, "n_words": 26, "vocab_size": 24 }
https://github.com/django/django.git
1
test_decimal_conversion_more_digits
def test_decimal_conversion_more_digits(): formatted = format_target_temperature("16.09") assert formatted == "16.1"
b0ed42a5a58976ebe82b5bbbb60c499648a1718b
9
test_temperature_format.py
32
Fix #69952: Daikin AC Temperature jumps after being set (#70326)
95,665
0
18
15
8
296,690
9
core
3
tests/components/daikin/test_temperature_format.py
Python
3
{ "docstring": "Check at most 1 decimal is kept when target temp is a decimal with more than 1 decimal.", "language": "en", "n_whitespaces": 17, "n_words": 18, "vocab_size": 15 }
https://github.com/home-assistant/core.git
1
get_task_chosen_response
def get_task_chosen_response(request, task): result_data = { 'id': task.id, 'name': task.name, 'edit_url': reverse('wagtailadmin_workflows:edit_task', args=[task.id]), } return render_modal_workflow( request, None, None, None, json_data={'step': 'task_chosen', 'result': result_data} )
60ba39ffb5ec6d760efa6e2ecbff7ede53b12464
13
workflows.py
103
replace get_task_result_data helper with more useful one get_task_chosen_response
15,531
0
75
62
23
70,608
25
wagtail
10
wagtail/admin/views/workflows.py
Python
10
{ "docstring": "\n helper function: given a task, return the response indicating that it has been chosen\n ", "language": "en", "n_whitespaces": 21, "n_words": 14, "vocab_size": 14 }
https://github.com/wagtail/wagtail.git
5
min_weight_matching
def min_weight_matching(G, maxcardinality=None, weight="weight"): if maxcardinality not in (True, None): raise nx.NetworkXError( "The argument maxcardinality does not make sense " "in the context of minimum weight matchings." "It is deprecated and will be removed in v3.0." ) if len(G.edges) == 0: return max_weight_matching(G, maxcardinality=True, weight=weight) G_edges = G.edges(data=weight, default=1) max_weight = 1 + max(w for _, _, w in G_edges) InvG = nx.Graph() edges = ((u, v, max_weight - w) for u, v, w in G_edges) InvG.add_weighted_edges_from(edges, weight=weight) return max_weight_matching(InvG, maxcardinality=True, weight=weight) @not_implemented_for("multigraph") @not_implemented_for("directed")
c3e1e7f4c6a4edb968494cd4775574ad26f2a96b
@not_implemented_for("multigraph") @not_implemented_for("directed")
11
matching.py
231
Fix min_weight_matching to convert edge weights without reciprocal (#5394) * Add test and then fix code and docs * Correct and improve docs. Change 1e-6 to 1 to maintain integers. Include argument in docstring for why adding the 1 doesn't impact the min
41,940
1
163
137
65
176,513
84
networkx
22
networkx/algorithms/matching.py
Python
15
{ "docstring": "Computing a minimum-weight maximal matching of G.\n\n Use the maximum-weight algorithm with edge weights subtracted\n from the maximum weight of all edges.\n\n A matching is a subset of edges in which no node occurs more than once.\n The weight of a matching is the sum of the weights of its edges.\n A maximal matching cannot add more edges and still be a matching.\n The cardinality of a matching is the number of matched edges.\n\n This method replaces the edge weights with 1 plus the maximum edge weight\n minus the original edge weight.\n\n new_weight = (max_weight + 1) - edge_weight\n\n then runs :func:`max_weight_matching` with the new weights.\n The max weight matching with these new weights corresponds\n to the min weight matching using the original weights.\n Adding 1 to the max edge weight keeps all edge weights positive\n and as integers if they started as integers.\n\n You might worry that adding 1 to each weight would make the algorithm\n favor matchings with more edges. But we use the parameter\n `maxcardinality=True` in `max_weight_matching` to ensure that the\n number of edges in the competing matchings are the same and thus\n the optimum does not change due to changes in the number of edges.\n\n Read the documentation of `max_weight_matching` for more information.\n\n Parameters\n ----------\n G : NetworkX graph\n Undirected graph\n\n maxcardinality: bool\n .. deprecated:: 2.8\n The `maxcardinality` parameter will be removed in v3.0.\n It doesn't make sense to set it to False when looking for\n a min weight matching because then we just return no edges.\n\n If maxcardinality is True, compute the maximum-cardinality matching\n with minimum weight among all maximum-cardinality matchings.\n\n weight: string, optional (default='weight')\n Edge data key corresponding to the edge weight.\n If key not found, uses 1 as weight.\n\n Returns\n -------\n matching : set\n A minimal weight matching of the graph.\n\n See Also\n --------\n max_weight_matching\n ", "language": "en", "n_whitespaces": 476, "n_words": 302, "vocab_size": 163 }
https://github.com/networkx/networkx.git
8
_find_agent_ip
def _find_agent_ip(vm_, vmid): # This functionality is only available on qemu if not vm_.get("technology") == "qemu": log.warning("Find agent IP is only available under `qemu`") return # Create an empty list of IP-addresses: ips = [] endpoint = "nodes/{}/qemu/{}/agent/network-get-interfaces".format(vm_["host"], vmid) interfaces = query("get", endpoint) # If we get a result from the agent, parse it for interface in interfaces["result"]: # Skip interface if hardware-address is 00:00:00:00:00:00 (loopback interface) if str(interface.get("hardware-address")) == "00:00:00:00:00:00": continue # Skip entries without ip-addresses information if "ip-addresses" not in interface: continue for if_addr in interface["ip-addresses"]: ip_addr = if_addr.get("ip-address") if ip_addr is not None: ips.append(str(ip_addr)) if len(ips) > 0: return preferred_ip(vm_, ips) raise SaltCloudExecutionFailure
a5679caf65c7c79cd72841b6e5793b9b693744c9
15
proxmox.py
231
Add support for get IP-address from agent
54,362
0
254
128
78
216,056
106
salt
19
salt/cloud/clouds/proxmox.py
Python
19
{ "docstring": "\n If VM is started we would return the IP-addresses that are returned by the qemu agent on the VM.\n ", "language": "en", "n_whitespaces": 26, "n_words": 19, "vocab_size": 17 }
https://github.com/saltstack/salt.git
1
test_get_name_error
def test_get_name_error(): test_sid = "S-1-2-3-4" sid_obj = win32security.ConvertStringSidToSid(test_sid) with pytest.raises(salt.exceptions.CommandExecutionError) as exc: salt.utils.win_dacl.get_name(sid_obj) assert "No mapping between account names" in exc.value.message
3bb43882e727b1d36abe2e501759c9c5e9048ecf
12
test_get_name.py
87
Add tests, migrate some tests to pytest
54,131
0
43
48
20
215,737
21
salt
16
tests/pytests/unit/utils/win_dacl/test_get_name.py
Python
6
{ "docstring": "\n Test get_name with an un mapped SID, should throw a CommandExecutionError\n ", "language": "en", "n_whitespaces": 18, "n_words": 11, "vocab_size": 11 }
https://github.com/saltstack/salt.git
2
get_relations
def get_relations(self, cursor, table_name): cursor.execute( "PRAGMA foreign_key_list(%s)" % self.connection.ops.quote_name(table_name) ) return { column_name: (ref_column_name, ref_table_name) for _, _, ref_table_name, column_name, ref_column_name, *_ in cursor.fetchall() }
9c19aff7c7561e3a82978a272ecdaad40dda5c00
12
introspection.py
85
Refs #33476 -- Reformatted code with Black.
51,029
0
93
56
24
205,195
25
django
13
django/db/backends/sqlite3/introspection.py
Python
8
{ "docstring": "\n Return a dictionary of {column_name: (ref_column_name, ref_table_name)}\n representing all foreign keys in the given table.\n ", "language": "en", "n_whitespaces": 37, "n_words": 15, "vocab_size": 15 }
https://github.com/django/django.git
3
average_items_per_ms
def average_items_per_ms(self) -> Optional[float]: # We want to return None if this is the first background update item if self.total_item_count == 0: return None # Avoid dividing by zero elif self.avg_duration_ms == 0: return 0 else: # Use the exponential moving average so that we can adapt to # changes in how long the update process takes. return float(self.avg_item_count) / float(self.avg_duration_ms)
26211fec24d8d0a967de33147e148166359ec8cb
12
background_updates.py
78
Fix a bug in background updates wherein background updates are never run using the default batch size (#12157)
71,674
0
158
45
47
247,442
61
synapse
7
synapse/storage/background_updates.py
Python
11
{ "docstring": "An estimate of how long it takes to do a single update.\n Returns:\n A duration in ms as a float\n ", "language": "en", "n_whitespaces": 45, "n_words": 20, "vocab_size": 19 }
https://github.com/matrix-org/synapse.git
2
_pause_and_wait_for_callback
async def _pause_and_wait_for_callback(self): self._pause_requested = True await self.async_media_pause() try:
26251895295d74fcd2c73e37804c23675c433247
async def _pause_and_wait_for_callback(self): """Send pause and wait for the pause callback to be received.""" self._pause_requested = True await self.async_media_pause() try:
7
media_player.py
34
Use async_timeout in forked_daapd (#78451)
106,437
1
37
53
9
307,669
9
core
4
homeassistant/components/forked_daapd/media_player.py
Python
9
{ "docstring": "Send pause and wait for the pause callback to be received.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 10 }
https://github.com/home-assistant/core.git
1
set_options
def set_options(icon=None, button_color=None, element_size=(None, None), button_element_size=(None, None), margins=(None, None), element_padding=(None, None), auto_size_text=None, auto_size_buttons=None, font=None, border_width=None, slider_border_width=None, slider_relief=None, slider_orientation=None, autoclose_time=None, message_box_line_width=None, progress_meter_border_depth=None, progress_meter_style=None, progress_meter_relief=None, progress_meter_color=None, progress_meter_size=None, text_justification=None, background_color=None, element_background_color=None, text_element_background_color=None, input_elements_background_color=None, input_text_color=None, scrollbar_color=None, text_color=None, element_text_color=None, debug_win_size=(None, None), window_location=(None, None), error_button_color=(None, None), tooltip_time=None, tooltip_font=None, use_ttk_buttons=None, ttk_theme=None, suppress_error_popups=None, suppress_raise_key_errors=None, suppress_key_guessing=None,warn_button_key_duplicates=False, enable_treeview_869_patch=None, enable_mac_notitlebar_patch=None, use_custom_titlebar=None, titlebar_background_color=None, titlebar_text_color=None, titlebar_font=None, titlebar_icon=None, user_settings_path=None, pysimplegui_settings_path=None, pysimplegui_settings_filename=None, keep_on_top=None, dpi_awareness=None, scaling=None, disable_modal_windows=None, tooltip_offset=(None, None)): global DEFAULT_ELEMENT_SIZE global DEFAULT_BUTTON_ELEMENT_SIZE global DEFAULT_MARGINS # Margins for each LEFT/RIGHT margin is first term global DEFAULT_ELEMENT_PADDING # Padding between elements (row, col) in pixels global DEFAULT_AUTOSIZE_TEXT global DEFAULT_AUTOSIZE_BUTTONS global DEFAULT_FONT global DEFAULT_BORDER_WIDTH global DEFAULT_AUTOCLOSE_TIME global DEFAULT_BUTTON_COLOR global MESSAGE_BOX_LINE_WIDTH global DEFAULT_PROGRESS_BAR_BORDER_WIDTH global DEFAULT_PROGRESS_BAR_STYLE global DEFAULT_PROGRESS_BAR_RELIEF global DEFAULT_PROGRESS_BAR_COLOR global DEFAULT_PROGRESS_BAR_SIZE global DEFAULT_TEXT_JUSTIFICATION global DEFAULT_DEBUG_WINDOW_SIZE global DEFAULT_SLIDER_BORDER_WIDTH global DEFAULT_SLIDER_RELIEF global DEFAULT_SLIDER_ORIENTATION global DEFAULT_BACKGROUND_COLOR global DEFAULT_INPUT_ELEMENTS_COLOR global DEFAULT_ELEMENT_BACKGROUND_COLOR global DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR global DEFAULT_SCROLLBAR_COLOR global DEFAULT_TEXT_COLOR global DEFAULT_WINDOW_LOCATION global DEFAULT_ELEMENT_TEXT_COLOR global DEFAULT_INPUT_TEXT_COLOR global DEFAULT_TOOLTIP_TIME global DEFAULT_ERROR_BUTTON_COLOR global DEFAULT_TTK_THEME global USE_TTK_BUTTONS global TOOLTIP_FONT global SUPPRESS_ERROR_POPUPS global SUPPRESS_RAISE_KEY_ERRORS global SUPPRESS_KEY_GUESSING global WARN_DUPLICATE_BUTTON_KEY_ERRORS global ENABLE_TREEVIEW_869_PATCH global ENABLE_MAC_NOTITLEBAR_PATCH global USE_CUSTOM_TITLEBAR global CUSTOM_TITLEBAR_BACKGROUND_COLOR global CUSTOM_TITLEBAR_TEXT_COLOR global CUSTOM_TITLEBAR_ICON global CUSTOM_TITLEBAR_FONT global DEFAULT_USER_SETTINGS_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH global DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME global DEFAULT_KEEP_ON_TOP global DEFAULT_SCALING global DEFAULT_MODAL_WINDOWS_ENABLED global DEFAULT_TOOLTIP_OFFSET global _pysimplegui_user_settings # global _my_windows if icon: Window._user_defined_icon = icon # _my_windows._user_defined_icon = icon if button_color != None: if button_color == COLOR_SYSTEM_DEFAULT: DEFAULT_BUTTON_COLOR = (COLOR_SYSTEM_DEFAULT, COLOR_SYSTEM_DEFAULT) else: DEFAULT_BUTTON_COLOR = button_color if element_size != (None, None): DEFAULT_ELEMENT_SIZE = element_size if button_element_size != (None, None): DEFAULT_BUTTON_ELEMENT_SIZE = button_element_size if margins != (None, None): DEFAULT_MARGINS = margins if element_padding != (None, None): DEFAULT_ELEMENT_PADDING = element_padding if auto_size_text != None: DEFAULT_AUTOSIZE_TEXT = auto_size_text if auto_size_buttons != None: DEFAULT_AUTOSIZE_BUTTONS = auto_size_buttons if font != None: DEFAULT_FONT = font if border_width != None: DEFAULT_BORDER_WIDTH = border_width if autoclose_time != None: DEFAULT_AUTOCLOSE_TIME = autoclose_time if message_box_line_width != None: MESSAGE_BOX_LINE_WIDTH = message_box_line_width if progress_meter_border_depth != None: DEFAULT_PROGRESS_BAR_BORDER_WIDTH = progress_meter_border_depth if progress_meter_style != None: warnings.warn('You can no longer set a progress bar style. All ttk styles must be the same for the window', UserWarning) # DEFAULT_PROGRESS_BAR_STYLE = progress_meter_style if progress_meter_relief != None: DEFAULT_PROGRESS_BAR_RELIEF = progress_meter_relief if progress_meter_color != None: DEFAULT_PROGRESS_BAR_COLOR = progress_meter_color if progress_meter_size != None: DEFAULT_PROGRESS_BAR_SIZE = progress_meter_size if slider_border_width != None: DEFAULT_SLIDER_BORDER_WIDTH = slider_border_width if slider_orientation != None: DEFAULT_SLIDER_ORIENTATION = slider_orientation if slider_relief != None: DEFAULT_SLIDER_RELIEF = slider_relief if text_justification != None: DEFAULT_TEXT_JUSTIFICATION = text_justification if background_color != None: DEFAULT_BACKGROUND_COLOR = background_color if text_element_background_color != None: DEFAULT_TEXT_ELEMENT_BACKGROUND_COLOR = text_element_background_color if input_elements_background_color != None: DEFAULT_INPUT_ELEMENTS_COLOR = input_elements_background_color if element_background_color != None: DEFAULT_ELEMENT_BACKGROUND_COLOR = element_background_color if window_location != (None, None): DEFAULT_WINDOW_LOCATION = window_location if debug_win_size != (None, None): DEFAULT_DEBUG_WINDOW_SIZE = debug_win_size if text_color != None: DEFAULT_TEXT_COLOR = text_color if scrollbar_color != None: DEFAULT_SCROLLBAR_COLOR = scrollbar_color if element_text_color != None: DEFAULT_ELEMENT_TEXT_COLOR = element_text_color if input_text_color is not None: DEFAULT_INPUT_TEXT_COLOR = input_text_color if tooltip_time is not None: DEFAULT_TOOLTIP_TIME = tooltip_time if error_button_color != (None, None): DEFAULT_ERROR_BUTTON_COLOR = error_button_color if ttk_theme is not None: DEFAULT_TTK_THEME = ttk_theme if use_ttk_buttons is not None: USE_TTK_BUTTONS = use_ttk_buttons if tooltip_font is not None: TOOLTIP_FONT = tooltip_font if suppress_error_popups is not None: SUPPRESS_ERROR_POPUPS = suppress_error_popups if suppress_raise_key_errors is not None: SUPPRESS_RAISE_KEY_ERRORS = suppress_raise_key_errors if suppress_key_guessing is not None: SUPPRESS_KEY_GUESSING = suppress_key_guessing if warn_button_key_duplicates is not None: WARN_DUPLICATE_BUTTON_KEY_ERRORS = warn_button_key_duplicates if enable_treeview_869_patch is not None: ENABLE_TREEVIEW_869_PATCH = enable_treeview_869_patch if enable_mac_notitlebar_patch is not None: ENABLE_MAC_NOTITLEBAR_PATCH = enable_mac_notitlebar_patch if use_custom_titlebar is not None: USE_CUSTOM_TITLEBAR = use_custom_titlebar if titlebar_background_color is not None: CUSTOM_TITLEBAR_BACKGROUND_COLOR = titlebar_background_color if titlebar_text_color is not None: CUSTOM_TITLEBAR_TEXT_COLOR = titlebar_text_color if titlebar_font is not None: CUSTOM_TITLEBAR_FONT = titlebar_font if titlebar_icon is not None: CUSTOM_TITLEBAR_ICON = titlebar_icon if user_settings_path is not None: DEFAULT_USER_SETTINGS_PATH = user_settings_path if pysimplegui_settings_path is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH = pysimplegui_settings_path if pysimplegui_settings_filename is not None: DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME = pysimplegui_settings_filename if pysimplegui_settings_filename is not None or pysimplegui_settings_filename is not None: _pysimplegui_user_settings = UserSettings(filename=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_FILENAME, path=DEFAULT_USER_SETTINGS_PYSIMPLEGUI_PATH) if keep_on_top is not None: DEFAULT_KEEP_ON_TOP = keep_on_top if dpi_awareness is True: if running_windows(): if platform.release() == "7": ctypes.windll.user32.SetProcessDPIAware() elif platform.release() == "8" or platform.release() == "10": ctypes.windll.shcore.SetProcessDpiAwareness(1) if scaling is not None: DEFAULT_SCALING = scaling if disable_modal_windows is not None: DEFAULT_MODAL_WINDOWS_ENABLED = not disable_modal_windows if tooltip_offset != (None, None): DEFAULT_TOOLTIP_OFFSET = tooltip_offset return True # ----------------------------------------------------------------- # # .########.##.....##.########.##.....##.########..######. # ....##....##.....##.##.......###...###.##.......##....## # ....##....##.....##.##.......####.####.##.......##...... # ....##....#########.######...##.###.##.######....######. # ....##....##.....##.##.......##.....##.##.............## # ....##....##.....##.##.......##.....##.##.......##....## # ....##....##.....##.########.##.....##.########..######. # ----------------------------------------------------------------- # # The official Theme code #################### ChangeLookAndFeel ####################### # Predefined settings that will change the colors and styles # # of the elements. # ############################################################## LOOK_AND_FEEL_TABLE = { "SystemDefault": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefaultForReal": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "SystemDefault1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Material1": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Material2": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "Reddit": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "Topanga": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "GreenTan": {"BACKGROUND": "#9FB8AD", "TEXT": '#000000', "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Dark": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "Dark2": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Black": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Tan": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TanBlue": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkTanBlue": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkAmber": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Reds": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Green": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BluePurple": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Purple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BlueMono": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "GreenMono": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrownBlue": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "BrightColors": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "NeutralBlue": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Kayak": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "SandyBeach": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "TealMono": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "Default": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Default1": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "DefaultNoMoreNagging": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": OFFICIAL_PYSIMPLEGUI_BUTTON_COLOR, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "GrayGrayGray": {"BACKGROUND": COLOR_SYSTEM_DEFAULT, "TEXT": COLOR_SYSTEM_DEFAULT, "INPUT": COLOR_SYSTEM_DEFAULT, "TEXT_INPUT": COLOR_SYSTEM_DEFAULT, "SCROLL": COLOR_SYSTEM_DEFAULT, "BUTTON": COLOR_SYSTEM_DEFAULT, "PROGRESS": COLOR_SYSTEM_DEFAULT, "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "LightBlue": {"BACKGROUND": "#E3F2FD", "TEXT": "#000000", "INPUT": "#86A8FF", "TEXT_INPUT": "#000000", "SCROLL": "#86A8FF", "BUTTON": ("#FFFFFF", "#5079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey": {"BACKGROUND": "#FAFAFA", "TEXT": "#000000", "INPUT": "#004EA1", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5EA7FF", "BUTTON": ("#FFFFFF", "#0079D3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 0, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#FF0266", "ACCENT2": "#FF5C93", "ACCENT3": "#C5003C", }, "LightGrey1": {"BACKGROUND": "#ffffff", "TEXT": "#1a1a1b", "INPUT": "#dae0e6", "TEXT_INPUT": "#222222", "SCROLL": "#a5a4a4", "BUTTON": ("#FFFFFF", "#0079d3"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#ff5414", "ACCENT2": "#33a8ff", "ACCENT3": "#dbf0ff", }, "DarkBrown": {"BACKGROUND": "#282923", "TEXT": "#E7DB74", "INPUT": "#393a32", "TEXT_INPUT": "#E7C855", "SCROLL": "#E7C855", "BUTTON": ("#E7C855", "#284B5A"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "ACCENT1": "#c15226", "ACCENT2": "#7a4d5f", "ACCENT3": "#889743", }, "LightGreen1": {"BACKGROUND": "#9FB8AD", "TEXT": "#000000", "INPUT": "#F7F3EC", "TEXT_INPUT": "#000000", "SCROLL": "#F7F3EC", "BUTTON": ("#FFFFFF", "#475841"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen2": {"BACKGROUND": "#B7CECE", "TEXT": "#000000", "INPUT": "#FDFFF7", "TEXT_INPUT": "#000000", "SCROLL": "#FDFFF7", "BUTTON": ("#FFFFFF", "#658268"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "ACCENT1": "#76506d", "ACCENT2": "#5148f1", "ACCENT3": "#0a1c84", "PROGRESS_DEPTH": 0, }, "DarkGrey1": {"BACKGROUND": "#404040", "TEXT": "#FFFFFF", "INPUT": "#FFFFFF", "TEXT_INPUT": "#000000", "SCROLL": "#707070", "BUTTON": ("#FFFFFF", "#004F00"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlack": {"BACKGROUND": "#000000", "TEXT": "#FFFFFF", "INPUT": "#4D4D4D", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#707070", "BUTTON": ("#000000", "#FFFFFF"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown": {"BACKGROUND": "#fdf6e3", "TEXT": "#268bd1", "INPUT": "#eee8d5", "TEXT_INPUT": "#6c71c3", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063542"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown1": {"BACKGROUND": "#e5dece", "TEXT": "#063289", "INPUT": "#f9f8f4", "TEXT_INPUT": "#242834", "SCROLL": "#eee8d5", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue1": {"BACKGROUND": "#242834", "TEXT": "#dfe6f8", "INPUT": "#97755c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a9afbb", "BUTTON": ("#FFFFFF", "#063289"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown1": {"BACKGROUND": "#2c2825", "TEXT": "#fdcb52", "INPUT": "#705e52", "TEXT_INPUT": "#fdcb52", "SCROLL": "#705e52", "BUTTON": ("#000000", "#fdcb52"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue2": {"BACKGROUND": "#1a2835", "TEXT": "#d1ecff", "INPUT": "#335267", "TEXT_INPUT": "#acc2d0", "SCROLL": "#1b6497", "BUTTON": ("#000000", "#fafaf8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown2": {"BACKGROUND": "#280001", "TEXT": "#FFFFFF", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#763e00", "BUTTON": ("#000000", "#daad28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGreen": {"BACKGROUND": "#82a459", "TEXT": "#000000", "INPUT": "#d8d584", "TEXT_INPUT": "#000000", "SCROLL": "#e3ecf3", "BUTTON": ("#FFFFFF", "#517239"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue1": {"BACKGROUND": "#A5CADD", "TEXT": "#6E266E", "INPUT": "#E0F5FF", "TEXT_INPUT": "#000000", "SCROLL": "#E0F5FF", "BUTTON": ("#FFFFFF", "#303952"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightPurple": {"BACKGROUND": "#B0AAC2", "TEXT": "#000000", "INPUT": "#F2EFE8", "SCROLL": "#F2EFE8", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#C2D4D8"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue2": {"BACKGROUND": "#AAB6D3", "TEXT": "#000000", "INPUT": "#F1F4FC", "SCROLL": "#F1F4FC", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#7186C7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen3": {"BACKGROUND": "#A8C1B4", "TEXT": "#000000", "INPUT": "#DDE0DE", "SCROLL": "#E3E3E3", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#6D9F85"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue3": {"BACKGROUND": "#64778d", "TEXT": "#FFFFFF", "INPUT": "#f0f3f7", "SCROLL": "#A6B2BE", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#283b5b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen4": {"BACKGROUND": "#b4ffb4", "TEXT": "#000000", "INPUT": "#ffff64", "SCROLL": "#ffb482", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#ffa0dc"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightGreen5": {"BACKGROUND": "#92aa9d", "TEXT": "#000000", "INPUT": "#fcfff6", "SCROLL": "#fcfff6", "TEXT_INPUT": "#000000", "BUTTON": ("#000000", "#d0dbbd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown2": {"BACKGROUND": "#a7ad7f", "TEXT": "#000000", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#5d907d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown3": {"BACKGROUND": "#efeccb", "TEXT": "#012f2f", "INPUT": "#e6d3a8", "SCROLL": "#e6d3a8", "TEXT_INPUT": "#012f2f", "BUTTON": ("#FFFFFF", "#046380"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBlue3": {"BACKGROUND": "#a8cfdd", "TEXT": "#000000", "INPUT": "#dfedf2", "SCROLL": "#dfedf2", "TEXT_INPUT": "#000000", "BUTTON": ("#FFFFFF", "#183440"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "LightBrown4": {"BACKGROUND": "#d7c79e", "TEXT": "#a35638", "INPUT": "#9dab86", "TEXT_INPUT": "#000000", "SCROLL": "#a35638", "BUTTON": ("#FFFFFF", "#a35638"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#a35638", "#9dab86", "#e08f62", "#d7c79e"], }, "DarkTeal": {"BACKGROUND": "#003f5c", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#fb5b5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "DarkPurple": {"BACKGROUND": "#472b62", "TEXT": "#fb5b5a", "INPUT": "#bc4873", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#bc4873", "BUTTON": ("#FFFFFF", "#472b62"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#003f5c", "#472b62", "#bc4873", "#fb5b5a"], }, "LightGreen6": {"BACKGROUND": "#eafbea", "TEXT": "#1f6650", "INPUT": "#6f9a8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#1f6650", "BUTTON": ("#FFFFFF", "#1f6650"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1f6650", "#6f9a8d", "#ea5e5e", "#eafbea"], }, "DarkGrey2": {"BACKGROUND": "#2b2b28", "TEXT": "#f8f8f8", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#2b2b28", "#e3b04b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b2b28", "#e3b04b", "#f1d6ab", "#f8f8f8"], }, "LightBrown6": {"BACKGROUND": "#f9b282", "TEXT": "#8f4426", "INPUT": "#de6b35", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8f4426", "BUTTON": ("#FFFFFF", "#8f4426"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#8f4426", "#de6b35", "#64ccda", "#f9b282"], }, "DarkTeal1": {"BACKGROUND": "#396362", "TEXT": "#ffe7d1", "INPUT": "#f6c89f", "TEXT_INPUT": "#000000", "SCROLL": "#f6c89f", "BUTTON": ("#ffe7d1", "#4b8e8d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "LightBrown7": {"BACKGROUND": "#f6c89f", "TEXT": "#396362", "INPUT": "#4b8e8d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#396362", "BUTTON": ("#FFFFFF", "#396362"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#396362", "#4b8e8d", "#f6c89f", "#ffe7d1"], }, "DarkPurple1": {"BACKGROUND": "#0c093c", "TEXT": "#fad6d6", "INPUT": "#eea5f6", "TEXT_INPUT": "#000000", "SCROLL": "#eea5f6", "BUTTON": ("#FFFFFF", "#df42d1"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0c093c", "#df42d1", "#eea5f6", "#fad6d6"], }, "DarkGrey3": {"BACKGROUND": "#211717", "TEXT": "#dfddc7", "INPUT": "#f58b54", "TEXT_INPUT": "#000000", "SCROLL": "#f58b54", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "LightBrown8": {"BACKGROUND": "#dfddc7", "TEXT": "#211717", "INPUT": "#a34a28", "TEXT_INPUT": "#dfddc7", "SCROLL": "#211717", "BUTTON": ("#dfddc7", "#a34a28"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#211717", "#a34a28", "#f58b54", "#dfddc7"], }, "DarkBlue4": {"BACKGROUND": "#494ca2", "TEXT": "#e3e7f1", "INPUT": "#c6cbef", "TEXT_INPUT": "#000000", "SCROLL": "#c6cbef", "BUTTON": ("#FFFFFF", "#8186d5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#494ca2", "#8186d5", "#c6cbef", "#e3e7f1"], }, "LightBlue4": {"BACKGROUND": "#5c94bd", "TEXT": "#470938", "INPUT": "#1a3e59", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#470938", "BUTTON": ("#FFFFFF", "#470938"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#470938", "#1a3e59", "#5c94bd", "#f2d6eb"], }, "DarkTeal2": {"BACKGROUND": "#394a6d", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkTeal3": {"BACKGROUND": "#3c9d9b", "TEXT": "#c0ffb3", "INPUT": "#52de97", "TEXT_INPUT": "#000000", "SCROLL": "#52de97", "BUTTON": ("#c0ffb3", "#394a6d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#394a6d", "#3c9d9b", "#52de97", "#c0ffb3"], }, "DarkPurple5": {"BACKGROUND": "#730068", "TEXT": "#f6f078", "INPUT": "#01d28e", "TEXT_INPUT": "#000000", "SCROLL": "#01d28e", "BUTTON": ("#f6f078", "#730068"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#730068", "#434982", "#01d28e", "#f6f078"], }, "DarkPurple2": {"BACKGROUND": "#202060", "TEXT": "#b030b0", "INPUT": "#602080", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#602080", "BUTTON": ("#FFFFFF", "#202040"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#202040", "#202060", "#602080", "#b030b0"], }, "DarkBlue5": {"BACKGROUND": "#000272", "TEXT": "#ff6363", "INPUT": "#a32f80", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#a32f80", "BUTTON": ("#FFFFFF", "#341677"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#000272", "#341677", "#a32f80", "#ff6363"], }, "LightGrey2": {"BACKGROUND": "#f6f6f6", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "LightGrey3": {"BACKGROUND": "#eae9e9", "TEXT": "#420000", "INPUT": "#d4d7dd", "TEXT_INPUT": "#420000", "SCROLL": "#420000", "BUTTON": ("#420000", "#d4d7dd"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#420000", "#d4d7dd", "#eae9e9", "#f6f6f6"], }, "DarkBlue6": {"BACKGROUND": "#01024e", "TEXT": "#ff6464", "INPUT": "#8b4367", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#8b4367", "BUTTON": ("#FFFFFF", "#543864"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#01024e", "#543864", "#8b4367", "#ff6464"], }, "DarkBlue7": {"BACKGROUND": "#241663", "TEXT": "#eae7af", "INPUT": "#a72693", "TEXT_INPUT": "#eae7af", "SCROLL": "#a72693", "BUTTON": ("#eae7af", "#160f30"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#160f30", "#241663", "#a72693", "#eae7af"], }, "LightBrown9": {"BACKGROUND": "#f6d365", "TEXT": "#3a1f5d", "INPUT": "#c83660", "TEXT_INPUT": "#f6d365", "SCROLL": "#3a1f5d", "BUTTON": ("#f6d365", "#c83660"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3a1f5d", "#c83660", "#e15249", "#f6d365"], }, "DarkPurple3": {"BACKGROUND": "#6e2142", "TEXT": "#ffd692", "INPUT": "#e16363", "TEXT_INPUT": "#ffd692", "SCROLL": "#e16363", "BUTTON": ("#ffd692", "#943855"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "LightBrown10": {"BACKGROUND": "#ffd692", "TEXT": "#6e2142", "INPUT": "#943855", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6e2142", "BUTTON": ("#FFFFFF", "#6e2142"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#6e2142", "#943855", "#e16363", "#ffd692"], }, "DarkPurple4": {"BACKGROUND": "#200f21", "TEXT": "#f638dc", "INPUT": "#5a3d5c", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#5a3d5c", "BUTTON": ("#FFFFFF", "#382039"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#200f21", "#382039", "#5a3d5c", "#f638dc"], }, "LightBlue5": {"BACKGROUND": "#b2fcff", "TEXT": "#3e64ff", "INPUT": "#5edfff", "TEXT_INPUT": "#000000", "SCROLL": "#3e64ff", "BUTTON": ("#FFFFFF", "#3e64ff"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e64ff", "#5edfff", "#b2fcff", "#ecfcff"], }, "DarkTeal4": {"BACKGROUND": "#464159", "TEXT": "#c7f0db", "INPUT": "#8bbabb", "TEXT_INPUT": "#000000", "SCROLL": "#8bbabb", "BUTTON": ("#FFFFFF", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightTeal": {"BACKGROUND": "#c7f0db", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#FFFFFF", "#464159"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "DarkTeal5": {"BACKGROUND": "#8bbabb", "TEXT": "#464159", "INPUT": "#6c7b95", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#464159", "BUTTON": ("#c7f0db", "#6c7b95"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#464159", "#6c7b95", "#8bbabb", "#c7f0db"], }, "LightGrey4": {"BACKGROUND": "#faf5ef", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#672f2f", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGreen7": {"BACKGROUND": "#99b19c", "TEXT": "#faf5ef", "INPUT": "#d7d1c9", "TEXT_INPUT": "#000000", "SCROLL": "#d7d1c9", "BUTTON": ("#FFFFFF", "#99b19c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "LightGrey5": {"BACKGROUND": "#d7d1c9", "TEXT": "#672f2f", "INPUT": "#99b19c", "TEXT_INPUT": "#672f2f", "SCROLL": "#672f2f", "BUTTON": ("#FFFFFF", "#672f2f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#672f2f", "#99b19c", "#d7d1c9", "#faf5ef"], }, "DarkBrown3": {"BACKGROUND": "#a0855b", "TEXT": "#f9f6f2", "INPUT": "#f1d6ab", "TEXT_INPUT": "#000000", "SCROLL": "#f1d6ab", "BUTTON": ("#FFFFFF", "#38470b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "LightBrown11": {"BACKGROUND": "#f1d6ab", "TEXT": "#38470b", "INPUT": "#a0855b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#38470b", "BUTTON": ("#f9f6f2", "#a0855b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#38470b", "#a0855b", "#f1d6ab", "#f9f6f2"], }, "DarkRed": {"BACKGROUND": "#83142c", "TEXT": "#f9d276", "INPUT": "#ad1d45", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#ad1d45", "BUTTON": ("#f9d276", "#ad1d45"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#44000d", "#83142c", "#ad1d45", "#f9d276"], }, "DarkTeal6": {"BACKGROUND": "#204969", "TEXT": "#fff7f7", "INPUT": "#dadada", "TEXT_INPUT": "#000000", "SCROLL": "#dadada", "BUTTON": ("#000000", "#fff7f7"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#204969", "#08ffc8", "#dadada", "#fff7f7"], }, "DarkBrown4": {"BACKGROUND": "#252525", "TEXT": "#ff0000", "INPUT": "#af0404", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#af0404", "BUTTON": ("#FFFFFF", "#252525"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#252525", "#414141", "#af0404", "#ff0000"], }, "LightYellow": {"BACKGROUND": "#f4ff61", "TEXT": "#27aa80", "INPUT": "#32ff6a", "TEXT_INPUT": "#000000", "SCROLL": "#27aa80", "BUTTON": ("#f4ff61", "#27aa80"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#27aa80", "#32ff6a", "#a8ff3e", "#f4ff61"], }, "DarkGreen1": {"BACKGROUND": "#2b580c", "TEXT": "#fdef96", "INPUT": "#f7b71d", "TEXT_INPUT": "#000000", "SCROLL": "#f7b71d", "BUTTON": ("#fdef96", "#2b580c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#2b580c", "#afa939", "#f7b71d", "#fdef96"], }, "LightGreen8": {"BACKGROUND": "#c8dad3", "TEXT": "#63707e", "INPUT": "#93b5b3", "TEXT_INPUT": "#000000", "SCROLL": "#63707e", "BUTTON": ("#FFFFFF", "#63707e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#63707e", "#93b5b3", "#c8dad3", "#f2f6f5"], }, "DarkTeal7": {"BACKGROUND": "#248ea9", "TEXT": "#fafdcb", "INPUT": "#aee7e8", "TEXT_INPUT": "#000000", "SCROLL": "#aee7e8", "BUTTON": ("#000000", "#fafdcb"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#248ea9", "#28c3d4", "#aee7e8", "#fafdcb"], }, "DarkBlue8": {"BACKGROUND": "#454d66", "TEXT": "#d9d872", "INPUT": "#58b368", "TEXT_INPUT": "#000000", "SCROLL": "#58b368", "BUTTON": ("#000000", "#009975"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#009975", "#454d66", "#58b368", "#d9d872"], }, "DarkBlue9": {"BACKGROUND": "#263859", "TEXT": "#ff6768", "INPUT": "#6b778d", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#6b778d", "BUTTON": ("#ff6768", "#263859"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#17223b", "#263859", "#6b778d", "#ff6768"], }, "DarkBlue10": {"BACKGROUND": "#0028ff", "TEXT": "#f1f4df", "INPUT": "#10eaf0", "TEXT_INPUT": "#000000", "SCROLL": "#10eaf0", "BUTTON": ("#f1f4df", "#24009c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#24009c", "#0028ff", "#10eaf0", "#f1f4df"], }, "DarkBlue11": {"BACKGROUND": "#6384b3", "TEXT": "#e6f0b6", "INPUT": "#b8e9c0", "TEXT_INPUT": "#000000", "SCROLL": "#b8e9c0", "BUTTON": ("#e6f0b6", "#684949"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#684949", "#6384b3", "#b8e9c0", "#e6f0b6"], }, "DarkTeal8": {"BACKGROUND": "#71a0a5", "TEXT": "#212121", "INPUT": "#665c84", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#212121", "BUTTON": ("#fab95b", "#665c84"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#212121", "#665c84", "#71a0a5", "#fab95b"], }, "DarkRed1": {"BACKGROUND": "#c10000", "TEXT": "#eeeeee", "INPUT": "#dedede", "TEXT_INPUT": "#000000", "SCROLL": "#dedede", "BUTTON": ("#c10000", "#eeeeee"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#c10000", "#ff4949", "#dedede", "#eeeeee"], }, "LightBrown5": {"BACKGROUND": "#fff591", "TEXT": "#e41749", "INPUT": "#f5587b", "TEXT_INPUT": "#000000", "SCROLL": "#e41749", "BUTTON": ("#fff591", "#e41749"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#e41749", "#f5587b", "#ff8a5c", "#fff591"], }, "LightGreen9": {"BACKGROUND": "#f1edb3", "TEXT": "#3b503d", "INPUT": "#4a746e", "TEXT_INPUT": "#f1edb3", "SCROLL": "#3b503d", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "DarkGreen2": {"BACKGROUND": "#3b503d", "TEXT": "#f1edb3", "INPUT": "#c8cf94", "TEXT_INPUT": "#000000", "SCROLL": "#c8cf94", "BUTTON": ("#f1edb3", "#3b503d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3b503d", "#4a746e", "#c8cf94", "#f1edb3"], "DESCRIPTION": ["Green", "Turquoise", "Yellow"], }, "LightGray1": {"BACKGROUND": "#f2f2f2", "TEXT": "#222831", "INPUT": "#393e46", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#222831", "BUTTON": ("#f2f2f2", "#222831"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222831", "#393e46", "#f96d00", "#f2f2f2"], "DESCRIPTION": ["#000000", "Grey", "Orange", "Grey", "Autumn"], }, "DarkGrey4": {"BACKGROUND": "#52524e", "TEXT": "#e9e9e5", "INPUT": "#d4d6c8", "TEXT_INPUT": "#000000", "SCROLL": "#d4d6c8", "BUTTON": ("#FFFFFF", "#9a9b94"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#52524e", "#9a9b94", "#d4d6c8", "#e9e9e5"], "DESCRIPTION": ["Grey", "Pastel", "Winter"], }, "DarkBlue12": {"BACKGROUND": "#324e7b", "TEXT": "#f8f8f8", "INPUT": "#86a6df", "TEXT_INPUT": "#000000", "SCROLL": "#86a6df", "BUTTON": ("#FFFFFF", "#5068a9"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#324e7b", "#5068a9", "#86a6df", "#f8f8f8"], "DESCRIPTION": ["Blue", "Grey", "Cold", "Winter"], }, "DarkPurple6": {"BACKGROUND": "#070739", "TEXT": "#e1e099", "INPUT": "#c327ab", "TEXT_INPUT": "#e1e099", "SCROLL": "#c327ab", "BUTTON": ("#e1e099", "#521477"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#070739", "#521477", "#c327ab", "#e1e099"], "DESCRIPTION": ["#000000", "Purple", "Yellow", "Dark"], }, "DarkPurple7": {"BACKGROUND": "#191930", "TEXT": "#B1B7C5", "INPUT": "#232B5C", "TEXT_INPUT": "#D0E3E7", "SCROLL": "#B1B7C5", "BUTTON": ("#272D38", "#B1B7C5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBlue13": {"BACKGROUND": "#203562", "TEXT": "#e3e8f8", "INPUT": "#c0c5cd", "TEXT_INPUT": "#000000", "SCROLL": "#c0c5cd", "BUTTON": ("#FFFFFF", "#3e588f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#203562", "#3e588f", "#c0c5cd", "#e3e8f8"], "DESCRIPTION": ["Blue", "Grey", "Wedding", "Cold"], }, "DarkBrown5": {"BACKGROUND": "#3c1b1f", "TEXT": "#f6e1b5", "INPUT": "#e2bf81", "TEXT_INPUT": "#000000", "SCROLL": "#e2bf81", "BUTTON": ("#3c1b1f", "#f6e1b5"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3c1b1f", "#b21e4b", "#e2bf81", "#f6e1b5"], "DESCRIPTION": ["Brown", "Red", "Yellow", "Warm"], }, "DarkGreen3": {"BACKGROUND": "#062121", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#eeeeee", "#181810"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkBlack1": {"BACKGROUND": "#181810", "TEXT": "#eeeeee", "INPUT": "#e4dcad", "TEXT_INPUT": "#000000", "SCROLL": "#e4dcad", "BUTTON": ("#FFFFFF", "#062121"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#062121", "#181810", "#e4dcad", "#eeeeee"], "DESCRIPTION": ["#000000", "#000000", "Brown", "Grey"], }, "DarkGrey5": {"BACKGROUND": "#343434", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#FFFFFF", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "LightBrown12": {"BACKGROUND": "#8e8b82", "TEXT": "#f3f3f3", "INPUT": "#e9dcbe", "TEXT_INPUT": "#000000", "SCROLL": "#e9dcbe", "BUTTON": ("#f3f3f3", "#8e8b82"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#343434", "#8e8b82", "#e9dcbe", "#f3f3f3"], "DESCRIPTION": ["Grey", "Brown"], }, "DarkTeal9": {"BACKGROUND": "#13445a", "TEXT": "#fef4e8", "INPUT": "#446878", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#446878", "BUTTON": ("#fef4e8", "#446878"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#13445a", "#970747", "#446878", "#fef4e8"], "DESCRIPTION": ["Red", "Grey", "Blue", "Wedding", "Retro"], }, "DarkBlue14": {"BACKGROUND": "#21273d", "TEXT": "#f1f6f8", "INPUT": "#b9d4f1", "TEXT_INPUT": "#000000", "SCROLL": "#b9d4f1", "BUTTON": ("#FFFFFF", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "LightBlue6": {"BACKGROUND": "#f1f6f8", "TEXT": "#21273d", "INPUT": "#6a759b", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#21273d", "BUTTON": ("#f1f6f8", "#6a759b"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#21273d", "#6a759b", "#b9d4f1", "#f1f6f8"], "DESCRIPTION": ["Blue", "#000000", "Grey", "Cold", "Winter"], }, "DarkGreen4": {"BACKGROUND": "#044343", "TEXT": "#e4e4e4", "INPUT": "#045757", "TEXT_INPUT": "#e4e4e4", "SCROLL": "#045757", "BUTTON": ("#e4e4e4", "#045757"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#222222", "#044343", "#045757", "#e4e4e4"], "DESCRIPTION": ["#000000", "Turquoise", "Grey", "Dark"], }, "DarkGreen5": {"BACKGROUND": "#1b4b36", "TEXT": "#e0e7f1", "INPUT": "#aebd77", "TEXT_INPUT": "#000000", "SCROLL": "#aebd77", "BUTTON": ("#FFFFFF", "#538f6a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#1b4b36", "#538f6a", "#aebd77", "#e0e7f1"], "DESCRIPTION": ["Green", "Grey"], }, "DarkTeal10": {"BACKGROUND": "#0d3446", "TEXT": "#d8dfe2", "INPUT": "#71adb5", "TEXT_INPUT": "#000000", "SCROLL": "#71adb5", "BUTTON": ("#FFFFFF", "#176d81"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#0d3446", "#176d81", "#71adb5", "#d8dfe2"], "DESCRIPTION": ["Grey", "Turquoise", "Winter", "Cold"], }, "DarkGrey6": {"BACKGROUND": "#3e3e3e", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#FFFFFF", "#405559"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "DarkTeal11": {"BACKGROUND": "#405559", "TEXT": "#ededed", "INPUT": "#68868c", "TEXT_INPUT": "#ededed", "SCROLL": "#68868c", "BUTTON": ("#ededed", "#68868c"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#3e3e3e", "#405559", "#68868c", "#ededed"], "DESCRIPTION": ["Grey", "Turquoise", "Winter"], }, "LightBlue7": {"BACKGROUND": "#9ed0e0", "TEXT": "#19483f", "INPUT": "#5c868e", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#19483f", "BUTTON": ("#FFFFFF", "#19483f"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#19483f", "#5c868e", "#ff6a38", "#9ed0e0"], "DESCRIPTION": ["Orange", "Blue", "Turquoise"], }, "LightGreen10": {"BACKGROUND": "#d8ebb5", "TEXT": "#205d67", "INPUT": "#639a67", "TEXT_INPUT": "#FFFFFF", "SCROLL": "#205d67", "BUTTON": ("#d8ebb5", "#205d67"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#205d67", "#639a67", "#d9bf77", "#d8ebb5"], "DESCRIPTION": ["Blue", "Green", "Brown", "Vintage"], }, "DarkBlue15": {"BACKGROUND": "#151680", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#1c44ac"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkBlue16": {"BACKGROUND": "#1c44ac", "TEXT": "#f1fea4", "INPUT": "#375fc0", "TEXT_INPUT": "#f1fea4", "SCROLL": "#375fc0", "BUTTON": ("#f1fea4", "#151680"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#151680", "#1c44ac", "#375fc0", "#f1fea4"], "DESCRIPTION": ["Blue", "Yellow", "Cold"], }, "DarkTeal12": {"BACKGROUND": "#004a7c", "TEXT": "#fafafa", "INPUT": "#e8f1f5", "TEXT_INPUT": "#000000", "SCROLL": "#e8f1f5", "BUTTON": ("#fafafa", "#005691"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#004a7c", "#005691", "#e8f1f5", "#fafafa"], "DESCRIPTION": ["Grey", "Blue", "Cold", "Winter"], }, "LightBrown13": {"BACKGROUND": "#ebf5ee", "TEXT": "#921224", "INPUT": "#bdc6b8", "TEXT_INPUT": "#921224", "SCROLL": "#921224", "BUTTON": ("#FFFFFF", "#921224"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#921224", "#bdc6b8", "#bce0da", "#ebf5ee"], "DESCRIPTION": ["Red", "Blue", "Grey", "Vintage", "Wedding"], }, "DarkBlue17": {"BACKGROUND": "#21294c", "TEXT": "#f9f2d7", "INPUT": "#f2dea8", "TEXT_INPUT": "#000000", "SCROLL": "#f2dea8", "BUTTON": ("#f9f2d7", "#141829"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#141829", "#21294c", "#f2dea8", "#f9f2d7"], "DESCRIPTION": ["#000000", "Blue", "Yellow"], }, "DarkBrown6": {"BACKGROUND": "#785e4d", "TEXT": "#f2eee3", "INPUT": "#baaf92", "TEXT_INPUT": "#000000", "SCROLL": "#baaf92", "BUTTON": ("#FFFFFF", "#785e4d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#785e4d", "#ff8426", "#baaf92", "#f2eee3"], "DESCRIPTION": ["Grey", "Brown", "Orange", "Autumn"], }, "DarkGreen6": {"BACKGROUND": "#5c715e", "TEXT": "#f2f9f1", "INPUT": "#ddeedf", "TEXT_INPUT": "#000000", "SCROLL": "#ddeedf", "BUTTON": ("#f2f9f1", "#5c715e"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#5c715e", "#b6cdbd", "#ddeedf", "#f2f9f1"], "DESCRIPTION": ["Grey", "Green", "Vintage"], }, "DarkGreen7": {"BACKGROUND": "#0C231E", "TEXT": "#efbe1c", "INPUT": "#153C33", "TEXT_INPUT": "#efbe1c", "SCROLL": "#153C33", "BUTTON": ("#efbe1c", "#153C33"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey7": {"BACKGROUND": "#4b586e", "TEXT": "#dddddd", "INPUT": "#574e6d", "TEXT_INPUT": "#dddddd", "SCROLL": "#574e6d", "BUTTON": ("#dddddd", "#43405d"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#43405d", "#4b586e", "#574e6d", "#dddddd"], "DESCRIPTION": ["Grey", "Winter", "Cold"], }, "DarkRed2": {"BACKGROUND": "#ab1212", "TEXT": "#f6e4b5", "INPUT": "#cd3131", "TEXT_INPUT": "#f6e4b5", "SCROLL": "#cd3131", "BUTTON": ("#f6e4b5", "#ab1212"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#ab1212", "#1fad9f", "#cd3131", "#f6e4b5"], "DESCRIPTION": ["Turquoise", "Red", "Yellow"], }, "LightGrey6": {"BACKGROUND": "#e3e3e3", "TEXT": "#233142", "INPUT": "#455d7a", "TEXT_INPUT": "#e3e3e3", "SCROLL": "#233142", "BUTTON": ("#e3e3e3", "#455d7a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, "COLOR_LIST": ["#233142", "#455d7a", "#f95959", "#e3e3e3"], "DESCRIPTION": ["#000000", "Blue", "Red", "Grey"], }, "HotDogStand": {"BACKGROUND": "red", "TEXT": "yellow", "INPUT": "yellow", "TEXT_INPUT": "#000000", "SCROLL": "yellow", "BUTTON": ("red", "yellow"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey8": {"BACKGROUND": "#19232D", "TEXT": "#ffffff", "INPUT": "#32414B", "TEXT_INPUT": "#ffffff", "SCROLL": "#505F69", "BUTTON": ("#ffffff", "#32414B"), "PROGRESS": ("#505F69", "#32414B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey9": {"BACKGROUND": "#36393F", "TEXT": "#DCDDDE", "INPUT": "#40444B", "TEXT_INPUT": "#ffffff", "SCROLL": "#202225", "BUTTON": ("#202225", "#B9BBBE"), "PROGRESS": ("#202225", "#40444B"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey10": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey11": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#313641", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#f5f5f6", "#313641"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey12": {"BACKGROUND": "#1c1e23", "TEXT": "#8b9fde", "INPUT": "#313641", "TEXT_INPUT": "#8b9fde", "SCROLL": "#313641", "BUTTON": ("#cccdcf", "#2e3d5a"), "PROGRESS": DEFAULT_PROGRESS_BAR_COMPUTE, "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey13": {"BACKGROUND": "#1c1e23", "TEXT": "#cccdcf", "INPUT": "#272a31", "TEXT_INPUT": "#cccdcf", "SCROLL": "#313641", "BUTTON": ("#8b9fde", "#313641"), "PROGRESS": ("#cccdcf", "#272a31"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkGrey14": {"BACKGROUND": "#24292e", "TEXT": "#fafbfc", "INPUT": "#1d2125", "TEXT_INPUT": "#fafbfc", "SCROLL": "#1d2125", "BUTTON": ("#fafbfc", "#155398"), "PROGRESS": ("#155398", "#1d2125"), "BORDER": 1, "SLIDER_DEPTH": 0, "PROGRESS_DEPTH": 0, }, "DarkBrown7": {"BACKGROUND": "#2c2417", "TEXT": "#baa379", "INPUT": "#baa379", "TEXT_INPUT": "#000000", "SCROLL": "#392e1c", "BUTTON": ("#000000", "#baa379"), "PROGRESS": ("#baa379", "#453923"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, "Python": {"BACKGROUND": "#3d7aab", "TEXT": "#ffde56", "INPUT": "#295273", "TEXT_INPUT": "#ffde56", "SCROLL": "#295273", "BUTTON": ("#ffde56", "#295273"), "PROGRESS": ("#ffde56", "#295273"), "BORDER": 1, "SLIDER_DEPTH": 1, "PROGRESS_DEPTH": 0, }, }
07bb93d47f01468660a01f42150e87e5cb08d546
16
PySimpleGUI.py
19,192
Addition of tooltip_offset parm to set_options call (major hack to get around 8.6.12 problem). Backed out the experiments to try and fix new problem with Ubuntu
53,473
0
10,839
255
1,112
212,865
4,824
PySimpleGUI
131
PySimpleGUI.py
Python
14
{ "docstring": "\n :param icon: Can be either a filename or Base64 value. For Windows if filename, it MUST be ICO format. For Linux, must NOT be ICO. Most portable is to use a Base64 of a PNG file. This works universally across all OS's\n :type icon: bytes | str\n :param button_color: Color of the button (text, background)\n :type button_color: (str, str) or str\n :param element_size: element size (width, height) in characters\n :type element_size: (int, int)\n :param button_element_size: Size of button\n :type button_element_size: (int, int)\n :param margins: (left/right, top/bottom) tkinter margins around outsize. Amount of pixels to leave inside the window's frame around the edges before your elements are shown.\n :type margins: (int, int)\n :param element_padding: Default amount of padding to put around elements in window (left/right, top/bottom) or ((left, right), (top, bottom))\n :type element_padding: (int, int) or ((int, int),(int,int))\n :param auto_size_text: True if the Widget should be shrunk to exactly fit the number of chars to show\n :type auto_size_text: bool\n :param auto_size_buttons: True if Buttons in this Window should be sized to exactly fit the text on this.\n :type auto_size_buttons: (bool)\n :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike\n :type font: (str or (str, int[, str]) or None)\n :param border_width: width of border around element\n :type border_width: (int)\n :param slider_border_width: Width of the border around sliders\n :type slider_border_width: (int)\n :param slider_relief: Type of relief to use for sliders\n :type slider_relief: (str)\n :param slider_orientation: ???\n :type slider_orientation: ???\n :param autoclose_time: ???\n :type autoclose_time: ???\n :param message_box_line_width: ???\n :type message_box_line_width: ???\n :param progress_meter_border_depth: ???\n :type progress_meter_border_depth: ???\n :param progress_meter_style: You can no longer set a progress bar style. All ttk styles must be the same for the window\n :type progress_meter_style: ???\n :param progress_meter_relief:\n :type progress_meter_relief: ???\n :param progress_meter_color: ???\n :type progress_meter_color: ???\n :param progress_meter_size: ???\n :type progress_meter_size: ???\n :param text_justification: Default text justification for all Text Elements in window\n :type text_justification: 'left' | 'right' | 'center'\n :param background_color: color of background\n :type background_color: (str)\n :param element_background_color: element background color\n :type element_background_color: (str)\n :param text_element_background_color: text element background color\n :type text_element_background_color: (str)\n :param input_elements_background_color: Default color to use for the background of input elements\n :type input_elements_background_color: (str)\n :param input_text_color: Default color to use for the text for Input elements\n :type input_text_color: (str)\n :param scrollbar_color: Default color to use for the slider trough\n :type scrollbar_color: (str)\n :param text_color: color of the text\n :type text_color: (str)\n :param element_text_color: Default color to use for Text elements\n :type element_text_color: (str)\n :param debug_win_size: window size\n :type debug_win_size: (int, int)\n :param window_location: Default location to place windows. Not setting will center windows on the display\n :type window_location: (int, int) | None\n :param error_button_color: (Default = (None))\n :type error_button_color: ???\n :param tooltip_time: time in milliseconds to wait before showing a tooltip. Default is 400ms\n :type tooltip_time: (int)\n :param tooltip_font: font to use for all tooltips\n :type tooltip_font: str or Tuple[str, int] or Tuple[str, int, str]\n :param use_ttk_buttons: if True will cause all buttons to be ttk buttons\n :type use_ttk_buttons: (bool)\n :param ttk_theme: Theme to use with ttk widgets. Choices (on Windows) include - 'default', 'winnative', 'clam', 'alt', 'classic', 'vista', 'xpnative'\n :type ttk_theme: (str)\n :param suppress_error_popups: If True then error popups will not be shown if generated internally to PySimpleGUI\n :type suppress_error_popups: (bool)\n :param suppress_raise_key_errors: If True then key errors won't be raised (you'll still get popup error)\n :type suppress_raise_key_errors: (bool)\n :param suppress_key_guessing: If True then key errors won't try and find closest matches for you\n :type suppress_key_guessing: (bool)\n :param warn_button_key_duplicates: If True then duplicate Button Keys generate warnings (not recommended as they're expected)\n :type warn_button_key_duplicates: (bool) \n :param enable_treeview_869_patch: If True, then will use the treeview color patch for tk 8.6.9\n :type enable_treeview_869_patch: (bool)\n :param enable_mac_notitlebar_patch: If True then Windows with no titlebar use an alternative technique when tkinter version < 8.6.10\n :type enable_mac_notitlebar_patch: (bool)\n :param use_custom_titlebar: If True then a custom titlebar is used instead of the normal system titlebar\n :type use_custom_titlebar: (bool)\n :param titlebar_background_color: If custom titlebar indicated by use_custom_titlebar, then use this as background color\n :type titlebar_background_color: str | None\n :param titlebar_text_color: If custom titlebar indicated by use_custom_titlebar, then use this as text color\n :type titlebar_text_color: str | None\n :param titlebar_font: If custom titlebar indicated by use_custom_titlebar, then use this as title font\n :type titlebar_font: (str or (str, int[, str]) or None) | None\n :param titlebar_icon: If custom titlebar indicated by use_custom_titlebar, then use this as the icon (file or base64 bytes)\n :type titlebar_icon: bytes | str\n :param user_settings_path: default path for user_settings API calls. Expanded with os.path.expanduser so can contain ~ to represent user\n :type user_settings_path: (str)\n :param pysimplegui_settings_path: default path for the global PySimpleGUI user_settings\n :type pysimplegui_settings_path: (str)\n :param pysimplegui_settings_filename: default filename for the global PySimpleGUI user_settings\n :type pysimplegui_settings_filename: (str)\n :param keep_on_top: If True then all windows will automatically be set to keep_on_top=True\n :type keep_on_top: (bool)\n :param dpi_awareness: If True then will turn on DPI awareness (Windows only at the moment)\n :type dpi_awareness: (bool)\n :param scaling: Sets the default scaling for all windows including popups, etc.\n :type scaling: (float)\n :param disable_modal_windows: If True then all windows, including popups, will not be modal windows\n :type disable_modal_windows: (bool)\n :param tooltip_offset: Offset to use for tooltips as a tuple. These values will be added to the mouse location when the widget was entered.\n :type tooltip_offset: ((None, None) | (int, int))\n :return: None\n :rtype: None\n ", "language": "en", "n_whitespaces": 2847, "n_words": 889, "vocab_size": 356 }
https://github.com/PySimpleGUI/PySimpleGUI.git
1
test_load_with_supervisor_without_diagnostics
async def test_load_with_supervisor_without_diagnostics(hass): analytics = Analytics(hass) analytics._data.preferences[ATTR_DIAGNOSTICS] = True assert analytics.preferences[ATTR_DIAGNOSTICS] with patch( "homeassistant.components.hassio.get_supervisor_info", side_effect=Mock(return_value={"diagnostics": False}), ), patch( "homeassistant.components.hassio.is_hassio", side_effect=Mock(return_value=True), ): await analytics.load() assert not analytics.preferences[ATTR_DIAGNOSTICS]
46500beefcccd8106718a8172a5078bbe5579765
16
test_analytics.py
132
Enable strict typing of analytics (#83119)
95,933
0
85
78
22
296,961
26
core
12
tests/components/analytics/test_analytics.py
Python
13
{ "docstring": "Test loading with a supervisor that has not diagnostics enabled.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
https://github.com/home-assistant/core.git
3
test_issue_message_builder
def test_issue_message_builder(self): self.event1.data["metadata"].update({"value": "some error"}) self.group1.data["metadata"].update({"value": "some error"}) self.event1.data["type"] = self.group1.data["type"] = "error" issue_card = build_group_card( group=self.group1, event=self.event1, rules=self.rules, integration=self.integration ) body = issue_card["body"] assert 4 == len(body) title = body[0] assert "oh no" in title["text"] assert TextSize.LARGE == title["size"] assert TextWeight.BOLDER == title["weight"] description = body[1] assert "some error" == description["text"] assert TextWeight.BOLDER == description["weight"] footer = body[2] assert "ColumnSet" == footer["type"] assert 3 == len(footer["columns"]) logo = footer["columns"][0]["items"][0] assert "20px" == logo["height"] issue_id_and_rule = footer["columns"][1]["items"][0] assert self.group1.qualified_short_id in issue_id_and_rule["text"] assert "rule1" in issue_id_and_rule["text"] assert "+1 other" in issue_id_and_rule["text"] date = footer["columns"][2]["items"][0] assert ( re.match( r, date["text"], re.VERBOSE, ) is not None ) actions_container = body[3] assert "Container" == actions_container["type"] action_set = actions_container["items"][0] assert "ActionSet" == action_set["type"] actions = action_set["actions"] for action in actions: assert ActionType.SHOW_CARD == action["type"] card_body = action["card"]["body"] assert 1 <= len(card_body) assert "Input.ChoiceSet" == card_body[-1]["type"] resolve_action, ignore_action, assign_action = actions assert "Resolve" == resolve_action["title"] assert "Ignore" == ignore_action["title"] assert "Assign" == assign_action["title"] # Check if card is serializable to json card_json = json.dumps(issue_card) assert card_json[0] == "{" and card_json[-1] == "}"
db35e231ceababe8c9f5ca7b5d2ca685f07c7d5b
11
test_message_builder.py
694
test(msteams): Add tests for building group card (#36834) Add tests for build_group_card which builds issues cards. Does NOT test all visual aspects of the card. Only ensures that certain important elements are present and the basic structure of the card is correct.
18,974
0
581
402
110
93,204
176
sentry
41
tests/sentry/integrations/msteams/test_message_builder.py
Python
60
{ "docstring": "\\{\\{ # {{\n DATE\\( # DATE(\n [0-9T+:\\-]+,\\ SHORT # 2022-07-14T19:30:34, SHORT\n \\) # )\n \\}\\} # }}\n \\ # whitespace\n at # at\n \\ # whitespace\n \\{\\{ # {{\n TIME\\([0-9T+:\\-]+\\) # TIME(2022-07-14T19:30:34)\n \\}\\} # }}", "language": "en", "n_whitespaces": 369, "n_words": 35, "vocab_size": 17 }
https://github.com/getsentry/sentry.git
7
cache_key
def cache_key(self, template_name, skip=None): skip_prefix = "" if skip: matching = [ origin.name for origin in skip if origin.template_name == template_name ] if matching: skip_prefix = self.generate_hash(matching) return "-".join(s for s in (str(template_name), skip_prefix) if s)
9c19aff7c7561e3a82978a272ecdaad40dda5c00
12
cached.py
106
Refs #33476 -- Reformatted code with Black.
51,474
0
127
66
28
206,296
36
django
12
django/template/loaders/cached.py
Python
9
{ "docstring": "\n Generate a cache key for the template name and skip.\n\n If skip is provided, only origins that match template_name are included\n in the cache key. This ensures each template is only parsed and cached\n once if contained in different extend chains like:\n\n x -> a -> a\n y -> a -> a\n z -> a -> a\n ", "language": "en", "n_whitespaces": 126, "n_words": 57, "vocab_size": 39 }
https://github.com/django/django.git
2
isNuitkaPython
def isNuitkaPython(): # spell-checker: ignore nuitkapython if python_version >= 0x300: return sys.implementation.name == "nuitkapython" else: return sys.subversion[0] == "nuitkapython" _is_anaconda = None
77e7c06c0f9c5c0735b5a65c72abcd243d8e3640
11
PythonFlavors.py
59
Minor cleanups
42,801
0
47
29
19
178,712
22
Nuitka
7
nuitka/PythonFlavors.py
Python
5
{ "docstring": "Is this our own fork of CPython named Nuitka-Python.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
https://github.com/Nuitka/Nuitka.git
3
handle_pip_version_check
def handle_pip_version_check(self, options): # type: (Values) -> None # Make sure the index_group options are present. assert hasattr(options, "no_index") if options.disable_pip_version_check or options.no_index: return # Otherwise, check if we're using the latest version of pip available. session = self._build_session( options, retries=0, timeout=min(5, options.timeout) ) with session: pip_self_version_check(session, options) KEEPABLE_TEMPDIR_TYPES = [ tempdir_kinds.BUILD_ENV, tempdir_kinds.EPHEM_WHEEL_CACHE, tempdir_kinds.REQ_BUILD, ]
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
12
req_command.py
117
upd; format
12,206
0
158
57
50
60,555
55
transferlearning
17
.venv/lib/python3.8/site-packages/pip/_internal/cli/req_command.py
Python
9
{ "docstring": "\n Do the pip version check if not disabled.\n\n This overrides the default behavior of not doing the check.\n ", "language": "en", "n_whitespaces": 40, "n_words": 18, "vocab_size": 15 }
https://github.com/jindongwang/transferlearning.git
22
submit_row
def submit_row(context): add = context["add"] change = context["change"] is_popup = context["is_popup"] save_as = context["save_as"] show_save = context.get("show_save", True) show_save_and_add_another = context.get("show_save_and_add_another", True) show_save_and_continue = context.get("show_save_and_continue", True) has_add_permission = context["has_add_permission"] has_change_permission = context["has_change_permission"] has_view_permission = context["has_view_permission"] has_editable_inline_admin_formsets = context["has_editable_inline_admin_formsets"] can_save = ( (has_change_permission and change) or (has_add_permission and add) or has_editable_inline_admin_formsets ) can_save_and_add_another = ( has_add_permission and not is_popup and (not save_as or add) and can_save and show_save_and_add_another ) can_save_and_continue = ( not is_popup and can_save and has_view_permission and show_save_and_continue ) can_change = has_change_permission or has_editable_inline_admin_formsets ctx = Context(context) ctx.update( { "can_change": can_change, "show_delete_link": ( not is_popup and context["has_delete_permission"] and change and context.get("show_delete", True) ), "show_save_as_new": not is_popup and has_change_permission and change and save_as, "show_save_and_add_another": can_save_and_add_another, "show_save_and_continue": can_save_and_continue, "show_save": show_save and can_save, "show_close": not (show_save and can_save), } ) return ctx @register.tag(name="submit_row")
9c19aff7c7561e3a82978a272ecdaad40dda5c00
@register.tag(name="submit_row")
15
admin_modify.py
380
Refs #33476 -- Reformatted code with Black.
50,412
1
457
213
64
203,500
131
django
24
django/contrib/admin/templatetags/admin_modify.py
Python
49
{ "docstring": "\n Display the row of buttons for delete and save.\n ", "language": "en", "n_whitespaces": 16, "n_words": 9, "vocab_size": 9 }
https://github.com/django/django.git
1
test_ridgecv_normalize_deprecated
def test_ridgecv_normalize_deprecated(Estimator): X = np.array([[1, -1], [1, 1]]) y = np.array([0, 1]) estimator = Estimator(normalize=True) with pytest.warns( FutureWarning, match=r"Set parameter alphas to: original_alphas \* n_samples" ): estimator.fit(X, y)
f14af688b7e77ecb6df9dfee93ec39b6c0334b86
11
test_ridge.py
108
FIX Make Ridge*CV warn about rescaling alphas with scaling (#22585)
75,551
0
60
68
26
259,066
28
scikit-learn
13
sklearn/linear_model/tests/test_ridge.py
Python
8
{ "docstring": "Check that the normalize deprecation warning mentions the rescaling of alphas\n\n Non-regression test for issue #22540\n ", "language": "en", "n_whitespaces": 22, "n_words": 16, "vocab_size": 15 }
https://github.com/scikit-learn/scikit-learn.git
1
async_start_charging
async def async_start_charging(self) -> None: await self.hass.async_add_executor_job(self.leaf.start_charging) self.schedule_update()
10027b20904b678d8baecbc6e72c5bcc3f4f24b2
10
__init__.py
47
Add button to start leaf charge (#62948) Co-authored-by: Bruce Duncan <[email protected]>
107,548
0
29
26
8
308,815
8
core
7
homeassistant/components/nissan_leaf/__init__.py
Python
4
{ "docstring": "Request to start charging the car. Used by the button platform.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 10 }
https://github.com/home-assistant/core.git
1
async_update
async def async_update(self) -> None: await self._smappee_base.async_update() self._state = self._service_location.is_present
0c767bd0d37a41af37728b1d8b4eae8dceb7e188
9
binary_sensor.py
45
Improve entity type hints [s] (part 1/2) (#77881)
105,270
0
31
25
10
306,486
10
core
6
homeassistant/components/smappee/binary_sensor.py
Python
4
{ "docstring": "Get the latest data from Smappee and update the state.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 9 }
https://github.com/home-assistant/core.git
1
test_mount_half_u_devices
def test_mount_half_u_devices(self): rack = Rack.objects.first() attrs = { 'device_type': DeviceType.objects.get(u_height=0.5), 'device_role': DeviceRole.objects.first(), 'site': Site.objects.first(), 'rack': rack, 'face': DeviceFaceChoices.FACE_FRONT, } Device(name='Device 1', position=1, **attrs).save() Device(name='Device 2', position=1.5, **attrs).save() self.assertEqual(len(rack.get_available_units()), rack.u_height * 2 - 3)
103729c0855aad2f45fcaa2cf680799236f3e201
11
test_models.py
196
Add test for 0.5U devices
77,999
0
137
121
30
265,126
33
netbox
21
netbox/dcim/tests/test_models.py
Python
12
{ "docstring": "\n Check that two 0.5U devices can be mounted in the same rack unit.\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 13 }
https://github.com/netbox-community/netbox.git
1
make_homeserver
def make_homeserver(self, reactor, clock): hs = self.setup_test_homeserver() return hs
922b771337f6d14a556fa761c783748f698e924b
8
unittest.py
32
Add missing type hints for tests.unittest. (#13397)
72,530
0
30
19
8
248,955
9
synapse
6
tests/unittest.py
Python
3
{ "docstring": "\n Make and return a homeserver.\n\n Args:\n reactor: A Twisted Reactor, or something that pretends to be one.\n clock (synapse.util.Clock): The Clock, associated with the reactor.\n\n Returns:\n A homeserver suitable for testing.\n\n Function to be overridden in subclasses.\n ", "language": "en", "n_whitespaces": 106, "n_words": 37, "vocab_size": 34 }
https://github.com/matrix-org/synapse.git
7
ordered
def ordered(self): if isinstance(self, EmptyQuerySet): return True if self.query.extra_order_by or self.query.order_by: return True elif ( self.query.default_ordering and self.query.get_meta().ordering and # A default ordering doesn't affect GROUP BY queries. not self.query.group_by ): return True else: return False
9c19aff7c7561e3a82978a272ecdaad40dda5c00
13
query.py
103
Refs #33476 -- Reformatted code with Black.
51,188
0
177
63
29
205,746
36
django
11
django/db/models/query.py
Python
14
{ "docstring": "\n Return True if the QuerySet is ordered -- i.e. has an order_by()\n clause or a default ordering on the model (or is empty).\n ", "language": "en", "n_whitespaces": 45, "n_words": 23, "vocab_size": 21 }
https://github.com/django/django.git
1
get_invalid_response_data
def get_invalid_response_data(self, form): return { "success": False, "error_message": "\n".join(form.errors["file"]), }
d10f15e55806c6944827d801cd9c2d53f5da4186
11
multiple_upload.py
54
Reformat with black
15,887
0
53
29
10
72,414
10
wagtail
5
wagtail/admin/views/generic/multiple_upload.py
Python
5
{ "docstring": "\n Return the JSON response data for an invalid form submission\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 10 }
https://github.com/wagtail/wagtail.git
2
path_objects
def path_objects(self): if not hasattr(self, '_path_objects'): self._path_objects = self._get_path() return self._path_objects
6ff2e55ce408f0f7f2fe99129048421c25ecafe6
10
cables.py
50
Add origins, destinations properties on CablePath
77,911
0
43
28
10
264,915
11
netbox
5
netbox/dcim/models/cables.py
Python
4
{ "docstring": "\n Cache and return the complete path as lists of objects, derived from their annotation within the path.\n ", "language": "en", "n_whitespaces": 32, "n_words": 17, "vocab_size": 16 }
https://github.com/netbox-community/netbox.git
7
gui_repaint
def gui_repaint(self, drawDC=None): _log.debug("%s - gui_repaint()", type(self)) # The "if self" check avoids a "wrapped C/C++ object has been deleted" # RuntimeError if doing things after window is closed. if not (self and self.IsShownOnScreen()): return if not drawDC: # not called from OnPaint use a ClientDC drawDC = wx.ClientDC(self) # For 'WX' backend on Windows, the bitmap can not be in use by another # DC (see GraphicsContextWx._cache). bmp = (self.bitmap.ConvertToImage().ConvertToBitmap() if wx.Platform == '__WXMSW__' and isinstance(self.figure._cachedRenderer, RendererWx) else self.bitmap) drawDC.DrawBitmap(bmp, 0, 0) if self._rubberband_rect is not None: # Some versions of wx+python don't support numpy.float64 here. x0, y0, x1, y1 = map(int, self._rubberband_rect) drawDC.DrawLineList( [(x0, y0, x1, y0), (x1, y0, x1, y1), (x0, y0, x0, y1), (x0, y1, x1, y1)], wx.Pen('BLACK', 1, wx.PENSTYLE_SHORT_DASH)) filetypes = { **FigureCanvasBase.filetypes, 'bmp': 'Windows bitmap', 'jpeg': 'JPEG', 'jpg': 'JPEG', 'pcx': 'PCX', 'png': 'Portable Network Graphics', 'tif': 'Tagged Image Format File', 'tiff': 'Tagged Image Format File', 'xpm': 'X pixmap', }
e1eca0aa8bf0b51009e012cd37d3e95f364d0ee9
13
backend_wx.py
350
Expire deprecations in backends
22,898
0
448
175
121
107,757
155
matplotlib
31
lib/matplotlib/backends/backend_wx.py
Python
17
{ "docstring": "\n Update the displayed image on the GUI canvas, using the supplied\n wx.PaintDC device context.\n\n The 'WXAgg' backend sets origin accordingly.\n ", "language": "en", "n_whitespaces": 49, "n_words": 20, "vocab_size": 18 }
https://github.com/matplotlib/matplotlib.git
4
copy_safe_request
def copy_safe_request(request): meta = { k: request.META[k] for k in HTTP_REQUEST_META_SAFE_COPY if k in request.META and isinstance(request.META[k], str) } return NetBoxFakeRequest({ 'META': meta, 'COOKIES': request.COOKIES, 'POST': request.POST, 'GET': request.GET, 'FILES': request.FILES, 'user': request.user, 'path': request.path, 'id': getattr(request, 'id', None), # UUID assigned by middleware })
540bba4544d9f31c126571cc1a45a6783b3b6a89
13
utils.py
158
Closes #10920: Include request cookies when queuing a custom script
78,322
0
138
97
43
266,161
45
netbox
16
netbox/utilities/utils.py
Python
16
{ "docstring": "\n Copy selected attributes from a request object into a new fake request object. This is needed in places where\n thread safe pickling of the useful request data is needed.\n ", "language": "en", "n_whitespaces": 39, "n_words": 29, "vocab_size": 25 }
https://github.com/netbox-community/netbox.git
1
products_for_sorting_with_channels
def products_for_sorting_with_channels(category, channel_USD, channel_PLN): product_type = ProductType.objects.create(name="Apple", kind=ProductTypeKind.NORMAL) products = Product.objects.bulk_create( [ Product( name="Product1", slug="prod1", category=category, product_type=product_type, description=dummy_editorjs("Test description 1."), ), Product( name="ProductProduct1", slug="prod_prod1", category=category, product_type=product_type, ), Product( name="ProductProduct2", slug="prod_prod2", category=category, product_type=product_type, ), Product( name="Product2", slug="prod2", category=category, product_type=product_type, description=dummy_editorjs("Test description 2."), ), Product( name="Product3", slug="prod3", category=category, product_type=product_type, description=dummy_editorjs("Test description 3."), ), ] ) ProductChannelListing.objects.bulk_create( [ ProductChannelListing( product=products[0], channel=channel_USD, is_published=True, discounted_price_amount=Decimal(5), publication_date=datetime.date(2002, 1, 1), ), ProductChannelListing( product=products[1], channel=channel_USD, is_published=True, discounted_price_amount=Decimal(15), publication_date=datetime.date(2000, 1, 1), ), ProductChannelListing( product=products[2], channel=channel_USD, is_published=False, discounted_price_amount=Decimal(4), publication_date=datetime.date(1999, 1, 1), ), ProductChannelListing( product=products[3], channel=channel_USD, is_published=True, discounted_price_amount=Decimal(7), publication_date=datetime.date(2001, 1, 1), ), # Second channel ProductChannelListing( product=products[0], channel=channel_PLN, is_published=False, discounted_price_amount=Decimal(15), publication_date=datetime.date(2003, 1, 1), ), ProductChannelListing( product=products[1], channel=channel_PLN, is_published=True, discounted_price_amount=Decimal(4), publication_date=datetime.date(1999, 1, 1), ), ProductChannelListing( product=products[2], channel=channel_PLN, is_published=True, discounted_price_amount=Decimal(5), publication_date=datetime.date(2000, 1, 1), ), ProductChannelListing( product=products[4], channel=channel_PLN, is_published=True, discounted_price_amount=Decimal(7), publication_date=datetime.date(1998, 1, 1), ), ] ) variants = ProductVariant.objects.bulk_create( [ ProductVariant( product=products[0], sku=str(uuid.uuid4()).replace("-", ""), track_inventory=True, name="XS", ), ProductVariant( product=products[1], sku=str(uuid.uuid4()).replace("-", ""), track_inventory=True, name="S", ), ProductVariant( product=products[2], sku=str(uuid.uuid4()).replace("-", ""), track_inventory=True, name="M", ), ProductVariant( product=products[3], sku=str(uuid.uuid4()).replace("-", ""), track_inventory=True, name="L", ), ProductVariant( product=products[4], sku=str(uuid.uuid4()).replace("-", ""), track_inventory=True, name="XL", ), ] ) ProductVariantChannelListing.objects.bulk_create( [ ProductVariantChannelListing( variant=variants[0], channel=channel_USD, price_amount=Decimal(10), currency=channel_USD.currency_code, ), ProductVariantChannelListing( variant=variants[1], channel=channel_USD, price_amount=Decimal(15), currency=channel_USD.currency_code, ), ProductVariantChannelListing( variant=variants[2], channel=channel_USD, price_amount=Decimal(8), currency=channel_USD.currency_code, ), ProductVariantChannelListing( variant=variants[3], channel=channel_USD, price_amount=Decimal(7), currency=channel_USD.currency_code, ), # Second channel ProductVariantChannelListing( variant=variants[0], channel=channel_PLN, price_amount=Decimal(15), currency=channel_PLN.currency_code, ), ProductVariantChannelListing( variant=variants[1], channel=channel_PLN, price_amount=Decimal(8), currency=channel_PLN.currency_code, ), ProductVariantChannelListing( variant=variants[2], channel=channel_PLN, price_amount=Decimal(10), currency=channel_PLN.currency_code, ), ProductVariantChannelListing( variant=variants[4], channel=channel_PLN, price_amount=Decimal(7), currency=channel_PLN.currency_code, ), ] ) products[3].save() products[4].save() products[0].save() products[2].save() products[1].save() variants[2].save() variants[0].save() variants[4].save() variants[1].save() variants[3].save() return products QUERY_PRODUCTS_WITH_SORTING_AND_FILTERING = @pytest.mark.parametrize( "sort_by", [ {"field": "PUBLISHED", "direction": "ASC"}, {"field": "PRICE", "direction": "DESC"}, {"field": "MINIMAL_PRICE", "direction": "DESC"}, {"field": "PUBLICATION_DATE", "direction": "DESC"}, ], )
3f773c3890aead936949bd6923d2d7f669e1c68f
@pytest.mark.parametrize( "sort_by", [ {"field": "PUBLISHED", "direction": "ASC"}, {"field": "PRICE", "direction": "DESC"}, {"field": "MINIMAL_PRICE", "direction": "DESC"}, {"field": "PUBLICATION_DATE", "direction": "DESC"}, ], )
18
test_product_filtering_and_sorting_with_channels.py
1,552
Add sorting by LAST_MODIFIED_AT field to GraphQL schema (#9245) * Add sorting by LAST_MODIFIED_AT to new types * Add LAST_MODIFIED_AT to sorting exported files * Update schema, fix variant sorter * Update changelog * Rebase and update changelog Co-authored-by: Marcin Gฤ™bala <[email protected]>
4,954
1
2,732
991
105
26,250
263
saleor
45
saleor/graphql/product/tests/test_product_filtering_and_sorting_with_channels.py
Python
196
{ "docstring": "\n query ($sortBy: ProductOrder, $filter: ProductFilterInput, $channel: String){\n products (\n first: 10, sortBy: $sortBy, filter: $filter, channel: $channel\n ) {\n edges {\n node {\n name\n slug\n }\n }\n }\n }\n", "language": "en", "n_whitespaces": 157, "n_words": 29, "vocab_size": 24 }
https://github.com/saleor/saleor.git
8
_try_compile_deployment_target
def _try_compile_deployment_target(self, operator, target): orig_environ = os.environ os.environ = orig_environ.copy() self.addCleanup(setattr, os, 'environ', orig_environ) if target is None: if os.environ.get('MACOSX_DEPLOYMENT_TARGET'): del os.environ['MACOSX_DEPLOYMENT_TARGET'] else: os.environ['MACOSX_DEPLOYMENT_TARGET'] = target deptarget_c = os.path.join(self.tmp_dir, 'deptargetmodule.c') with open(deptarget_c, 'w') as fp: fp.write(textwrap.dedent( % operator)) # get the deployment target that the interpreter was built with target = sysconfig.get_config_var('MACOSX_DEPLOYMENT_TARGET') target = tuple(map(int, target.split('.')[0:2])) # format the target value as defined in the Apple # Availability Macros. We can't use the macro names since # at least one value we test with will not exist yet. if target[:2] < (10, 10): # for 10.1 through 10.9.x -> "10n0" target = '%02d%01d0' % target else: # for 10.10 and beyond -> "10nn00" if len(target) >= 2: target = '%02d%02d00' % target else: # 11 and later can have no minor version (11 instead of 11.0) target = '%02d0000' % target deptarget_ext = Extension( 'deptarget', [deptarget_c], extra_compile_args=['-DTARGET=%s'%(target,)], ) dist = Distribution({ 'name': 'deptarget', 'ext_modules': [deptarget_ext] }) dist.package_dir = self.tmp_dir cmd = self.build_ext(dist) cmd.build_lib = self.tmp_dir cmd.build_temp = self.tmp_dir try: old_stdout = sys.stdout if not support.verbose: # silence compiler output sys.stdout = StringIO() try: cmd.ensure_finalized() cmd.run() finally: sys.stdout = old_stdout except CompileError: self.fail("Wrong deployment target during compilation")
8198943edd73a363c266633e1aa5b2a9e9c9f526
14
test_build_ext.py
500
add python 3.10.4 for windows
56,858
0
704
288
129
223,085
196
XX-Net
47
python3.10.4/Lib/distutils/tests/test_build_ext.py
Python
55
{ "docstring": "\\\n #include <AvailabilityMacros.h>\n\n int dummy;\n\n #if TARGET %s MAC_OS_X_VERSION_MIN_REQUIRED\n #else\n #error \"Unexpected target\"\n #endif\n\n ", "language": "en", "n_whitespaces": 115, "n_words": 14, "vocab_size": 14 }
https://github.com/XX-net/XX-Net.git
1
test_edit_post_locked_by_self
def test_edit_post_locked_by_self(self): # Lock the snippet self.lock_snippet(self.user) # Try to edit the snippet response = self.client.post( self.get_url("edit"), {"text": "Edited while locked"}, follow=True, ) self.refresh_snippet() # Should not show error message self.assertNotContains( response, f"The {self.model_name} could not be saved as it is locked", ) # Check that the snippet is still locked self.assertTrue(self.snippet.locked) # Check that the snippet is edited self.assertEqual(self.snippet.text, "Edited while locked")
10dbbddaf35607e4257f50dd960520a1268dd225
11
test_locking.py
142
Add tests for locking snippets
17,037
0
216
77
45
80,233
63
wagtail
17
wagtail/snippets/tests/test_locking.py
Python
14
{ "docstring": "A user can edit a snippet that is locked by themselves.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/wagtail/wagtail.git
1
test_jemalloc_env_var_propagate
def test_jemalloc_env_var_propagate(): gcs_ptype = ray.ray_constants.PROCESS_TYPE_GCS_SERVER expected = {} actual = ray._private.services.propagate_jemalloc_env_var( jemalloc_path="", jemalloc_conf="", jemalloc_comps=[], process_type=gcs_ptype ) assert actual == expected actual = ray._private.services.propagate_jemalloc_env_var( jemalloc_path=None, jemalloc_conf="a,b,c", jemalloc_comps=[ray.ray_constants.PROCESS_TYPE_GCS_SERVER], process_type=gcs_ptype, ) assert actual == expected library_path = "/abc" expected = {"LD_PRELOAD": library_path} actual = ray._private.services.propagate_jemalloc_env_var( jemalloc_path=library_path, jemalloc_conf="", jemalloc_comps=[ray.ray_constants.PROCESS_TYPE_GCS_SERVER], process_type=gcs_ptype, ) assert actual == expected # comps should be a list type. with pytest.raises(AssertionError): ray._private.services.propagate_jemalloc_env_var( jemalloc_path=library_path, jemalloc_conf="", jemalloc_comps="ray.ray_constants.PROCESS_TYPE_GCS_SERVER,", process_type=gcs_ptype, ) # When comps don't match the process_type, it should return an empty dict. expected = {} actual = ray._private.services.propagate_jemalloc_env_var( jemalloc_path=library_path, jemalloc_conf="", jemalloc_comps=[ray.ray_constants.PROCESS_TYPE_RAYLET], process_type=gcs_ptype, ) library_path = "/abc" malloc_conf = "a,b,c" expected = {"LD_PRELOAD": library_path, "MALLOC_CONF": malloc_conf} actual = ray._private.services.propagate_jemalloc_env_var( jemalloc_path=library_path, jemalloc_conf=malloc_conf, jemalloc_comps=[ray.ray_constants.PROCESS_TYPE_GCS_SERVER], process_type=gcs_ptype, ) assert actual == expected
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
12
test_advanced_4.py
420
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
29,488
0
381
258
52
131,233
114
ray
20
python/ray/tests/test_advanced_4.py
Python
57
{ "docstring": "Test `propagate_jemalloc_env_var`\n If the shared library path is not specified,\n it should return an empty dict.\n \n When the shared library is specified\n \n When the malloc config is specified\n ", "language": "en", "n_whitespaces": 51, "n_words": 28, "vocab_size": 20 }
https://github.com/ray-project/ray.git
3
create_userconfig
def create_userconfig(instance, created, raw=False, **kwargs): if created and not raw: config = get_config() UserConfig(user=instance, data=config.DEFAULT_USER_PREFERENCES).save() # # REST API #
1636508a6ac8df6b93d0ea5c621c174f605fd47a
13
models.py
71
Fixes #9156: Fix loading UserConfig data from fixtures
77,785
0
37
42
18
264,682
20
netbox
12
netbox/users/models.py
Python
4
{ "docstring": "\n Automatically create a new UserConfig when a new User is created. Skip this if importing a user from a fixture.\n ", "language": "en", "n_whitespaces": 27, "n_words": 20, "vocab_size": 16 }
https://github.com/netbox-community/netbox.git
6
validate_attr
def validate_attr(self, append) -> None: if append: existing_fields = getattr(self.attrs, self.kind_attr, None) if existing_fields is not None and existing_fields != list(self.values): raise ValueError("appended items do not match existing items in table!") existing_dtype = getattr(self.attrs, self.dtype_attr, None) if existing_dtype is not None and existing_dtype != self.dtype: raise ValueError( "appended items dtype do not match existing items dtype in table!" )
7d2f9b8d59908fbf57c6453bc41891efbfe981a6
12
pytables.py
124
TYP: some return annotations in pytables.py (#47512)
39,982
0
181
78
34
167,375
59
pandas
13
pandas/io/pytables.py
Python
11
{ "docstring": "validate that we have the same order as the existing & same dtype", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 11 }
https://github.com/pandas-dev/pandas.git
2
load_blocks_from_repo
def load_blocks_from_repo(name, src=None, api_key=None, alias=None, **kwargs): if src is None: tokens = name.split( "/" ) # Separate the source (e.g. "huggingface") from the repo name (e.g. "google/vit-base-patch16-224") assert ( len(tokens) > 1 ), "Either `src` parameter must be provided, or `name` must be formatted as {src}/{repo name}" src = tokens[0] name = "/".join(tokens[1:]) assert src.lower() in factory_methods, "parameter: src must be one of {}".format( factory_methods.keys() ) blocks: gradio.Blocks = factory_methods[src](name, api_key, alias, **kwargs) return blocks
cb2713e7050f2783493736e43a6b704865ce61c5
12
external.py
167
Getting Interface.load() working for 2.x and 3.x models and Spaces (#1361) * version * refactor for model and 2.x spaces * fixing tests * fixed tests * getting there... * formatting * formatting * fixes * formatting * external dependencies working * formatting * loading from 3.x * changes * wow finally it's working * fixed formatting * better error for spaces * better error for spaces * fixed 3.x bug * formatting
43,144
0
165
104
61
180,326
75
gradio
17
gradio/external.py
Python
15
{ "docstring": "Creates and returns a Blocks instance from several kinds of Hugging Face repos:\n 1) A model repo\n 2) A Spaces repo running Gradio 2.x\n 3) A Spaces repo running Gradio 3.x\n ", "language": "en", "n_whitespaces": 43, "n_words": 31, "vocab_size": 24 }
https://github.com/gradio-app/gradio.git
4
get_backend_for_dir
def get_backend_for_dir(self, location): # type: (str) -> Optional[VersionControl] vcs_backends = {} for vcs_backend in self._registry.values(): repo_path = vcs_backend.get_repository_root(location) if not repo_path: continue logger.debug('Determine that %s uses VCS: %s', location, vcs_backend.name) vcs_backends[repo_path] = vcs_backend if not vcs_backends: return None # Choose the VCS in the inner-most directory. Since all repository # roots found here would be either `location` or one of its # parents, the longest path should have the most path components, # i.e. the backend representing the inner-most repository. inner_most_repo_path = max(vcs_backends, key=len) return vcs_backends[inner_most_repo_path]
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
10
versioncontrol.py
126
upd; format
12,562
0
257
75
67
61,419
86
transferlearning
16
.venv/lib/python3.8/site-packages/pip/_internal/vcs/versioncontrol.py
Python
13
{ "docstring": "\n Return a VersionControl object if a repository of that type is found\n at the given directory.\n ", "language": "en", "n_whitespaces": 38, "n_words": 16, "vocab_size": 15 }
https://github.com/jindongwang/transferlearning.git
1
_stamp_regen_task
def _stamp_regen_task(task, visitor, **headers): task.stamp(visitor=visitor, **headers) return task
3a7a82af9588629dad5807e0862bacbbd5d7a7f2
8
canvas.py
39
Canvas.py doc enhancement (#7889) * Enhanced doc for canvas.maybe_unroll_group() * Enhanced doc for canvas._stamp_regen_task() * Enhanced doc for canvas._merge_dictionaries()
52,267
0
17
24
8
208,258
8
celery
5
celery/canvas.py
Python
3
{ "docstring": "When stamping a sequence of tasks created by a generator,\n we use this function to stamp each task in the generator\n without exhausting it.", "language": "en", "n_whitespaces": 29, "n_words": 24, "vocab_size": 23 }
https://github.com/celery/celery.git
2
manage_matplotlib_context
def manage_matplotlib_context() -> Any: originalRcParams = matplotlib.rcParams.copy() # Credits for this style go to the ggplot and seaborn packages. # We copied the style file to remove dependencies on the Seaborn package. # Check it out, it's an awesome library for plotting customRcParams = { "patch.facecolor": "#348ABD", # blue "patch.antialiased": True, "font.size": 10.0, "figure.edgecolor": "0.50", # Seaborn common parameters "figure.facecolor": "white", "text.color": ".15", "axes.labelcolor": ".15", "legend.numpoints": 1, "legend.scatterpoints": 1, "xtick.direction": "out", "ytick.direction": "out", "xtick.color": ".15", "ytick.color": ".15", "axes.axisbelow": True, "image.cmap": "Greys", "font.family": ["sans-serif"], "font.sans-serif": [ "Arial", "Liberation Sans", "Bitstream Vera Sans", "sans-serif", ], "grid.linestyle": "-", "lines.solid_capstyle": "round", # Seaborn darkgrid parameters # .15 = dark_gray # .8 = light_gray "axes.grid": True, "axes.facecolor": "#EAEAF2", "axes.edgecolor": "white", "axes.linewidth": 0, "grid.color": "white", # Seaborn notebook context "figure.figsize": [8.0, 5.5], "axes.labelsize": 11, "axes.titlesize": 12, "xtick.labelsize": 10, "ytick.labelsize": 10, "legend.fontsize": 10, "grid.linewidth": 1, "lines.linewidth": 1.75, "patch.linewidth": 0.3, "lines.markersize": 7, "lines.markeredgewidth": 0, "xtick.major.width": 1, "ytick.major.width": 1, "xtick.minor.width": 0.5, "ytick.minor.width": 0.5, "xtick.major.pad": 7, "ytick.major.pad": 7, "backend": "agg", } try: register_matplotlib_converters() matplotlib.rcParams.update(customRcParams) sns.set_style(style="white") yield finally: deregister_matplotlib_converters() # revert to original unit registries with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=matplotlib.cbook.mplDeprecation) matplotlib.rcParams.update(originalRcParams) # revert to original rcParams
11e1a8a3fa8d13513fe926b731fb907a066af2a1
15
context.py
503
fix: change context managed backend (#1149)
46,847
0
662
273
139
191,835
184
ydata-profiling
19
src/pandas_profiling/visualisation/context.py
Python
62
{ "docstring": "Return a context manager for temporarily changing matplotlib unit registries and rcParams.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
https://github.com/ydataai/ydata-profiling.git
1
test_empty_backend
def test_empty_backend(self) -> None: yaml_str = output_error = self.get_errors_from_gen_backend_stubs(yaml_str) self.assertExpectedInline(output_error, )
bb5b4cceb6f737448eaaa6817cd773b6f4b0e77d
8
test_gen_backend_stubs.py
47
Revert "Revert D32498569: allow external backend codegen to toggle whether to generate out= and inplace kernels" (#69950) Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69950 This reverts commit f6cad53443704dfe5a20cc62bee14d91e3bffcaa. Test Plan: Imported from OSS Reviewed By: albanD Differential Revision: D33113545 Pulled By: bdhirsh fbshipit-source-id: d6590294662588d36c09662dea65919ad4e1e288
21,490
0
32
26
10
102,175
11
pytorch
6
tools/test/test_gen_backend_stubs.py
Python
8
{ "docstring": "\\\nbackend:\ncpp_namespace: torch_xla\nsupported:\n- absYou must provide a value for \"backend\"", "language": "en", "n_whitespaces": 8, "n_words": 13, "vocab_size": 13 }
https://github.com/pytorch/pytorch.git
3
_run_offline_evaluation
def _run_offline_evaluation(self): assert len(self.workers.local_worker().policy_map) == 1 parallelism = self.evaluation_config.evaluation_num_workers or 1 offline_eval_results = {"off_policy_estimator": {}} for evaluator_name, offline_evaluator in self.reward_estimators.items(): offline_eval_results["off_policy_estimator"][ evaluator_name ] = offline_evaluator.estimate_on_dataset( self.evaluation_dataset, n_parallelism=parallelism, ) return offline_eval_results
e368dd9b4e10026767df66d1811a92bd8ca2d8f9
12
algorithm.py
121
[RLlib] By-pass Evaluation workers when doing OPE (#30135) Signed-off-by: Kourosh Hakhamaneshi <[email protected]>
30,913
0
150
74
26
136,419
30
ray
17
rllib/algorithms/algorithm.py
Python
12
{ "docstring": "Runs offline evaluation via `OfflineEvaluator.estimate_on_dataset()` API.\n\n This method will be used when `evaluation_dataset` is provided.\n Note: This will only work if the policy is a single agent policy.\n\n Returns:\n The results dict from the offline evaluation call.\n ", "language": "en", "n_whitespaces": 76, "n_words": 37, "vocab_size": 31 }
https://github.com/ray-project/ray.git
5
configure_optimizers
def configure_optimizers(self): # pylint: disable=assignment-from-none arc_optimizers = self.configure_architecture_optimizers() if arc_optimizers is None: return self.model.configure_optimizers() if isinstance(arc_optimizers, optim.Optimizer): arc_optimizers = [arc_optimizers] self.arc_optim_count = len(arc_optimizers) # The return values ``frequency`` and ``monitor`` are ignored because lightning requires # ``len(optimizers) == len(frequency)``, and gradient backword is handled manually. # For data structure of variables below, please see pytorch lightning docs of ``configure_optimizers``. w_optimizers, lr_schedulers, self.frequencies, monitor = \ self.trainer._configure_optimizers(self.model.configure_optimizers()) lr_schedulers = self.trainer._configure_schedulers(lr_schedulers, monitor, not self.automatic_optimization) if any(sch["scheduler"].optimizer not in w_optimizers for sch in lr_schedulers): raise Exception( "Some schedulers are attached with an optimizer that wasn't returned from `configure_optimizers`." ) # variables used to handle optimizer frequency self.cur_optimizer_step = 0 self.cur_optimizer_index = 0 return arc_optimizers + w_optimizers, lr_schedulers
14d2966b9e91ae16dcc39de8f41017a75cec8ff9
11
base_lightning.py
211
Valuechoice oneshot lightning (#4602)
24,584
0
296
130
85
112,126
114
nni
24
nni/retiarii/oneshot/pytorch/base_lightning.py
Python
17
{ "docstring": "\n Combine architecture optimizers and user's model optimizers.\n You can overwrite configure_architecture_optimizers if architecture optimizers are needed in your NAS algorithm.\n For now ``self.model`` is tested against :class:`nni.retiarii.evaluator.pytorch.lightning._SupervisedLearningModule`\n and it only returns 1 optimizer.\n But for extendibility, codes for other return value types are also implemented.\n ", "language": "en", "n_whitespaces": 88, "n_words": 45, "vocab_size": 40 }
https://github.com/microsoft/nni.git
2
crop
def crop(clip, i, j, h, w): if len(clip.size()) != 4: raise ValueError("clip should be a 4D tensor") return clip[..., i : i + h, j : j + w]
289fce29b3e2392114aadbe7a419df0f2e3ac1be
10
_functional_video.py
74
Replace asserts with exceptions (#5587) * replace most asserts with exceptions * fix formating issues * fix linting and remove more asserts * fix regresion * fix regresion * fix bug * apply ufmt * apply ufmt * fix tests * fix format * fix None check * fix detection models tests * non scriptable any * add more checks for None values * fix retinanet test * fix retinanet test * Update references/classification/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * Update references/classification/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * Update references/optical_flow/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * Update references/optical_flow/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * Update references/optical_flow/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * make value checks more pythonic: * Update references/optical_flow/transforms.py Co-authored-by: Nicolas Hug <[email protected]> * make value checks more pythonic * make more checks pythonic * fix bug * appy ufmt * fix tracing issues * fib typos * fix lint * remove unecessary f-strings * fix bug * Update torchvision/datasets/mnist.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/datasets/mnist.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/ops/boxes.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/ops/poolers.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/utils.py Co-authored-by: Nicolas Hug <[email protected]> * address PR comments * Update torchvision/io/_video_opt.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/models/detection/generalized_rcnn.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/models/feature_extraction.py Co-authored-by: Nicolas Hug <[email protected]> * Update torchvision/models/optical_flow/raft.py Co-authored-by: Nicolas Hug <[email protected]> * address PR comments * addressing further pr comments * fix bug * remove unecessary else * apply ufmt * last pr comment * replace RuntimeErrors Co-authored-by: Nicolas Hug <[email protected]>
46,893
0
45
48
24
192,419
29
vision
9
torchvision/transforms/_functional_video.py
Python
4
{ "docstring": "\n Args:\n clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)\n ", "language": "en", "n_whitespaces": 28, "n_words": 14, "vocab_size": 13 }
https://github.com/pytorch/vision.git
7
binary_crossentropy
def binary_crossentropy(target, output, from_logits=False): target = tf.convert_to_tensor(target) output = tf.convert_to_tensor(output) # Use logits whenever they are available. `softmax` and `sigmoid` # activations cache logits on the `output` Tensor. if hasattr(output, "_keras_logits"): output = output._keras_logits # pylint: disable=protected-access if from_logits: warnings.warn( '"`binary_crossentropy` received `from_logits=True`, but the `output`' " argument was produced by a sigmoid or softmax activation and thus " 'does not represent logits. Was this intended?"', stacklevel=2, ) from_logits = True if from_logits: return tf.nn.sigmoid_cross_entropy_with_logits( labels=target, logits=output ) if ( not isinstance(output, (tf.__internal__.EagerTensor, tf.Variable)) and output.op.type == "Sigmoid" ) and not hasattr(output, "_keras_history"): # When sigmoid activation function is used for output operation, we # use logits from the sigmoid function directly to compute loss in order # to prevent collapsing zero when training. assert len(output.op.inputs) == 1 output = output.op.inputs[0] return tf.nn.sigmoid_cross_entropy_with_logits( labels=target, logits=output ) epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon_, 1.0 - epsilon_) # Compute cross entropy from probabilities. bce = target * tf.math.log(output + epsilon()) bce += (1 - target) * tf.math.log(1 - output + epsilon()) return -bce @keras_export("keras.backend.binary_focal_crossentropy") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
84afc5193d38057e2e2badf9c889ea87d80d8fbf
@keras_export("keras.backend.binary_focal_crossentropy") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
14
backend.py
387
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
80,219
1
421
222
121
269,598
176
keras
37
keras/backend.py
Python
31
{ "docstring": "Binary crossentropy between an output tensor and a target tensor.\n\n Args:\n target: A tensor with the same shape as `output`.\n output: A tensor.\n from_logits: Whether `output` is expected to be a logits tensor.\n By default, we consider that `output`\n encodes a probability distribution.\n\n Returns:\n A tensor.\n ", "language": "en", "n_whitespaces": 105, "n_words": 46, "vocab_size": 37 }
https://github.com/keras-team/keras.git
1
print_help
def print_help(self): help_text = f console.print(text=help_text, menu="Custom - Quantitative Analysis")
6a66f3f3ed934e0615ff4ba283ee67fcc43d3656
9
qa_controller.py
54
Custom data context (#1193) * Add first iteration of custom context * Add sample data + improve plot * Change `head` to `show` with sorting and limit. Add "-x" to plot and dynamic update of completer * generate random time series for test csv * Make columns lower case. Check if date is in columns and convert to timestamp. Improve plotting for dates * Add qa to custom * Add pred to custom * Hugooooo * Testing * dang whitespace Co-authored-by: Colin Delahunty <[email protected]> Co-authored-by: didierlopes.eth <[email protected]>
83,981
0
31
22
10
281,704
10
OpenBBTerminal
9
gamestonk_terminal/custom/quantitative_analysis/qa_controller.py
Python
31
{ "docstring": "Print help[cmds]\n load load new data file\n pick pick target column for analysis[/cmds]\n\n[param]File: [/param]{self.file}\n[param]Target Column: [/param]{self.target}\n[cmds]\n[info]Statistics:[/info]\n summary brief summary statistics of loaded stock.\n normality normality statistics and tests\n unitroot unit root test for stationarity (ADF, KPSS)\n[info]Plots:[/info]\n line line plot of selected target\n hist histogram with density plot\n cdf cumulative distribution function\n bw box and whisker plot\n acf (partial) auto-correlation function differentials of prices\n qqplot residuals against standard normal curve\n[info]Rolling Metrics:[/info]\n rolling rolling mean and std deviation of prices\n spread rolling variance and std deviation of prices\n quantile rolling median and quantile of prices\n skew rolling skewness of distribution of prices\n kurtosis rolling kurtosis of distribution of prices\n[info]Other:[/info]\n raw print raw data\n decompose decomposition in cyclic-trend, season, and residuals of prices\n cusum detects abrupt changes using cumulative sum algorithm of prices[/cmds]\n ", "language": "en", "n_whitespaces": 297, "n_words": 137, "vocab_size": 89 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
2
unescape
def unescape(s): if '&' not in s: return s return _charref.sub(_replace_charref, s)
8198943edd73a363c266633e1aa5b2a9e9c9f526
7
__init__.py
40
add python 3.10.4 for windows
54,879
0
28
23
11
217,668
12
XX-Net
5
python3.10.4/Lib/html/__init__.py
Python
4
{ "docstring": "\n Convert all named and numeric character references (e.g. &gt;, &#62;,\n &x3e;) in the string s to the corresponding unicode characters.\n This function uses the rules defined by the HTML 5 standard\n for both valid and invalid character references, and the list of\n HTML 5 named character references defined in html.entities.html5.\n ", "language": "en", "n_whitespaces": 69, "n_words": 50, "vocab_size": 36 }
https://github.com/XX-net/XX-Net.git
4
upsample_conv_2d
def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'): r assert isinstance(factor, int) and factor >= 1 # Check weight shape. w = tf.convert_to_tensor(w) assert w.shape.rank == 4 convH = w.shape[0].value convW = w.shape[1].value inC = _shape(w, 2) outC = _shape(w, 3) assert convW == convH # Setup filter kernel. if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor ** 2)) p = (k.shape[0] - factor) - (convW - 1) # Determine data dimensions. if data_format == 'NCHW': stride = [1, 1, factor, factor] output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW] num_groups = _shape(x, 1) // inC else: stride = [1, factor, factor, 1] output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC] num_groups = _shape(x, 3) // inC # Transpose weights. w = tf.reshape(w, [convH, convW, inC, num_groups, -1]) w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2]) w = tf.reshape(w, [convH, convW, -1, num_groups * inC]) # Execute. x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format) return _simple_upfirdn_2d(x, k, pad0=(p+1)//2+factor-1, pad1=p//2+1, data_format=data_format, impl=impl) #----------------------------------------------------------------------------
7375ee364e0df2a417f92593e09557f1b2a3575a
16
upfirdn_2d.py
602
initialize ostec
1,607
0
317
387
110
9,407
198
insightface
34
reconstruction/ostec/external/stylegan2/dnnlib/tflib/ops/upfirdn_2d.py
Python
48
{ "docstring": "Fused `upsample_2d()` followed by `tf.nn.conv2d()`.\n\n Padding is performed only once at the beginning, not between the operations.\n The fused op is considerably more efficient than performing the same calculation\n using standard TensorFlow ops. It supports gradients of arbitrary order.\n\n Args:\n x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.\n w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.\n Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.\n k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).\n The default is `[1] * factor`, which corresponds to nearest-neighbor\n upsampling.\n factor: Integer upsampling factor (default: 2).\n gain: Scaling factor for signal magnitude (default: 1.0).\n data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).\n impl: Name of the implementation to use. Can be `\"ref\"` or `\"cuda\"` (default).\n\n Returns:\n Tensor of the shape `[N, C, H * factor, W * factor]` or\n `[N, H * factor, W * factor, C]`, and same datatype as `x`.\n ", "language": "en", "n_whitespaces": 358, "n_words": 158, "vocab_size": 114 }
https://github.com/deepinsight/insightface.git
1
get_assets
def get_assets(filters): return frappe.db.sql( , {"to_date": filters.to_date, "from_date": filters.from_date, "company": filters.company}, as_dict=1, )
494bd9ef78313436f0424b918f200dab8fc7c20b
10
asset_depreciations_and_balances.py
64
style: format code with black
13,808
0
7
39
13
65,150
13
erpnext
9
erpnext/accounts/report/asset_depreciations_and_balances/asset_depreciations_and_balances.py
Python
49
{ "docstring": "\n\t\tSELECT results.asset_category,\n\t\t\t sum(results.accumulated_depreciation_as_on_from_date) as accumulated_depreciation_as_on_from_date,\n\t\t\t sum(results.depreciation_eliminated_during_the_period) as depreciation_eliminated_during_the_period,\n\t\t\t sum(results.depreciation_amount_during_the_period) as depreciation_amount_during_the_period\n\t\tfrom (SELECT a.asset_category,\n\t\t\t\t ifnull(sum(case when ds.schedule_date < %(from_date)s and (ifnull(a.disposal_date, 0) = 0 or a.disposal_date >= %(from_date)s) then\n\t\t\t\t\t\t\t\t ds.depreciation_amount\n\t\t\t\t\t\t\t else\n\t\t\t\t\t\t\t\t 0\n\t\t\t\t\t\t\t end), 0) as accumulated_depreciation_as_on_from_date,\n\t\t\t\t ifnull(sum(case when ifnull(a.disposal_date, 0) != 0 and a.disposal_date >= %(from_date)s\n\t\t\t\t\t\t\t\t\t\tand a.disposal_date <= %(to_date)s and ds.schedule_date <= a.disposal_date then\n\t\t\t\t\t\t\t\t ds.depreciation_amount\n\t\t\t\t\t\t\t else\n\t\t\t\t\t\t\t\t 0\n\t\t\t\t\t\t\t end), 0) as depreciation_eliminated_during_the_period,\n\t\t\t\t ifnull(sum(case when ds.schedule_date >= %(from_date)s and ds.schedule_date <= %(to_date)s\n\t\t\t\t\t\t\t\t\t\tand (ifnull(a.disposal_date, 0) = 0 or ds.schedule_date <= a.disposal_date) then\n\t\t\t\t\t\t\t\t ds.depreciation_amount\n\t\t\t\t\t\t\t else\n\t\t\t\t\t\t\t\t 0\n\t\t\t\t\t\t\t end), 0) as depreciation_amount_during_the_period\n\t\t\tfrom `tabAsset` a, `tabDepreciation Schedule` ds\n\t\t\twhere a.docstatus=1 and a.company=%(company)s and a.purchase_date <= %(to_date)s and a.name = ds.parent and ifnull(ds.journal_entry, '') != ''\n\t\t\tgroup by a.asset_category\n\t\t\tunion\n\t\t\tSELECT a.asset_category,\n\t\t\t\t ifnull(sum(case when ifnull(a.disposal_date, 0) != 0 and (a.disposal_date < %(from_date)s or a.disposal_date > %(to_date)s) then\n\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t else\n\t\t\t\t\t\t\t\t\ta.opening_accumulated_depreciation\n\t\t\t\t\t\t\t end), 0) as accumulated_depreciation_as_on_from_date,\n\t\t\t\t ifnull(sum(case when a.disposal_date >= %(from_date)s and a.disposal_date <= %(to_date)s then\n\t\t\t\t\t\t\t\t a.opening_accumulated_depreciation\n\t\t\t\t\t\t\t else\n\t\t\t\t\t\t\t\t 0\n\t\t\t\t\t\t\t end), 0) as depreciation_eliminated_during_the_period,\n\t\t\t\t 0 as depreciation_amount_during_the_period\n\t\t\tfrom `tabAsset` a\n\t\t\twhere a.docstatus=1 and a.company=%(company)s and a.purchase_date <= %(to_date)s\n\t\t\tgroup by a.asset_category) as results\n\t\tgroup by results.asset_category\n\t\t", "language": "en", "n_whitespaces": 209, "n_words": 178, "vocab_size": 61 }
https://github.com/frappe/erpnext.git
5
_get_or_create
def _get_or_create(self, s, name=None, dtype=None, broadcastable=None): # Defaults if name is None: name = s.name if dtype is None: dtype = 'floatX' if broadcastable is None: broadcastable = () key = self._get_key(s, name, dtype=dtype, broadcastable=broadcastable) if key in self.cache: return self.cache[key] value = aet.tensor(name=name, dtype=dtype, shape=broadcastable) self.cache[key] = value return value
68bd82de645a61f4bbc0b6246e70959373c9cba2
9
aesaracode.py
164
fix(printing): change Aesara argument broadcastable to shape
49,056
0
165
107
30
198,878
51
sympy
13
sympy/printing/aesaracode.py
Python
13
{ "docstring": "\n Get the Aesara variable for a SymPy symbol from the cache, or create it\n if it does not exist.\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 17 }
https://github.com/sympy/sympy.git
4
get_downstream_powerports
def get_downstream_powerports(self, leg=None): poweroutlets = self.poweroutlets.filter(cable__isnull=False) if leg: poweroutlets = poweroutlets.filter(feed_leg=leg) if not poweroutlets: return PowerPort.objects.none() q = Q() for poweroutlet in poweroutlets: q |= Q( cable=poweroutlet.cable, cable_end=poweroutlet.opposite_cable_end ) return PowerPort.objects.filter(q)
fcd1daaf798d62023f999c3e09e035f7b3f47c8f
12
device_components.py
132
Update power utilization calculations for new cabling model
78,026
0
154
82
24
265,204
31
netbox
16
netbox/dcim/models/device_components.py
Python
13
{ "docstring": "\n Return a queryset of all PowerPorts connected via cable to a child PowerOutlet.\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 12 }
https://github.com/netbox-community/netbox.git
2
call_news
def call_news(self, other_args): parser = argparse.ArgumentParser( prog="news", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, description=, ) parser.add_argument( "-l", "--limit", dest="limit", type=check_positive, help="display N number records", default=10, ) parser.add_argument( "-k", "--kind", dest="kind", type=str, help="Filter by category of news. Available values: news or media.", default="news", choices=cryptopanic_model.CATEGORIES, ) parser.add_argument( "-f", "--filter", dest="filter", type=str, help="Filter by kind of news. One from list: rising|hot|bullish|bearish|important|saved|lol", default=None, required=False, choices=cryptopanic_model.FILTERS, ) parser.add_argument( "-r", "--region", dest="region", type=str, help="Filter news by regions. Available regions are: en (English), de (Deutsch), nl (Dutch), es (Espaรฑol), " "fr (Franรงais), it (Italiano), pt (Portuguรชs), ru (ะ ัƒััะบะธะน)", default="en", choices=cryptopanic_model.REGIONS, ) parser.add_argument( "-s", "--sort", dest="sortby", type=str, help="Sort by given column. Default: published_at", default="published_at", choices=cryptopanic_model.SORT_FILTERS, ) parser.add_argument( "--descend", action="store_false", help="Flag to sort in descending order (lowest first)", dest="descend", default=True, ) parser.add_argument( "-u", "--urls", dest="urls", action="store_false", help="Flag to disable urls. If you will use the flag you will hide the column with urls", default=True, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: cryptopanic_view.display_news( top=ns_parser.limit, source=self.source, currency=self.coin, export=ns_parser.export, descend=ns_parser.descend, post_kind=ns_parser.kind, filter_=ns_parser.filter, region=ns_parser.region, )
e59a30b18873f7449bc59a88c3da21894e0dbe0a
11
dd_controller.py
480
Add crypto DD commands (#1710) * Add github activity over time * Create tests * Update default days in chart command * Add san package to poetry * Fix tests failed * Generate fixtures * Fix tests failed * Remove sanpy package and use requests instead * Adjust index * Add hugo server * Fix datetime * Update tests * Revert "Update tests" This reverts commit ffe03a7224cd830a14d2f425d7d59f00a10f27ac. * Fix tests * Regenerate cassettes & filter api tokens * Fix windows issues * Fix PR comments * Pass tests & fix comments
84,695
0
1,015
301
126
284,320
161
OpenBBTerminal
43
openbb_terminal/cryptocurrency/due_diligence/dd_controller.py
Python
83
{ "docstring": "Process news commandDisplay most recent news on the given coin from CryptoPanic aggregator platform.\n [Source: https://cryptopanic.com/]", "language": "en", "n_whitespaces": 26, "n_words": 16, "vocab_size": 15 }
https://github.com/OpenBB-finance/OpenBBTerminal.git
6
make_layoutgrids_gs
def make_layoutgrids_gs(layoutgrids, gs): if gs in layoutgrids or gs.figure is None: return layoutgrids # in order to do constrained_layout there has to be at least *one* # gridspec in the tree: layoutgrids['hasgrids'] = True if not hasattr(gs, '_subplot_spec'): # normal gridspec parent = layoutgrids[gs.figure] layoutgrids[gs] = mlayoutgrid.LayoutGrid( parent=parent, parent_inner=True, name='gridspec', ncols=gs._ncols, nrows=gs._nrows, width_ratios=gs.get_width_ratios(), height_ratios=gs.get_height_ratios()) else: # this is a gridspecfromsubplotspec: subplot_spec = gs._subplot_spec parentgs = subplot_spec.get_gridspec() # if a nested gridspec it is possible the parent is not in there yet: if parentgs not in layoutgrids: layoutgrids = make_layoutgrids_gs(layoutgrids, parentgs) subspeclb = layoutgrids[parentgs] # get a unique representation: rep = object.__repr__(gs) + 'top' # gridspecfromsubplotspec need an outer container: if rep not in layoutgrids: layoutgrids[rep] = mlayoutgrid.LayoutGrid( parent=subspeclb, name='top', nrows=1, ncols=1, parent_pos=(subplot_spec.rowspan, subplot_spec.colspan)) layoutgrids[gs] = mlayoutgrid.LayoutGrid( parent=layoutgrids[rep], name='gridspec', nrows=gs._nrows, ncols=gs._ncols, width_ratios=gs.get_width_ratios(), height_ratios=gs.get_height_ratios()) return layoutgrids
c682ca40c647770a967b6b8a7615eb91c7cb3fc9
16
_constrained_layout.py
361
FIX: better repr for subgridspecs
22,565
0
510
230
80
107,046
134
matplotlib
29
lib/matplotlib/_constrained_layout.py
Python
33
{ "docstring": "\n Make the layoutgrid for a gridspec (and anything nested in the gridspec)\n ", "language": "en", "n_whitespaces": 19, "n_words": 12, "vocab_size": 11 }
https://github.com/matplotlib/matplotlib.git
10
data_received
def data_received(self, data): if self._sslpipe is None: # transport closing, sslpipe is destroyed return try: ssldata, appdata = self._sslpipe.feed_ssldata(data) except (SystemExit, KeyboardInterrupt): raise except BaseException as e: self._fatal_error(e, 'SSL error in data received') return for chunk in ssldata: self._transport.write(chunk) for chunk in appdata: if chunk: try: if self._app_protocol_is_buffer: protocols._feed_data_to_buffered_proto( self._app_protocol, chunk) else: self._app_protocol.data_received(chunk) except (SystemExit, KeyboardInterrupt): raise except BaseException as ex: self._fatal_error( ex, 'application protocol failed to receive SSL data') return else: self._start_shutdown() break
8198943edd73a363c266633e1aa5b2a9e9c9f526
17
sslproto.py
217
add python 3.10.4 for windows
56,109
0
488
130
55
220,737
74
XX-Net
21
python3.10.4/Lib/asyncio/sslproto.py
Python
29
{ "docstring": "Called when some SSL data is received.\n\n The argument is a bytes object.\n ", "language": "en", "n_whitespaces": 27, "n_words": 13, "vocab_size": 12 }
https://github.com/XX-net/XX-Net.git
3
make_increasing_candle
def make_increasing_candle(open, high, low, close, dates, **kwargs): increase_x, increase_y = _Candlestick( open, high, low, close, dates, **kwargs ).get_candle_increase() if "line" in kwargs: kwargs.setdefault("fillcolor", kwargs["line"]["color"]) else: kwargs.setdefault("fillcolor", _DEFAULT_INCREASING_COLOR) if "name" in kwargs: kwargs.setdefault("showlegend", True) else: kwargs.setdefault("showlegend", False) kwargs.setdefault("name", "Increasing") kwargs.setdefault("line", dict(color=_DEFAULT_INCREASING_COLOR)) candle_incr_data = dict( type="box", x=increase_x, y=increase_y, whiskerwidth=0, boxpoints=False, **kwargs, ) return [candle_incr_data]
43e3a4011080911901176aab919c0ecf5046ddd3
12
_candlestick.py
237
switch to black .22
57,816
0
165
145
41
226,141
52
plotly.py
21
packages/python/plotly/plotly/figure_factory/_candlestick.py
Python
23
{ "docstring": "\n Makes boxplot trace for increasing candlesticks\n\n _make_increasing_candle() and _make_decreasing_candle separate the\n increasing traces from the decreasing traces so kwargs (such as\n color) can be passed separately to increasing or decreasing traces\n when direction is set to 'increasing' or 'decreasing' in\n FigureFactory.create_candlestick()\n\n :param (list) open: opening values\n :param (list) high: high values\n :param (list) low: low values\n :param (list) close: closing values\n :param (list) dates: list of datetime objects. Default: None\n :param kwargs: kwargs to be passed to increasing trace via\n plotly.graph_objs.Scatter.\n\n :rtype (list) candle_incr_data: list of the box trace for\n increasing candlesticks.\n ", "language": "en", "n_whitespaces": 149, "n_words": 92, "vocab_size": 58 }
https://github.com/plotly/plotly.py.git
4
normalize_span_histogram_resutls
def normalize_span_histogram_resutls(span, histogram_params, results): histogram_column = get_span_histogram_column(span, histogram_params) bin_name = get_function_alias(histogram_column) # zerofill and rename the columns while making sure to adjust for precision bucket_map = {} for row in results["data"]: # we expect the bin the be an integer, this is because all floating # point values are rounded during the calculation bucket = int(row[bin_name]) bucket_map[bucket] = row["count"] new_data = [] for i in range(histogram_params.num_buckets): bucket = histogram_params.start_offset + histogram_params.bucket_size * i row = {"bin": bucket, "count": bucket_map.get(bucket, 0)} if histogram_params.multiplier > 1: row["bin"] /= float(histogram_params.multiplier) new_data.append(row) return new_data
6c49c2ff46496809d6620ac3746262c66f02142e
13
discover.py
203
ref(spans): Normalize exclusive time histogram results (#32762) * ref(spans): Normalize exclusive time histogram results * test normalized data
19,394
0
184
124
71
97,246
90
sentry
22
src/sentry/snuba/discover.py
Python
15
{ "docstring": "\n Normalizes the span histogram results by renaming the columns to key and bin\n and make sure to zerofill any missing values.\n\n :param [Span] span: The span for which you want to generate the\n histograms for.\n :param HistogramParams histogram_params: The histogram parameters used.\n :param any results: The results from the histogram query that may be missing\n bins and needs to be normalized.\n ", "language": "en", "n_whitespaces": 94, "n_words": 61, "vocab_size": 42 }
https://github.com/getsentry/sentry.git
1
round
def round(self, decimals=0): from dask.array.routines import round return round(self, decimals=decimals)
2820bae493a49cb1d0a6e376985c5473b8f04fa8
8
core.py
42
Don't include docs in ``Array`` methods, just refer to module docs (#9244) Co-authored-by: James Bourbeau <[email protected]>
36,752
0
31
27
9
156,742
10
dask
6
dask/array/core.py
Python
3
{ "docstring": "Return array with each element rounded to the given number of decimals.\n\n Refer to :func:`dask.array.round` for full documentation.\n\n See Also\n --------\n dask.array.round : equivalent function\n ", "language": "en", "n_whitespaces": 60, "n_words": 25, "vocab_size": 24 }
https://github.com/dask/dask.git
1
test_encoding_latin1_118
def test_encoding_latin1_118(self, datapath): # GH 25960 msg = with tm.assert_produces_warning(UnicodeWarning) as w: encoded = read_stata( datapath("io", "data", "stata", "stata1_encoding_118.dta") ) assert len(w) == 151 assert w[0].message.args[0] == msg expected = DataFrame([["Dรผsseldorf"]] * 151, columns=["kreis1849"]) tm.assert_frame_equal(encoded, expected)
c055dc4e6be9fc1b68d873a1ace286322dadd5e1
13
test_stata.py
141
TST: Don't use autouse fixture in test_stata (#45831)
39,577
0
130
82
31
164,632
36
pandas
17
pandas/tests/io/test_stata.py
Python
14
{ "docstring": "\nOne or more strings in the dta file could not be decoded using utf-8, and\nso the fallback encoding of latin-1 is being used. This can happen when a file\nhas been incorrectly encoded by Stata or some other software. You should verify\nthe string values returned are correct.", "language": "en", "n_whitespaces": 46, "n_words": 49, "vocab_size": 45 }
https://github.com/pandas-dev/pandas.git
1
locator
def locator(self, loc): self._long_axis().set_major_locator(loc) self._locator = loc
6010bb43ed01c48c7c403569dd210490b236a853
9
colorbar.py
40
MNT: make colorbars locators and formatters properties
22,709
0
28
23
7
107,364
7
matplotlib
6
lib/matplotlib/colorbar.py
Python
3
{ "docstring": "\n Set the major locator being used for colorbar\n ", "language": "en", "n_whitespaces": 23, "n_words": 8, "vocab_size": 8 }
https://github.com/matplotlib/matplotlib.git
1
test_removing_entity_unavailable
async def test_removing_entity_unavailable(hass): entry = er.RegistryEntry( entity_id="hello.world", unique_id="test-unique-id", platform="test-platform", disabled_by=None, ) ent = entity.Entity() ent.hass = hass ent.entity_id = "hello.world" ent.registry_entry = entry ent.async_write_ha_state() state = hass.states.get("hello.world") assert state is not None assert state.state == STATE_UNKNOWN await ent.async_remove() state = hass.states.get("hello.world") assert state is not None assert state.state == STATE_UNAVAILABLE
26a85c6644991f626ccce62c05665095c2577234
10
test_entity.py
178
Add Entity.has_entity_name attribute (#73217)
113,341
0
123
104
31
314,737
50
core
20
tests/helpers/test_entity.py
Python
19
{ "docstring": "Test removing an entity that is still registered creates an unavailable state.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 11 }
https://github.com/home-assistant/core.git
30
capacity_values
def capacity_values(self, qs=None, tasks=None, breakdown=False, graph=None): if qs is None: # Optionally BYOQS - bring your own queryset qs = self.all().prefetch_related('instances') instance_ig_mapping, ig_ig_mapping = self.capacity_mapping(qs=qs) if tasks is None: tasks = self.model.unifiedjob_set.related.related_model.objects.filter(status__in=('running', 'waiting')) if graph is None: graph = {group.name: {} for group in qs} for group_name in graph: self.zero_out_group(graph, group_name, breakdown) for t in tasks: # TODO: dock capacity for isolated job management tasks running in queue impact = t.task_impact control_groups = [] if t.controller_node: control_groups = instance_ig_mapping.get(t.controller_node, []) if not control_groups: logger.warn(f"No instance group found for {t.controller_node}, capacity consumed may be innaccurate.") if t.status == 'waiting' or (not t.execution_node and not t.is_container_group_task): # Subtract capacity from any peer groups that share instances if not t.instance_group: impacted_groups = [] elif t.instance_group.name not in ig_ig_mapping: # Waiting job in group with 0 capacity has no collateral impact impacted_groups = [t.instance_group.name] else: impacted_groups = ig_ig_mapping[t.instance_group.name] for group_name in impacted_groups: if group_name not in graph: self.zero_out_group(graph, group_name, breakdown) graph[group_name]['consumed_capacity'] += impact capacity_type = get_capacity_type(t) graph[group_name][f'consumed_{capacity_type}_capacity'] += impact if breakdown: graph[group_name]['committed_capacity'] += impact for group_name in control_groups: if group_name not in graph: self.zero_out_group(graph, group_name, breakdown) graph[group_name][f'consumed_control_capacity'] += settings.AWX_CONTROL_NODE_TASK_IMPACT if breakdown: graph[group_name]['committed_capacity'] += settings.AWX_CONTROL_NODE_TASK_IMPACT elif t.status == 'running': # Subtract capacity from all groups that contain the instance if t.execution_node not in instance_ig_mapping: if not t.is_container_group_task: logger.warning('Detected %s running inside lost instance, ' 'may still be waiting for reaper.', t.log_format) if t.instance_group: impacted_groups = [t.instance_group.name] else: impacted_groups = [] else: impacted_groups = instance_ig_mapping[t.execution_node] for group_name in impacted_groups: if group_name not in graph: self.zero_out_group(graph, group_name, breakdown) graph[group_name]['consumed_capacity'] += impact capacity_type = get_capacity_type(t) graph[group_name][f'consumed_{capacity_type}_capacity'] += impact if breakdown: graph[group_name]['running_capacity'] += impact for group_name in control_groups: if group_name not in graph: self.zero_out_group(graph, group_name, breakdown) graph[group_name][f'consumed_control_capacity'] += settings.AWX_CONTROL_NODE_TASK_IMPACT if breakdown: graph[group_name]['running_capacity'] += settings.AWX_CONTROL_NODE_TASK_IMPACT else: logger.error('Programming error, %s not in ["running", "waiting"]', t.log_format) return graph
604cbc17376620dc67df35386421835d43732a4e
18
managers.py
817
Consume control capacity (#11665) * Select control node before start task Consume capacity on control nodes for controlling tasks and consider remainging capacity on control nodes before selecting them. This depends on the requirement that control and hybrid nodes should all be in the instance group named 'controlplane'. Many tests do not satisfy that requirement. I'll update the tests in another commit. * update tests to use controlplane We don't start any tasks if we don't have a controlplane instance group Due to updates to fixtures, update tests to set node type and capacity explicitly so they get expected result. * Fixes for accounting of control capacity consumed Update method is used to account for currently consumed capacity for instance groups in the in-memory capacity tracking data structure we initialize in after_lock_init and then update via calculate_capacity_consumed (both in task_manager.py) Also update fit_task_to_instance to consider control impact on instances Trust that these functions do the right thing looking for a node with capacity, and cut out redundant check for the whole group's capacity per Alan's reccomendation. * Refactor now redundant code Deal with control type tasks before we loop over the preferred instance groups, which cuts out the need for some redundant logic. Also, fix a bug where I was missing assigning the execution node in one case! * set job explanation on tasks that need capacity move the job explanation for jobs that need capacity to a function so we can re-use it in the three places we need it. * project updates always run on the controlplane Instance group ordering makes no sense on project updates because they always need to run on the control plane. Also, since hybrid nodes should always run the control processes for the jobs running on them as execution nodes, account for this when looking for a execution node. * fix misleading message the variables and wording were both misleading, fix to be more accurate description in the two different cases where this log may be emitted. * use settings correctly use settings.DEFAULT_CONTROL_PLANE_QUEUE_NAME instead of a hardcoded name cache the controlplane_ig object during the after lock init to avoid an uneccesary query eliminate mistakenly duplicated AWX_CONTROL_PLANE_TASK_IMPACT and use only AWX_CONTROL_NODE_TASK_IMPACT * add test for control capacity consumption add test to verify that when there are 2 jobs and only capacity for one that one will move into waiting and the other stays in pending * add test for hybrid node capacity consumption assert that the hybrid node is used for both control and execution and capacity is deducted correctly * add test for task.capacity_type = control Test that control type tasks have the right capacity consumed and get assigned to the right instance group Also fix lint in the tests * jobs_running not accurate for control nodes We can either NOT use "idle instances" for control nodes, or we need to update the jobs_running property on the Instance model to count jobs where the node is the controller_node. I didn't do that because it may be an expensive query, and it would be hard to make it match with jobs_running on the InstanceGroup which filters on tasks assigned to the instance group. This change chooses to stop considering "idle" control nodes an option, since we can't acurrately identify them. The way things are without any change, is we are continuing to over consume capacity on control nodes because this method sees all control nodes as "idle" at the beginning of the task manager run, and then only counts jobs started in that run in the in-memory tracking. So jobs which last over a number of task manager runs build up consuming capacity, which is accurately reported via Instance.consumed_capacity * Reduce default task impact for control nodes This is something we can experiment with as far as what users want at install time, but start with just 1 for now. * update capacity docs Describe usage of the new setting and the concept of control impact. Co-authored-by: Alan Rominger <[email protected]> Co-authored-by: Rebeccah <[email protected]>
17,078
0
1,412
503
129
80,597
296
awx
42
awx/main/managers.py
Python
65
{ "docstring": "\n Returns a dictionary of capacity values for all IGs\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
https://github.com/ansible/awx.git
1
test_all_no_duplicate_names
def test_all_no_duplicate_names(self, gp_mock, glob_mock): fixture_path = os.path.join(os.path.dirname(__file__), 'loader_fixtures') gp_mock.return_value = [ fixture_path, '/path/to' ] glob_mock.glob.side_effect = [ [os.path.join(fixture_path, 'import_fixture.py')], ['/path/to/import_fixture.py'] ] pl = PluginLoader('test', '', 'test', 'test_plugins') # Aside from needing ``list()`` so we can do a len, ``PluginLoader.all`` returns a generator # so ``list()`` actually causes ``PluginLoader.all`` to run. plugins = list(pl.all()) self.assertEqual(len(plugins), 1) self.assertIn(os.path.join(fixture_path, 'import_fixture.py'), pl._module_cache) self.assertNotIn('/path/to/import_fixture.py', pl._module_cache)
4260b71cc77b7a44e061668d0d408d847f550156
11
test_plugins.py
209
refactor and fixes for doc parsing (#77719) * refactor and remove redundant code in documentation allow location and building api to be more accessible fix issues with displaying ansible.legacy and ansible.builtin ensure we don't x2 process tokens (some modules reference them also) fixes #77764 move to constants vs hardcoded more informative errors and comments now have actual filter/test plugins, which expose the filter/test functions moved filter/test loading/finding logic into jinja2pluginloader, removed dupe implementations added tests for case in which we unique by basename when listing Update lib/ansible/utils/plugin_docs.py Co-authored-by: Sloane Hertel <[email protected]>
79,491
0
195
124
48
268,361
60
ansible
23
test/units/plugins/test_plugins.py
Python
15
{ "docstring": "\n This test goes along with ``test__load_module_source_no_duplicate_names``\n and ensures that we ignore duplicate imports on multiple paths\n ", "language": "en", "n_whitespaces": 38, "n_words": 16, "vocab_size": 16 }
https://github.com/ansible/ansible.git
1
binary_matches
def binary_matches(y_true, y_pred, threshold=0.5): y_pred = tf.convert_to_tensor(y_pred) threshold = tf.cast(threshold, y_pred.dtype) y_pred = tf.cast(y_pred > threshold, y_pred.dtype) return tf.cast(tf.equal(y_true, y_pred), tf.int8)
119cd4655d01570a70c70879dff4461ea46161bf
9
metrics_utils.py
98
Added util metric method for binary_matches. Decoupled from public metric binarry_acc
79,806
0
26
66
17
268,987
21
keras
10
keras/utils/metrics_utils.py
Python
5
{ "docstring": "Creates int Tensor, 1 for label-prediction match, 0 for mismatch.\n\n Args:\n y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`.\n y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`.\n threshold: (Optional) Float representing the threshold for deciding whether\n prediction values are 1 or 0.\n\n Returns:\n Binary matches. shape = `[batch_size, d0, .. dN]`\n ", "language": "en", "n_whitespaces": 75, "n_words": 55, "vocab_size": 40 }
https://github.com/keras-team/keras.git
7
get_matrix
def get_matrix(self): from sympy.matrices.dense import Matrix deprecate_data() with ignore_warnings(SymPyDeprecationWarning): if 0 < self.rank <= 2: rows = self.data.shape[0] columns = self.data.shape[1] if self.rank == 2 else 1 if self.rank == 2: mat_list = [] * rows for i in range(rows): mat_list.append([]) for j in range(columns): mat_list[i].append(self[i, j]) else: mat_list = [None] * rows for i in range(rows): mat_list[i] = self[i] return Matrix(mat_list) else: raise NotImplementedError( "missing multidimensional reduction to matrix.")
cba899d4137b0b65f6850120ee42cd4fcd4f9dbf
18
tensor.py
235
Update the various tensor deprecations
48,346
0
401
148
49
197,113
70
sympy
20
sympy/tensor/tensor.py
Python
21
{ "docstring": "\n DEPRECATED: do not use.\n\n Returns ndarray components data as a matrix, if components data are\n available and ndarray dimension does not exceed 2.\n ", "language": "en", "n_whitespaces": 52, "n_words": 23, "vocab_size": 19 }
https://github.com/sympy/sympy.git
1
test_device_stats_gpu_from_torch
def test_device_stats_gpu_from_torch(tmpdir): model = BoringModel() device_stats = DeviceStatsMonitor()
b56d8677ad0ff8513e566334f4a78a24b88480c3
8
test_device_stats_monitor.py
31
Update test_pruning.py to use `devices` instead of `gpus` or `ipus` (#11339)
69,665
0
17
82
7
241,712
8
lightning
6
tests/callbacks/test_device_stats_monitor.py
Python
19
{ "docstring": "Test GPU stats are logged using a logger with Pytorch >= 1.8.0.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
https://github.com/Lightning-AI/lightning.git
8
expand_egg_links
def expand_egg_links(self) -> None: prefixes = [ Path(prefix) for prefix in self.base_paths["libdirs"].split(os.pathsep) if vistir.path.is_in_path(prefix, self.prefix.as_posix()) ] for loc in prefixes: if not loc.exists(): continue for pth in loc.iterdir(): if not pth.suffix == ".egg-link": continue contents = [ vistir.path.normalize_path(line.strip()) for line in pth.read_text().splitlines() ] pth.write_text("\n".join(contents))
4b996c0fa85824b323ad9eff3364dbe2213ebb4c
16
environment.py
200
Convert type comments to type annotations
3,716
0
259
120
31
21,185
44
pipenv
26
pipenv/environment.py
Python
21
{ "docstring": "\n Expand paths specified in egg-link files to prevent pip errors during\n reinstall\n ", "language": "en", "n_whitespaces": 34, "n_words": 12, "vocab_size": 12 }
https://github.com/pypa/pipenv.git
3
deconstruct
def deconstruct(self): qs_class = self._queryset_class if getattr(self, "_built_with_as_manager", False): # using MyQuerySet.as_manager() return ( True, # as_manager None, # manager_class "%s.%s" % (qs_class.__module__, qs_class.__name__), # qs_class None, # args None, # kwargs ) else: module_name = self.__module__ name = self.__class__.__name__ # Make sure it's actually there and not an inner class module = import_module(module_name) if not hasattr(module, name): raise ValueError( "Could not find manager %s in %s.\n" "Please note that you need to inherit from managers you " "dynamically generated with 'from_queryset()'." % (name, module_name) ) return ( False, # as_manager "%s.%s" % (module_name, name), # manager_class None, # qs_class self._constructor_args[0], # args self._constructor_args[1], # kwargs )
9c19aff7c7561e3a82978a272ecdaad40dda5c00
15
manager.py
192
Refs #33476 -- Reformatted code with Black.
51,170
0
511
115
73
205,712
107
django
15
django/db/models/manager.py
Python
28
{ "docstring": "\n Return a 5-tuple of the form (as_manager (True), manager_class,\n queryset_class, args, kwargs).\n\n Raise a ValueError if the manager is dynamically generated.\n ", "language": "en", "n_whitespaces": 50, "n_words": 21, "vocab_size": 19 }
https://github.com/django/django.git
1
right
def right(self): from pandas import Index return Index(self._right, copy=False)
62a69beddbedde349891378992c902c0b9341a9f
8
interval.py
36
DOC: Add numpydoc SS06 validation (#47885)
40,192
0
30
21
9
168,085
9
pandas
6
pandas/core/arrays/interval.py
Python
3
{ "docstring": "\n Return the right endpoints of each Interval in the IntervalArray as an Index.\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 12 }
https://github.com/pandas-dev/pandas.git
1
get_requires_for_build_sdist
def get_requires_for_build_sdist(self, config_settings=None): return self._call_hook('get_requires_for_build_sdist', { 'config_settings': config_settings })
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
10
wrappers.py
41
upd; format
13,098
0
41
23
9
63,010
9
transferlearning
4
.venv/lib/python3.8/site-packages/pip/_vendor/pep517/wrappers.py
Python
4
{ "docstring": "Identify packages required for building a wheel\n\n Returns a list of dependency specifications, e.g.::\n\n [\"setuptools >= 26\"]\n\n This does not include requirements specified in pyproject.toml.\n It returns the result of calling the equivalently named hook in a\n subprocess.\n ", "language": "en", "n_whitespaces": 84, "n_words": 38, "vocab_size": 33 }
https://github.com/jindongwang/transferlearning.git
2
as_directory
def as_directory(self) -> Iterator[str]: if self._local_path: yield self._local_path else: temp_dir = self.to_directory() yield temp_dir shutil.rmtree(temp_dir, ignore_errors=True)
d96ac251d7c9d12fadedfdfd903dc393f5bae217
11
checkpoint.py
70
[air] Add `Checkpoint.as_directory()` for efficient checkpoint fs processing (#23908) This PR adds a `Checkpoint_as_directory()` context manager that either returns the local path (if checkpoint is already a directory) or a temporary directory path containing the checkpoint data, which is cleaned up after use. The path should be considered as a read-only source for loading data from the checkpoint. A common use case for processing checkpoint data is to convert it into a directory with `Checkpoint.to_directory()` and then do some read-only processing (e.g. restoring a ML model). This process has two flaws: First, `to_directory()` creates a temporary directory that has to be explicitly cleaned up by the user after use. Secondly, if the checkpoint is already a directory checkpoint, it is copied over, which is inefficient for large checkpoints (e.g. huggingface models) and then even more prone to unwanted side effects if not cleaned up properly. With this context manager that effectively returns a directory that is to be used as a read-only data source, we can avoid manual cleaning up and unnecessary data copies (or avoid internal inspection as e.g. in https://github.com/ray-project/ray/pull/23876/files#diff-47db2f054ca359879f77306e7b054dd8b780aab994961e3b4911330ae15eeae3R57-R60) See also discussion in https://github.com/ray-project/ray/pull/23850/files#r850036905
34,158
0
81
41
14
148,044
16
ray
10
python/ray/ml/checkpoint.py
Python
29
{ "docstring": "Return checkpoint directory path in a context.\n\n This function makes checkpoint data available as a directory while avoiding\n unnecessary copies and left-over temporary data.\n\n If the checkpoint is already a directory checkpoint, it will return\n the existing path. If it is not, it will create a temporary directory,\n which will be deleted after the context is exited.\n\n Users should treat the returned checkpoint directory as read-only and avoid\n changing any data within it, as it might get deleted when exiting the context.\n\n Example:\n\n with checkpoint.as_directory() as checkpoint_dir:\n # Do some read-only processing of files within checkpoint_dir\n pass\n\n # At this point, if a temporary directory was created, it will have\n # been deleted.\n\n ", "language": "en", "n_whitespaces": 239, "n_words": 113, "vocab_size": 75 }
https://github.com/ray-project/ray.git
11
update_billed_amount_based_on_so
def update_billed_amount_based_on_so(so_detail, update_modified=True): from frappe.query_builder.functions import Sum # Billed against Sales Order directly si = frappe.qb.DocType("Sales Invoice").as_("si") si_item = frappe.qb.DocType("Sales Invoice Item").as_("si_item") sum_amount = Sum(si_item.amount).as_("amount") billed_against_so = frappe.qb.from_(si).from_(si_item).select(sum_amount).where( (si_item.parent == si.name) & (si_item.so_detail == so_detail) & ((si_item.dn_detail.isnull()) | (si_item.dn_detail == '')) & (si_item.docstatus == 1) & (si.update_stock == 0) ).run() billed_against_so = billed_against_so and billed_against_so[0][0] or 0 # Get all Delivery Note Item rows against the Sales Order Item row dn = frappe.qb.DocType("Delivery Note").as_("dn") dn_item = frappe.qb.DocType("Delivery Note Item").as_("dn_item") dn_details = frappe.qb.from_(dn).from_(dn_item).select(dn_item.name, dn_item.amount, dn_item.si_detail, dn_item.parent, dn_item.stock_qty, dn_item.returned_qty).where( (dn.name == dn_item.parent) & (dn_item.so_detail == so_detail) & (dn.docstatus == 1) & (dn.is_return == 0) ).orderby( dn.posting_date, dn.posting_time, dn.name ).run(as_dict=True) updated_dn = [] for dnd in dn_details: billed_amt_agianst_dn = 0 # If delivered against Sales Invoice if dnd.si_detail: billed_amt_agianst_dn = flt(dnd.amount) billed_against_so -= billed_amt_agianst_dn else: # Get billed amount directly against Delivery Note billed_amt_agianst_dn = frappe.db.sql(, dnd.name) billed_amt_agianst_dn = billed_amt_agianst_dn and billed_amt_agianst_dn[0][0] or 0 # Distribute billed amount directly against SO between DNs based on FIFO if billed_against_so and billed_amt_agianst_dn < dnd.amount: if dnd.returned_qty: pending_to_bill = flt(dnd.amount) * (dnd.stock_qty - dnd.returned_qty) / dnd.stock_qty else: pending_to_bill = flt(dnd.amount) pending_to_bill -= billed_amt_agianst_dn if pending_to_bill <= billed_against_so: billed_amt_agianst_dn += pending_to_bill billed_against_so -= pending_to_bill else: billed_amt_agianst_dn += billed_against_so billed_against_so = 0 frappe.db.set_value("Delivery Note Item", dnd.name, "billed_amt", billed_amt_agianst_dn, update_modified=update_modified) updated_dn.append(dnd.parent) return updated_dn
ce0b84f54d495fc78a6792a9b05d0eb1dc799ed2
19
delivery_note.py
708
refactor: use frappe.qb instead of sql (cherry picked from commit 0a9ec9f591f8b4d0e630a3c902b69c9996f080dd)
13,585
0
162
440
120
64,242
214
erpnext
45
erpnext/stock/doctype/delivery_note/delivery_note.py
Python
48
{ "docstring": "select sum(amount) from `tabSales Invoice Item`\n\t\t\t\twhere dn_detail=%s and docstatus=1", "language": "en", "n_whitespaces": 8, "n_words": 10, "vocab_size": 10 }
https://github.com/frappe/erpnext.git
2
send
async def send(self, data) -> bool: try: await asyncio.wait_for( self.queue.put(data), timeout=self.drain_timeout ) return True except asyncio.TimeoutError: return False
2b6d00dde449934db8789c860d5e0e9dc9c528ab
13
channel.py
68
initial channel api change
35,044
0
113
41
17
151,551
18
freqtrade
11
freqtrade/rpc/api_server/ws/channel.py
Python
13
{ "docstring": "\n Add the data to the queue to be sent.\n :returns: True if data added to queue, False otherwise\n ", "language": "en", "n_whitespaces": 40, "n_words": 18, "vocab_size": 14 }
https://github.com/freqtrade/freqtrade.git
1
test_second_get_event_cancelled
def test_second_get_event_cancelled(self): with self.blocking_get_event_calls() as (unblock, get_event1, get_event2): # Cancel the second `get_event` call. get_event2.cancel() # The first `get_event` call must not be cancelled. self.assertNoResult(get_event1) # The second `get_event` call gets cancelled immediately. exc = self.get_failure(get_event2, CancelledError).value self.assertIsInstance(exc, CancelledError) # Unblock the database fetch. unblock.callback(None) # The first `get_event` call should complete successfully. self.get_success(get_event1)
8a87b4435a736cd42454cad7e57b65ec911f01fa
11
test_events_worker.py
112
Handle cancellation in `EventsWorkerStore._get_events_from_cache_or_db` (#12529) Multiple calls to `EventsWorkerStore._get_events_from_cache_or_db` can reuse the same database fetch, which is initiated by the first call. Ensure that cancelling the first call doesn't cancel the other calls sharing the same database fetch. Signed-off-by: Sean Quah <[email protected]>
72,077
0
189
64
40
248,060
54
synapse
15
tests/storage/databases/main/test_events_worker.py
Python
8
{ "docstring": "Test cancellation of the second `get_event` call sharing a database fetch.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
https://github.com/matrix-org/synapse.git
4
remove_column
def remove_column(self, i, *args, **kwargs): table = self.table.remove_column(i, *args, **kwargs) name = self.table.column_names[i] blocks = [] for tables in self.blocks: blocks.append( [ t.remove_column(t.column_names.index(name), *args, **kwargs) if name in t.column_names else t for t in tables ] ) return ConcatenationTable(table, blocks)
e35be138148333078284b942ccc9ed7b1d826f97
16
table.py
145
Update docs to new frontend/UI (#3690) * WIP: update docs to new UI * make style * Rm unused * inject_arrow_table_documentation __annotations__ * hasattr(arrow_table_method, "__annotations__") * Update task_template.rst * Codeblock PT-TF-SPLIT * Convert loading scripts * Convert docs to mdx * Fix mdx * Add <Tip> * Convert mdx tables * Fix codeblock * Rm unneded hashlinks * Update index.mdx * Redo dev change * Rm circle ci `build_doc` & `deploy_doc` * Rm unneeded files * Update docs reamde * Standardize to `Example::` * mdx logging levels doc * Table properties inject_arrow_table_documentation * ``` to ```py mdx * Add Tips mdx * important,None -> <Tip warning={true}> * More misc * Center imgs * Update instllation page * `setup.py` docs section * Rm imgs since they are in hf.co * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * Update index mdx * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * just `Dataset` obj * Addedversion just italics * Update ReadInstruction doc example syntax * Change docstring for `prepare_for_task` * Chore * Remove `code` syntax from headings * Rm `code` syntax from headings * Hashlink backward compatability * S3FileSystem doc * S3FileSystem doc updates * index.mdx updates * Add darkmode gifs * Index logo img css classes * Index mdx dataset logo img size * Docs for DownloadMode class * Doc DownloadMode table * format docstrings * style * Add doc builder scripts (#3790) * add doc builder scripts * fix docker image * Docs new UI actions no self hosted (#3793) * No self hosted * replace doc injection by actual docstrings * Docstring formatted Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> Co-authored-by: Lysandre Debut <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> * Rm notebooks from docs actions since they dont exi * Update tsting branch * More docstring * Chore * bump up node version * bump up node * ``` -> ```py for audio_process.mdx * Update .github/workflows/build_documentation.yml Co-authored-by: Quentin Lhoest <[email protected]> * Uodate dev doc build * remove run on PR * fix action * Fix gh doc workflow * forgot this change when merging master * Update build doc Co-authored-by: Steven Liu <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
21,852
0
172
96
29
104,416
40
datasets
14
src/datasets/table.py
Python
12
{ "docstring": "\n Create new Table with the indicated column removed.\n\n Args:\n i (:obj:`int`):\n Index of column to remove.\n\n Returns:\n :class:`datasets.table.Table`:\n New table without the column.\n ", "language": "en", "n_whitespaces": 104, "n_words": 23, "vocab_size": 21 }
https://github.com/huggingface/datasets.git
1
test_upload_room_keys_bogus_version
def test_upload_room_keys_bogus_version(self) -> None: version = self.get_success( self.handler.create_version( self.local_user, { "algorithm": "m.megolm_backup.v1", "auth_data": "first_version_auth_data", }, ) ) self.assertEqual(version, "1") e = self.get_failure( self.handler.upload_room_keys(self.local_user, "bogus_version", room_keys), SynapseError, ) res = e.value.code self.assertEqual(res, 404)
652d1669c5a103b1c20478770c4aaf18849c09a3
13
test_e2e_room_keys.py
139
Add missing type hints to tests.handlers. (#14680) And do not allow untyped defs in tests.handlers.
73,360
0
215
84
28
250,282
32
synapse
16
tests/handlers/test_e2e_room_keys.py
Python
20
{ "docstring": "Check that we get a 404 on uploading keys when an nonexistent version\n is specified\n ", "language": "en", "n_whitespaces": 29, "n_words": 15, "vocab_size": 15 }
https://github.com/matrix-org/synapse.git
1
test_white_levels_to_color_temperature
def test_white_levels_to_color_temperature(): # Only cold channel enabled -> coldest color temperature assert color_util._white_levels_to_color_temperature(255, 0, 2000, 6535) == ( 6535, 255, ) assert color_util._white_levels_to_color_temperature(128, 0, 2000, 6535) == ( 6535, 128, ) # Only warm channel enabled -> warmest color temperature assert color_util._white_levels_to_color_temperature(0, 255, 2000, 6535) == ( 2000, 255, ) assert color_util._white_levels_to_color_temperature(0, 128, 2000, 6535) == ( 2000, 128, ) assert color_util._white_levels_to_color_temperature(112, 143, 2000, 6535) == ( 2876, 255, ) assert color_util._white_levels_to_color_temperature(56, 72, 2000, 6535) == ( 2872, 128, ) # Both channels turned off -> warmest color temperature assert color_util._white_levels_to_color_temperature(0, 0, 2000, 6535) == ( 2000, 0, )
47d0598e75487f63901931875f69f802a477df13
8
test_color.py
197
Use Kelvin as the preferred color temperature unit (#79591) * Use Kelvin as the preferred white temperature unit * Update homekit * Adjust tests
87,759
0
251
145
36
288,603
99
core
3
tests/util/test_color.py
Python
29
{ "docstring": "Test warm, cold conversion to color temp.\n\n Temperature values must be in mireds\n Home Assistant uses rgbcw for rgbww\n ", "language": "en", "n_whitespaces": 28, "n_words": 19, "vocab_size": 19 }
https://github.com/home-assistant/core.git
1
_write_str_avoiding_backslashes
def _write_str_avoiding_backslashes(self, string, *, quote_types=_ALL_QUOTES): string, quote_types = self._str_literal_helper(string, quote_types=quote_types) quote_type = quote_types[0] self.write(f"{quote_type}{string}{quote_type}")
8198943edd73a363c266633e1aa5b2a9e9c9f526
9
ast.py
77
add python 3.10.4 for windows
55,932
0
42
41
12
220,194
14
XX-Net
8
python3.10.4/Lib/ast.py
Python
4
{ "docstring": "Write string literal value with a best effort attempt to avoid backslashes.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 12 }
https://github.com/XX-net/XX-Net.git